/[MITgcm]/MITgcm/model/src/dynamics.F
ViewVC logotype

Diff of /MITgcm/model/src/dynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.6 by adcroft, Wed May 20 21:29:31 1998 UTC revision 1.93 by jmc, Tue Feb 11 04:05:32 2003 UTC
# Line 1  Line 1 
1  C $Header$  C $Header$
2    C $Name$
3    
4  #include "CPP_EEOPTIONS.h"  #include "CPP_OPTIONS.h"
   
       SUBROUTINE DYNAMICS(myThid)  
 C     /==========================================================\  
 C     | SUBROUTINE DYNAMICS                                      |  
 C     | o Controlling routine for the explicit part of the model |  
 C     |   dynamics.                                              |  
 C     |==========================================================|  
 C     | This routine evaluates the "dynamics" terms for each     |  
 C     | block of ocean in turn. Because the blocks of ocean have |  
 C     | overlap regions they are independent of one another.     |  
 C     | If terms involving lateral integrals are needed in this  |  
 C     | routine care will be needed. Similarly finite-difference |  
 C     | operations with stencils wider than the overlap region   |  
 C     | require special consideration.                           |  
 C     | Notes                                                    |  
 C     | =====                                                    |  
 C     | C*P* comments indicating place holders for which code is |  
 C     |      presently being developed.                          |  
 C     \==========================================================/  
5    
6    CBOP
7    C     !ROUTINE: DYNAMICS
8    C     !INTERFACE:
9          SUBROUTINE DYNAMICS(myTime, myIter, myThid)
10    C     !DESCRIPTION: \bv
11    C     *==========================================================*
12    C     | SUBROUTINE DYNAMICS                                      
13    C     | o Controlling routine for the explicit part of the model  
14    C     |   dynamics.                                              
15    C     *==========================================================*
16    C     | This routine evaluates the "dynamics" terms for each      
17    C     | block of ocean in turn. Because the blocks of ocean have  
18    C     | overlap regions they are independent of one another.      
19    C     | If terms involving lateral integrals are needed in this  
20    C     | routine care will be needed. Similarly finite-difference  
21    C     | operations with stencils wider than the overlap region    
22    C     | require special consideration.                            
23    C     | The algorithm...
24    C     |
25    C     | "Correction Step"
26    C     | =================
27    C     | Here we update the horizontal velocities with the surface
28    C     | pressure such that the resulting flow is either consistent
29    C     | with the free-surface evolution or the rigid-lid:
30    C     |   U[n] = U* + dt x d/dx P
31    C     |   V[n] = V* + dt x d/dy P
32    C     |
33    C     | "Calculation of Gs"
34    C     | ===================
35    C     | This is where all the accelerations and tendencies (ie.
36    C     | physics, parameterizations etc...) are calculated
37    C     |   rho = rho ( theta[n], salt[n] )
38    C     |   b   = b(rho, theta)
39    C     |   K31 = K31 ( rho )
40    C     |   Gu[n] = Gu( u[n], v[n], wVel, b, ... )
41    C     |   Gv[n] = Gv( u[n], v[n], wVel, b, ... )
42    C     |   Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
43    C     |   Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
44    C     |
45    C     | "Time-stepping" or "Prediction"
46    C     | ================================
47    C     | The models variables are stepped forward with the appropriate
48    C     | time-stepping scheme (currently we use Adams-Bashforth II)
49    C     | - For momentum, the result is always *only* a "prediction"
50    C     | in that the flow may be divergent and will be "corrected"
51    C     | later with a surface pressure gradient.
52    C     | - Normally for tracers the result is the new field at time
53    C     | level [n+1} *BUT* in the case of implicit diffusion the result
54    C     | is also *only* a prediction.
55    C     | - We denote "predictors" with an asterisk (*).
56    C     |   U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
57    C     |   V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
58    C     |   theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
59    C     |   salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
60    C     | With implicit diffusion:
61    C     |   theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
62    C     |   salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
63    C     |   (1 + dt * K * d_zz) theta[n] = theta*
64    C     |   (1 + dt * K * d_zz) salt[n] = salt*
65    C     |
66    C     *==========================================================*
67    C     \ev
68    C     !USES:
69          IMPLICIT NONE
70  C     == Global variables ===  C     == Global variables ===
71  #include "SIZE.h"  #include "SIZE.h"
72  #include "EEPARAMS.h"  #include "EEPARAMS.h"
 #include "CG2D.h"  
73  #include "PARAMS.h"  #include "PARAMS.h"
74  #include "DYNVARS.h"  #include "DYNVARS.h"
75    #include "GRID.h"
76    #ifdef ALLOW_PASSIVE_TRACER
77    #include "TR1.h"
78    #endif
79    #ifdef ALLOW_AUTODIFF_TAMC
80    # include "tamc.h"
81    # include "tamc_keys.h"
82    # include "FFIELDS.h"
83    # include "EOS.h"
84    # ifdef ALLOW_KPP
85    #  include "KPP.h"
86    # endif
87    #endif /* ALLOW_AUTODIFF_TAMC */
88    #ifdef ALLOW_TIMEAVE
89    #include "TIMEAVE_STATV.h"
90    #endif
91    
92    C     !CALLING SEQUENCE:
93    C     DYNAMICS()
94    C      |
95    C      |-- CALC_GRAD_PHI_SURF
96    C      |
97    C      |-- CALC_VISCOSITY
98    C      |
99    C      |-- CALC_PHI_HYD  
100    C      |
101    C      |-- STORE_PRESSURE
102    C      |
103    C      |-- MOM_FLUXFORM  
104    C      |
105    C      |-- MOM_VECINV    
106    C      |
107    C      |-- TIMESTEP      
108    C      |
109    C      |-- OBCS_APPLY_UV
110    C      |
111    C      |-- IMPLDIFF      
112    C      |
113    C      |-- OBCS_APPLY_UV
114    C      |
115    C      |-- CALL TIMEAVE_CUMUL_1T
116    C      |-- CALL DEBUG_STATS_RL
117    
118    C     !INPUT/OUTPUT PARAMETERS:
119  C     == Routine arguments ==  C     == Routine arguments ==
120    C     myTime - Current time in simulation
121    C     myIter - Current iteration number in simulation
122  C     myThid - Thread number for this instance of the routine.  C     myThid - Thread number for this instance of the routine.
123          _RL myTime
124          INTEGER myIter
125        INTEGER myThid        INTEGER myThid
126    
127    C     !LOCAL VARIABLES:
128  C     == Local variables  C     == Local variables
129  C     xA, yA                 - Per block temporaries holding face areas  C     fVer[STUV]               o fVer: Vertical flux term - note fVer
 C     uTrans, vTrans, wTrans - Per block temporaries holding flow transport  
 C                              o uTrans: Zonal transport  
 C                              o vTrans: Meridional transport  
 C                              o wTrans: Vertical transport  
 C     maskC,maskUp             o maskC: land/water mask for tracer cells  
 C                              o maskUp: land/water mask for W points  
 C     aTerm, xTerm, cTerm    - Work arrays for holding separate terms in  
 C     mTerm, pTerm,            tendency equations.  
 C     fZon, fMer, fVer[STUV]   o aTerm: Advection term  
 C                              o xTerm: Mixing term  
 C                              o cTerm: Coriolis term  
 C                              o mTerm: Metric term  
 C                              o pTerm: Pressure term  
 C                              o fZon: Zonal flux term  
 C                              o fMer: Meridional flux term  
 C                              o fVer: Vertical flux term - note fVer  
130  C                                      is "pipelined" in the vertical  C                                      is "pipelined" in the vertical
131  C                                      so we need an fVer for each  C                                      so we need an fVer for each
132  C                                      variable.  C                                      variable.
133  C     iMin, iMax - Ranges and sub-block indices on which calculations  C     rhoK, rhoKM1   - Density at current level, and level above
134  C     jMin, jMax   are applied.  C     phiHyd         - Hydrostatic part of the potential.
135    C                      In z coords phiHyd is the hydrostatic
136    C                      Potential (=pressure/rho0) anomaly
137    C                      In p coords phiHyd is the geopotential
138    C                      surface height anomaly.
139    C     dPhiHydX,Y :: Gradient (X & Y directions) of Hydrostatic Potential
140    C     phiSurfX, - gradient of Surface potential (Pressure/rho, ocean)
141    C     phiSurfY             or geopotential (atmos) in X and Y direction
142    C     iMin, iMax     - Ranges and sub-block indices on which calculations
143    C     jMin, jMax       are applied.
144  C     bi, bj  C     bi, bj
145  C     k, kUp, kDown, kM1 - Index for layer above and below. kUp and kDown  C     k, kup,        - Index for layer above and below. kup and kDown
146  C                          are switched with layer to be the appropriate index  C     kDown, km1       are switched with layer to be the appropriate
147  C                          into fVerTerm  C                      index into fVerTerm.
148        _RS xA    (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL fVerU   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
149        _RS yA    (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL fVerV   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
150        _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiHyd  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
151        _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL dPhiHydX(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
152        _RL wTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL dPhiHydY(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
153        _RS maskC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL rhokm1  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
154        _RS maskUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL rhok    (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
155        _RL aTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
156        _RL xTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
157        _RL cTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL KappaRU (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
158        _RL mTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL KappaRV (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
159        _RL pTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL fZon  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL fMer  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL fVerS (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL pH    (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)  
       _RL rhokm1(1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL rhokp1(1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL pSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL pSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL K13   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)  
       _RL K23   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)  
       _RL K33   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)  
       _RL KapGM (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
160        INTEGER iMin, iMax        INTEGER iMin, iMax
161        INTEGER jMin, jMax        INTEGER jMin, jMax
162        INTEGER bi, bj        INTEGER bi, bj
163        INTEGER i, j        INTEGER i, j
164        INTEGER k, kM1, kUp, kDown        INTEGER k, km1, kp1, kup, kDown
165    
166          LOGICAL  DIFFERENT_MULTIPLE
167          EXTERNAL DIFFERENT_MULTIPLE
168    
169    C---    The algorithm...
170    C
171    C       "Correction Step"
172    C       =================
173    C       Here we update the horizontal velocities with the surface
174    C       pressure such that the resulting flow is either consistent
175    C       with the free-surface evolution or the rigid-lid:
176    C         U[n] = U* + dt x d/dx P
177    C         V[n] = V* + dt x d/dy P
178    C
179    C       "Calculation of Gs"
180    C       ===================
181    C       This is where all the accelerations and tendencies (ie.
182    C       physics, parameterizations etc...) are calculated
183    C         rho = rho ( theta[n], salt[n] )
184    C         b   = b(rho, theta)
185    C         K31 = K31 ( rho )
186    C         Gu[n] = Gu( u[n], v[n], wVel, b, ... )
187    C         Gv[n] = Gv( u[n], v[n], wVel, b, ... )
188    C         Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
189    C         Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
190    C
191    C       "Time-stepping" or "Prediction"
192    C       ================================
193    C       The models variables are stepped forward with the appropriate
194    C       time-stepping scheme (currently we use Adams-Bashforth II)
195    C       - For momentum, the result is always *only* a "prediction"
196    C       in that the flow may be divergent and will be "corrected"
197    C       later with a surface pressure gradient.
198    C       - Normally for tracers the result is the new field at time
199    C       level [n+1} *BUT* in the case of implicit diffusion the result
200    C       is also *only* a prediction.
201    C       - We denote "predictors" with an asterisk (*).
202    C         U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
203    C         V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
204    C         theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
205    C         salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
206    C       With implicit diffusion:
207    C         theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
208    C         salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
209    C         (1 + dt * K * d_zz) theta[n] = theta*
210    C         (1 + dt * K * d_zz) salt[n] = salt*
211    C---
212    CEOP
213    
214  C--   Set up work arrays with valid (i.e. not NaN) values  C--   Set up work arrays with valid (i.e. not NaN) values
215  C     These inital values do not alter the numerical results. They  C     These inital values do not alter the numerical results. They
# Line 99  C     point numbers. This prevents spuri Line 218  C     point numbers. This prevents spuri
218  C     uninitialised but inert locations.  C     uninitialised but inert locations.
219        DO j=1-OLy,sNy+OLy        DO j=1-OLy,sNy+OLy
220         DO i=1-OLx,sNx+OLx         DO i=1-OLx,sNx+OLx
221          xA(i,j)      = 0. _d 0          rhoKM1 (i,j) = 0. _d 0
222          yA(i,j)      = 0. _d 0          rhok   (i,j) = 0. _d 0
223          uTrans(i,j)  = 0. _d 0          phiSurfX(i,j) = 0. _d 0
224          vTrans(i,j)  = 0. _d 0          phiSurfY(i,j) = 0. _d 0
         aTerm(i,j)   = 0. _d 0  
         xTerm(i,j)   = 0. _d 0  
         cTerm(i,j)   = 0. _d 0  
         mTerm(i,j)   = 0. _d 0  
         pTerm(i,j)   = 0. _d 0  
         fZon(i,j)    = 0. _d 0  
         fMer(i,j)    = 0. _d 0  
         DO K=1,nZ  
          pH (i,j,k)  = 0. _d 0  
          K13(i,j,k) = 0. _d 0  
          K23(i,j,k) = 0. _d 0  
          K33(i,j,k) = 0. _d 0  
         ENDDO  
         rhokm1(i,j)  = 0. _d 0  
         rhokp1(i,j)  = 0. _d 0  
        ENDDO  
       ENDDO  
 C--   Set up work arrays that need valid initial values  
       DO j=1-OLy,sNy+OLy  
        DO i=1-OLx,sNx+OLx  
         wTrans(i,j)  = 0. _d 0  
         fVerT(i,j,1) = 0. _d 0  
         fVerT(i,j,2) = 0. _d 0  
         fVerS(i,j,1) = 0. _d 0  
         fVerS(i,j,2) = 0. _d 0  
         fVerU(i,j,1) = 0. _d 0  
         fVerU(i,j,2) = 0. _d 0  
         fVerV(i,j,1) = 0. _d 0  
         fVerV(i,j,2) = 0. _d 0  
225         ENDDO         ENDDO
226        ENDDO        ENDDO
227    
228    C-- Call to routine for calculation of
229    C   Eliassen-Palm-flux-forced U-tendency,
230    C   if desired:
231    #ifdef INCLUDE_EP_FORCING_CODE
232          CALL CALC_EP_FORCING(myThid)
233    #endif
234    
235    #ifdef ALLOW_AUTODIFF_TAMC
236    C--   HPF directive to help TAMC
237    CHPF$ INDEPENDENT
238    #endif /* ALLOW_AUTODIFF_TAMC */
239    
240        DO bj=myByLo(myThid),myByHi(myThid)        DO bj=myByLo(myThid),myByHi(myThid)
241    
242    #ifdef ALLOW_AUTODIFF_TAMC
243    C--    HPF directive to help TAMC
244    CHPF$  INDEPENDENT, NEW (fVerU,fVerV
245    CHPF$&                  ,phiHyd
246    CHPF$&                  ,KappaRU,KappaRV
247    CHPF$&                  )
248    #endif /* ALLOW_AUTODIFF_TAMC */
249    
250         DO bi=myBxLo(myThid),myBxHi(myThid)         DO bi=myBxLo(myThid),myBxHi(myThid)
251    
252  C--   Boundary condition on hydrostatic pressure is pH(z=0)=0  #ifdef ALLOW_AUTODIFF_TAMC
253              act1 = bi - myBxLo(myThid)
254              max1 = myBxHi(myThid) - myBxLo(myThid) + 1
255              act2 = bj - myByLo(myThid)
256              max2 = myByHi(myThid) - myByLo(myThid) + 1
257              act3 = myThid - 1
258              max3 = nTx*nTy
259              act4 = ikey_dynamics - 1
260              idynkey = (act1 + 1) + act2*max1
261         &                      + act3*max1*max2
262         &                      + act4*max1*max2*max3
263    #endif /* ALLOW_AUTODIFF_TAMC */
264    
265    C--     Set up work arrays that need valid initial values
266          DO j=1-OLy,sNy+OLy          DO j=1-OLy,sNy+OLy
267           DO i=1-OLx,sNx+OLx           DO i=1-OLx,sNx+OLx
268            pH(i,j,1) = 0. _d 0            DO k=1,Nr
269            K13(i,j,1) = 0. _d 0             phiHyd(i,j,k)  = 0. _d 0
270            K23(i,j,1) = 0. _d 0             KappaRU(i,j,k) = 0. _d 0
271            K33(i,j,1) = 0. _d 0             KappaRV(i,j,k) = 0. _d 0
272            KapGM(i,j) = 0. _d 0            ENDDO
273              fVerU  (i,j,1) = 0. _d 0
274              fVerU  (i,j,2) = 0. _d 0
275              fVerV  (i,j,1) = 0. _d 0
276              fVerV  (i,j,2) = 0. _d 0
277              dPhiHydX(i,j)  = 0. _d 0
278              dPhiHydY(i,j)  = 0. _d 0
279           ENDDO           ENDDO
280          ENDDO          ENDDO
281    
282          iMin = 1-OLx+1  C--     Start computation of dynamics
283          iMax = sNx+OLx          iMin = 0
284          jMin = 1-OLy+1          iMax = sNx+1
285          jMax = sNy+OLy          jMin = 0
286            jMax = sNy+1
287  C--     Calculate gradient of surface pressure  
288          CALL GRAD_PSURF(  #ifdef ALLOW_AUTODIFF_TAMC
289       I       bi,bj,iMin,iMax,jMin,jMax,  CADJ STORE wvel (:,:,:,bi,bj) =
290       O       pSurfX,pSurfY,  CADJ &     comlev1_bibj, key = idynkey, byte = isbyte
291       I       myThid)  #endif /* ALLOW_AUTODIFF_TAMC */
292    
293  C--     Update fields in top level according to tendency terms  C--     Explicit part of the Surface Potentiel Gradient (add in TIMESTEP)
294          CALL TIMESTEP(  C       (note: this loop will be replaced by CALL CALC_GRAD_ETA)
295       I       bi,bj,iMin,iMax,jMin,jMax,1,pSurfX,pSurfY,myThid)          IF (implicSurfPress.NE.1.) THEN
296              CALL CALC_GRAD_PHI_SURF(
297  C Density of 1st level (below W(1)) reference to level 1       I         bi,bj,iMin,iMax,jMin,jMax,
298           CALL FIND_RHO(       I         etaN,
299       I      bi, bj, iMin, iMax, jMin, jMax, 1, 1, 'LINEAR',       O         phiSurfX,phiSurfY,
300       O      rhoKm1,       I         myThid )                        
301       I      myThid )          ENDIF
302  C--     Integrate hydrostatic balance for pH with BC of pH(z=0)=0  
303           CALL CALC_PH(  #ifdef ALLOW_AUTODIFF_TAMC
304       I       bi,bj,iMin,iMax,jMin,jMax,1,rhoKm1,rhoKm1,  CADJ STORE uvel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
305       U       pH,  CADJ STORE vvel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
306       I       myThid )  #ifdef ALLOW_KPP
307    CADJ STORE KPPviscAz (:,:,:,bi,bj)
308          DO K=2,Nz  CADJ &                 = comlev1_bibj, key=idynkey, byte=isbyte
309  C--     Update fields in Kth level according to tendency terms  #endif /* ALLOW_KPP */
310          CALL TIMESTEP(  #endif /* ALLOW_AUTODIFF_TAMC */
311       I       bi,bj,iMin,iMax,jMin,jMax,K,pSurfX,pSurfY,myThid)  
312  C Density of K-1 level (above W(K)) reference to K level  #ifdef  INCLUDE_CALC_DIFFUSIVITY_CALL
313           CALL FIND_RHO(  C--      Calculate the total vertical diffusivity
314       I      bi, bj, iMin, iMax, jMin, jMax,  K-1, K, 'LINEAR',          DO k=1,Nr
315       O      rhoKm1,           CALL CALC_VISCOSITY(
316       I      myThid )       I        bi,bj,iMin,iMax,jMin,jMax,k,
317  C Density of K level (below W(K)) reference to K level       O        KappaRU,KappaRV,
          CALL FIND_RHO(  
      I      bi, bj, iMin, iMax, jMin, jMax,  K, K, 'LINEAR',  
      O      rhoKp1,  
      I      myThid )  
 C--     Calculate iso-neutral slopes for the GM/Redi parameterisation  
          CALL CALC_ISOSLOPES(  
      I             bi, bj, iMin, iMax, jMin, jMax, K,  
      I             rhoKm1, rhoKp1,  
      O             K13, K23, K33, KapGM,  
      I             myThid )  
 C--     Calculate static stability and mix where convectively unstable  
          CALL CONVECT(  
      I       bi,bj,iMin,iMax,jMin,jMax,K,rhoKm1,rhoKp1,myThid)  
 C Density of K-1 level (above W(K)) reference to K-1 level  
          CALL FIND_RHO(  
      I      bi, bj, iMin, iMax, jMin, jMax,  K-1, K-1, 'LINEAR',  
      O      rhoKm1,  
      I      myThid )  
 C Density of K level (below W(K)) referenced to K level  
          CALL FIND_RHO(  
      I      bi, bj, iMin, iMax, jMin, jMax,  K, K, 'LINEAR',  
      O      rhoKp1,  
      I      myThid )  
 C--     Integrate hydrostatic balance for pH with BC of pH(z=0)=0  
          CALL CALC_PH(  
      I       bi,bj,iMin,iMax,jMin,jMax,K,rhoKm1,rhoKp1,  
      U       pH,  
      I       myThid )  
   
         ENDDO ! K  
   
         DO K = Nz, 1, -1  
          kM1  =max(1,k-1)   ! Points to level above k (=k-1)  
          kUp  =1+MOD(k+1,2) ! Cycles through 1,2 to point to layer above  
          kDown=1+MOD(k,2)   ! Cycles through 2,1 to point to current layer  
          iMin = 1-OLx+2  
          iMax = sNx+OLx-1  
          jMin = 1-OLy+2  
          jMax = sNy+OLy-1  
   
 C--      Get temporary terms used by tendency routines  
          CALL CALC_COMMON_FACTORS (  
      I        bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,  
      O        xA,yA,uTrans,vTrans,wTrans,maskC,maskUp,  
318       I        myThid)       I        myThid)
319           ENDDO
320    #endif
321    
322  C--      Calculate accelerations in the momentum equations  C--     Start of dynamics loop
323           CALL CALC_MOM_RHS(          DO k=1,Nr
324       I        bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,  
325       I        xA,yA,uTrans,vTrans,wTrans,maskC,  C--       km1    Points to level above k (=k-1)
326       I        pH,  C--       kup    Cycles through 1,2 to point to layer above
327       U        aTerm,xTerm,cTerm,mTerm,pTerm,  C--       kDown  Cycles through 2,1 to point to current layer
328       U        fZon, fMer, fVerU, fVerV,  
329       I        myThid)            km1  = MAX(1,k-1)
330              kp1  = MIN(k+1,Nr)
331              kup  = 1+MOD(k+1,2)
332              kDown= 1+MOD(k,2)
333    
334    #ifdef ALLOW_AUTODIFF_TAMC
335             kkey = (idynkey-1)*Nr + k
336    CADJ STORE pressure(:,:,k,bi,bj) = comlev1_bibj_k ,
337    CADJ &     key=kkey , byte=isbyte
338    #endif /* ALLOW_AUTODIFF_TAMC */
339    
340    C--      Integrate hydrostatic balance for phiHyd with BC of
341    C        phiHyd(z=0)=0
342    C        distinguishe between Stagger and Non Stagger time stepping
343             IF (staggerTimeStep) THEN
344               CALL CALC_PHI_HYD(
345         I        bi,bj,iMin,iMax,jMin,jMax,k,
346         I        gT, gS,
347         U        phiHyd,
348         O        dPhiHydX, dPhiHydY,
349         I        myTime, myIter, myThid )
350             ELSE
351               CALL CALC_PHI_HYD(
352         I        bi,bj,iMin,iMax,jMin,jMax,k,
353         I        theta, salt,
354         U        phiHyd,
355         O        dPhiHydX, dPhiHydY,
356         I        myTime, myIter, myThid )
357             ENDIF
358    
359    C        calculate pressure from phiHyd and store it on common block
360    C        variable pressure
361             CALL STORE_PRESSURE( bi, bj, k, phiHyd, myThid )
362    
363    C--      Calculate accelerations in the momentum equations (gU, gV, ...)
364    C        and step forward storing the result in gUnm1, gVnm1, etc...
365             IF ( momStepping ) THEN
366    #ifndef DISABLE_MOM_FLUXFORM
367               IF (.NOT. vectorInvariantMomentum) CALL MOM_FLUXFORM(
368         I         bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
369         I         phiHyd,dPhiHydX,dPhiHydY,KappaRU,KappaRV,
370         U         fVerU, fVerV,
371         I         myTime, myIter, myThid)
372    #endif
373    #ifndef DISABLE_MOM_VECINV
374               IF (vectorInvariantMomentum) CALL MOM_VECINV(
375         I         bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
376         I         dPhiHydX,dPhiHydY,KappaRU,KappaRV,
377         U         fVerU, fVerV,
378         I         myTime, myIter, myThid)
379    #endif
380               CALL TIMESTEP(
381         I         bi,bj,iMin,iMax,jMin,jMax,k,
382         I         phiHyd, dPhiHydX,dPhiHydY, phiSurfX, phiSurfY,
383         I         myIter, myThid)
384    
385    #ifdef   ALLOW_OBCS
386    C--      Apply open boundary conditions
387             IF (useOBCS) THEN
388               CALL OBCS_APPLY_UV( bi, bj, k, gUnm1, gVnm1, myThid )
389             END IF
390    #endif   /* ALLOW_OBCS */
391    
392    #ifdef   ALLOW_AUTODIFF_TAMC
393    #ifdef   INCLUDE_CD_CODE
394             ELSE
395               DO j=1-OLy,sNy+OLy
396                 DO i=1-OLx,sNx+OLx
397                   guCD(i,j,k,bi,bj) = 0.0
398                   gvCD(i,j,k,bi,bj) = 0.0
399                 END DO
400               END DO
401    #endif   /* INCLUDE_CD_CODE */
402    #endif   /* ALLOW_AUTODIFF_TAMC */
403             ENDIF
404    
 C--      Calculate active tracer tendencies  
          CALL CALC_GT(  
      I        bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,  
      I        xA,yA,uTrans,vTrans,wTrans,maskUp,  
      I        K13,K23,K33,KapGM,  
      U        aTerm,xTerm,fZon,fMer,fVerT,  
      I        myThid)  
 Cdbg     CALL CALC_GS(  
 Cdbg I        bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,  
 Cdbg I        xA,yA,uTrans,vTrans,wTrans,maskUp,  
 Cdbg I        K13,K23,K33,KapGM,  
 Cdbg U        aTerm,xTerm,fZon,fMer,fVerS,  
 Cdbg I        myThid)  
405    
406          ENDDO ! K  C--     end of dynamics k loop (1:Nr)
407            ENDDO
408    
409    C--     Implicit viscosity
410            IF (implicitViscosity.AND.momStepping) THEN
411    #ifdef    ALLOW_AUTODIFF_TAMC
412    CADJ STORE gUNm1(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
413    #endif    /* ALLOW_AUTODIFF_TAMC */
414              CALL IMPLDIFF(
415         I         bi, bj, iMin, iMax, jMin, jMax,
416         I         deltaTmom, KappaRU,recip_HFacW,
417         U         gUNm1,
418         I         myThid )
419    #ifdef    ALLOW_AUTODIFF_TAMC
420    CADJ STORE gVNm1(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
421    #endif    /* ALLOW_AUTODIFF_TAMC */
422              CALL IMPLDIFF(
423         I         bi, bj, iMin, iMax, jMin, jMax,
424         I         deltaTmom, KappaRV,recip_HFacS,
425         U         gVNm1,
426         I         myThid )
427    
428    #ifdef   ALLOW_OBCS
429    C--      Apply open boundary conditions
430             IF (useOBCS) THEN
431               DO K=1,Nr
432                 CALL OBCS_APPLY_UV( bi, bj, k, gUnm1, gVnm1, myThid )
433               ENDDO
434             END IF
435    #endif   /* ALLOW_OBCS */
436    
437    #ifdef    INCLUDE_CD_CODE
438    #ifdef    ALLOW_AUTODIFF_TAMC
439    CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
440    #endif    /* ALLOW_AUTODIFF_TAMC */
441              CALL IMPLDIFF(
442         I         bi, bj, iMin, iMax, jMin, jMax,
443         I         deltaTmom, KappaRU,recip_HFacW,
444         U         vVelD,
445         I         myThid )
446    #ifdef    ALLOW_AUTODIFF_TAMC
447    CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
448    #endif    /* ALLOW_AUTODIFF_TAMC */
449              CALL IMPLDIFF(
450         I         bi, bj, iMin, iMax, jMin, jMax,
451         I         deltaTmom, KappaRV,recip_HFacS,
452         U         uVelD,
453         I         myThid )
454    #endif    /* INCLUDE_CD_CODE */
455    C--     End If implicitViscosity.AND.momStepping
456            ENDIF
457    
458    C- jmc: add for diagnostic of phiHyd
459            IF ( DIFFERENT_MULTIPLE(diagFreq,myTime+deltaTClock,myTime)
460         &       .AND. buoyancyRelation .NE. 'OCEANIC' ) THEN
461              CALL WRITE_LOCAL_RL('Ph','I10',Nr,phiHyd,
462         &                         bi,bj,1,myIter+1,myThid)
463            ENDIF
464    
465    #ifdef ALLOW_TIMEAVE
466            IF (taveFreq.GT.0.) THEN
467              CALL TIMEAVE_CUMUL_1T(phiHydtave, phiHyd, Nr,
468         I                              deltaTclock, bi, bj, myThid)
469            ENDIF
470    #endif /* ALLOW_TIMEAVE */
471    
472         ENDDO         ENDDO
473        ENDDO        ENDDO
474    
475  !dbg  write(0,*) 'dynamics: pS',minval(cg2d_x),maxval(cg2d_x)  Cml(
476  !dbg  write(0,*) 'dynamics: U',minval(uVel(1:sNx,1:sNy,:,:,:)),  C     In order to compare the variance of phiHydLow of a p/z-coordinate
477  !dbg &                         maxval(uVel(1:sNx,1:sNy,:,:,:))  C     run with etaH of a z/p-coordinate run the drift of phiHydLow
478  !dbg  write(0,*) 'dynamics: V',minval(vVel(1:sNx,1:sNy,:,:,:)),  C     has to be removed by something like the following subroutine:
479  !dbg &                         maxval(vVel(1:sNx,1:sNy,:,:,:))  C      CALL REMOVE_MEAN_RL( 1, phiHydLow, maskH, maskH, rA, drF,
480  !dbg  write(0,*) 'dynamics: gT',minval(gT(1:sNx,1:sNy,:,:,:)),  C     &                'phiHydLow', myThid )
481  !dbg &                         maxval(gT(1:sNx,1:sNy,:,:,:))  Cml)
482  !dbg  write(0,*) 'dynamics: T',minval(Theta(1:sNx,1:sNy,:,:,:)),  
483  !dbg &                         maxval(Theta(1:sNx,1:sNy,:,:,:))  #ifndef DISABLE_DEBUGMODE
484  !dbg  write(0,*) 'dynamics: pH',minval(pH/(Gravity*Rhonil)),        If (debugMode) THEN
485  !dbg &                          maxval(pH/(Gravity*Rhonil))         CALL DEBUG_STATS_RL(1,EtaN,'EtaN (DYNAMICS)',myThid)
486           CALL DEBUG_STATS_RL(Nr,uVel,'Uvel (DYNAMICS)',myThid)
487           CALL DEBUG_STATS_RL(Nr,vVel,'Vvel (DYNAMICS)',myThid)
488           CALL DEBUG_STATS_RL(Nr,wVel,'Wvel (DYNAMICS)',myThid)
489           CALL DEBUG_STATS_RL(Nr,theta,'Theta (DYNAMICS)',myThid)
490           CALL DEBUG_STATS_RL(Nr,salt,'Salt (DYNAMICS)',myThid)
491           CALL DEBUG_STATS_RL(Nr,Gu,'Gu (DYNAMICS)',myThid)
492           CALL DEBUG_STATS_RL(Nr,Gv,'Gv (DYNAMICS)',myThid)
493           CALL DEBUG_STATS_RL(Nr,Gt,'Gt (DYNAMICS)',myThid)
494           CALL DEBUG_STATS_RL(Nr,Gs,'Gs (DYNAMICS)',myThid)
495           CALL DEBUG_STATS_RL(Nr,GuNm1,'GuNm1 (DYNAMICS)',myThid)
496           CALL DEBUG_STATS_RL(Nr,GvNm1,'GvNm1 (DYNAMICS)',myThid)
497           CALL DEBUG_STATS_RL(Nr,GtNm1,'GtNm1 (DYNAMICS)',myThid)
498           CALL DEBUG_STATS_RL(Nr,GsNm1,'GsNm1 (DYNAMICS)',myThid)
499          ENDIF
500    #endif
501    
502        RETURN        RETURN
503        END        END

Legend:
Removed from v.1.6  
changed lines
  Added in v.1.93

  ViewVC Help
Powered by ViewVC 1.1.22