/[MITgcm]/MITgcm/model/src/dynamics.F
ViewVC logotype

Contents of /MITgcm/model/src/dynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.93 - (show annotations) (download)
Tue Feb 11 04:05:32 2003 UTC (21 years, 3 months ago) by jmc
Branch: MAIN
CVS Tags: checkpoint48e_post, checkpoint48f_post
Changes since 1.92: +5 -5 lines
dynamics: change definition of computational domain & adapt mom_fluxform
 accordingly ; when viscA4=0, allows to run the dynamics with Olx=Oly=2.

1 C $Header: /u/gcmpack/MITgcm/model/src/dynamics.F,v 1.92 2003/02/08 02:09:20 jmc Exp $
2 C $Name: $
3
4 #include "CPP_OPTIONS.h"
5
6 CBOP
7 C !ROUTINE: DYNAMICS
8 C !INTERFACE:
9 SUBROUTINE DYNAMICS(myTime, myIter, myThid)
10 C !DESCRIPTION: \bv
11 C *==========================================================*
12 C | SUBROUTINE DYNAMICS
13 C | o Controlling routine for the explicit part of the model
14 C | dynamics.
15 C *==========================================================*
16 C | This routine evaluates the "dynamics" terms for each
17 C | block of ocean in turn. Because the blocks of ocean have
18 C | overlap regions they are independent of one another.
19 C | If terms involving lateral integrals are needed in this
20 C | routine care will be needed. Similarly finite-difference
21 C | operations with stencils wider than the overlap region
22 C | require special consideration.
23 C | The algorithm...
24 C |
25 C | "Correction Step"
26 C | =================
27 C | Here we update the horizontal velocities with the surface
28 C | pressure such that the resulting flow is either consistent
29 C | with the free-surface evolution or the rigid-lid:
30 C | U[n] = U* + dt x d/dx P
31 C | V[n] = V* + dt x d/dy P
32 C |
33 C | "Calculation of Gs"
34 C | ===================
35 C | This is where all the accelerations and tendencies (ie.
36 C | physics, parameterizations etc...) are calculated
37 C | rho = rho ( theta[n], salt[n] )
38 C | b = b(rho, theta)
39 C | K31 = K31 ( rho )
40 C | Gu[n] = Gu( u[n], v[n], wVel, b, ... )
41 C | Gv[n] = Gv( u[n], v[n], wVel, b, ... )
42 C | Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
43 C | Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
44 C |
45 C | "Time-stepping" or "Prediction"
46 C | ================================
47 C | The models variables are stepped forward with the appropriate
48 C | time-stepping scheme (currently we use Adams-Bashforth II)
49 C | - For momentum, the result is always *only* a "prediction"
50 C | in that the flow may be divergent and will be "corrected"
51 C | later with a surface pressure gradient.
52 C | - Normally for tracers the result is the new field at time
53 C | level [n+1} *BUT* in the case of implicit diffusion the result
54 C | is also *only* a prediction.
55 C | - We denote "predictors" with an asterisk (*).
56 C | U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
57 C | V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
58 C | theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
59 C | salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
60 C | With implicit diffusion:
61 C | theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
62 C | salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
63 C | (1 + dt * K * d_zz) theta[n] = theta*
64 C | (1 + dt * K * d_zz) salt[n] = salt*
65 C |
66 C *==========================================================*
67 C \ev
68 C !USES:
69 IMPLICIT NONE
70 C == Global variables ===
71 #include "SIZE.h"
72 #include "EEPARAMS.h"
73 #include "PARAMS.h"
74 #include "DYNVARS.h"
75 #include "GRID.h"
76 #ifdef ALLOW_PASSIVE_TRACER
77 #include "TR1.h"
78 #endif
79 #ifdef ALLOW_AUTODIFF_TAMC
80 # include "tamc.h"
81 # include "tamc_keys.h"
82 # include "FFIELDS.h"
83 # include "EOS.h"
84 # ifdef ALLOW_KPP
85 # include "KPP.h"
86 # endif
87 #endif /* ALLOW_AUTODIFF_TAMC */
88 #ifdef ALLOW_TIMEAVE
89 #include "TIMEAVE_STATV.h"
90 #endif
91
92 C !CALLING SEQUENCE:
93 C DYNAMICS()
94 C |
95 C |-- CALC_GRAD_PHI_SURF
96 C |
97 C |-- CALC_VISCOSITY
98 C |
99 C |-- CALC_PHI_HYD
100 C |
101 C |-- STORE_PRESSURE
102 C |
103 C |-- MOM_FLUXFORM
104 C |
105 C |-- MOM_VECINV
106 C |
107 C |-- TIMESTEP
108 C |
109 C |-- OBCS_APPLY_UV
110 C |
111 C |-- IMPLDIFF
112 C |
113 C |-- OBCS_APPLY_UV
114 C |
115 C |-- CALL TIMEAVE_CUMUL_1T
116 C |-- CALL DEBUG_STATS_RL
117
118 C !INPUT/OUTPUT PARAMETERS:
119 C == Routine arguments ==
120 C myTime - Current time in simulation
121 C myIter - Current iteration number in simulation
122 C myThid - Thread number for this instance of the routine.
123 _RL myTime
124 INTEGER myIter
125 INTEGER myThid
126
127 C !LOCAL VARIABLES:
128 C == Local variables
129 C fVer[STUV] o fVer: Vertical flux term - note fVer
130 C is "pipelined" in the vertical
131 C so we need an fVer for each
132 C variable.
133 C rhoK, rhoKM1 - Density at current level, and level above
134 C phiHyd - Hydrostatic part of the potential.
135 C In z coords phiHyd is the hydrostatic
136 C Potential (=pressure/rho0) anomaly
137 C In p coords phiHyd is the geopotential
138 C surface height anomaly.
139 C dPhiHydX,Y :: Gradient (X & Y directions) of Hydrostatic Potential
140 C phiSurfX, - gradient of Surface potential (Pressure/rho, ocean)
141 C phiSurfY or geopotential (atmos) in X and Y direction
142 C iMin, iMax - Ranges and sub-block indices on which calculations
143 C jMin, jMax are applied.
144 C bi, bj
145 C k, kup, - Index for layer above and below. kup and kDown
146 C kDown, km1 are switched with layer to be the appropriate
147 C index into fVerTerm.
148 _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
149 _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
150 _RL phiHyd (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
151 _RL dPhiHydX(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
152 _RL dPhiHydY(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
153 _RL rhokm1 (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
154 _RL rhok (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
155 _RL phiSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
156 _RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
157 _RL KappaRU (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
158 _RL KappaRV (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
159
160 INTEGER iMin, iMax
161 INTEGER jMin, jMax
162 INTEGER bi, bj
163 INTEGER i, j
164 INTEGER k, km1, kp1, kup, kDown
165
166 LOGICAL DIFFERENT_MULTIPLE
167 EXTERNAL DIFFERENT_MULTIPLE
168
169 C--- The algorithm...
170 C
171 C "Correction Step"
172 C =================
173 C Here we update the horizontal velocities with the surface
174 C pressure such that the resulting flow is either consistent
175 C with the free-surface evolution or the rigid-lid:
176 C U[n] = U* + dt x d/dx P
177 C V[n] = V* + dt x d/dy P
178 C
179 C "Calculation of Gs"
180 C ===================
181 C This is where all the accelerations and tendencies (ie.
182 C physics, parameterizations etc...) are calculated
183 C rho = rho ( theta[n], salt[n] )
184 C b = b(rho, theta)
185 C K31 = K31 ( rho )
186 C Gu[n] = Gu( u[n], v[n], wVel, b, ... )
187 C Gv[n] = Gv( u[n], v[n], wVel, b, ... )
188 C Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
189 C Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
190 C
191 C "Time-stepping" or "Prediction"
192 C ================================
193 C The models variables are stepped forward with the appropriate
194 C time-stepping scheme (currently we use Adams-Bashforth II)
195 C - For momentum, the result is always *only* a "prediction"
196 C in that the flow may be divergent and will be "corrected"
197 C later with a surface pressure gradient.
198 C - Normally for tracers the result is the new field at time
199 C level [n+1} *BUT* in the case of implicit diffusion the result
200 C is also *only* a prediction.
201 C - We denote "predictors" with an asterisk (*).
202 C U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
203 C V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
204 C theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
205 C salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
206 C With implicit diffusion:
207 C theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
208 C salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
209 C (1 + dt * K * d_zz) theta[n] = theta*
210 C (1 + dt * K * d_zz) salt[n] = salt*
211 C---
212 CEOP
213
214 C-- Set up work arrays with valid (i.e. not NaN) values
215 C These inital values do not alter the numerical results. They
216 C just ensure that all memory references are to valid floating
217 C point numbers. This prevents spurious hardware signals due to
218 C uninitialised but inert locations.
219 DO j=1-OLy,sNy+OLy
220 DO i=1-OLx,sNx+OLx
221 rhoKM1 (i,j) = 0. _d 0
222 rhok (i,j) = 0. _d 0
223 phiSurfX(i,j) = 0. _d 0
224 phiSurfY(i,j) = 0. _d 0
225 ENDDO
226 ENDDO
227
228 C-- Call to routine for calculation of
229 C Eliassen-Palm-flux-forced U-tendency,
230 C if desired:
231 #ifdef INCLUDE_EP_FORCING_CODE
232 CALL CALC_EP_FORCING(myThid)
233 #endif
234
235 #ifdef ALLOW_AUTODIFF_TAMC
236 C-- HPF directive to help TAMC
237 CHPF$ INDEPENDENT
238 #endif /* ALLOW_AUTODIFF_TAMC */
239
240 DO bj=myByLo(myThid),myByHi(myThid)
241
242 #ifdef ALLOW_AUTODIFF_TAMC
243 C-- HPF directive to help TAMC
244 CHPF$ INDEPENDENT, NEW (fVerU,fVerV
245 CHPF$& ,phiHyd
246 CHPF$& ,KappaRU,KappaRV
247 CHPF$& )
248 #endif /* ALLOW_AUTODIFF_TAMC */
249
250 DO bi=myBxLo(myThid),myBxHi(myThid)
251
252 #ifdef ALLOW_AUTODIFF_TAMC
253 act1 = bi - myBxLo(myThid)
254 max1 = myBxHi(myThid) - myBxLo(myThid) + 1
255 act2 = bj - myByLo(myThid)
256 max2 = myByHi(myThid) - myByLo(myThid) + 1
257 act3 = myThid - 1
258 max3 = nTx*nTy
259 act4 = ikey_dynamics - 1
260 idynkey = (act1 + 1) + act2*max1
261 & + act3*max1*max2
262 & + act4*max1*max2*max3
263 #endif /* ALLOW_AUTODIFF_TAMC */
264
265 C-- Set up work arrays that need valid initial values
266 DO j=1-OLy,sNy+OLy
267 DO i=1-OLx,sNx+OLx
268 DO k=1,Nr
269 phiHyd(i,j,k) = 0. _d 0
270 KappaRU(i,j,k) = 0. _d 0
271 KappaRV(i,j,k) = 0. _d 0
272 ENDDO
273 fVerU (i,j,1) = 0. _d 0
274 fVerU (i,j,2) = 0. _d 0
275 fVerV (i,j,1) = 0. _d 0
276 fVerV (i,j,2) = 0. _d 0
277 dPhiHydX(i,j) = 0. _d 0
278 dPhiHydY(i,j) = 0. _d 0
279 ENDDO
280 ENDDO
281
282 C-- Start computation of dynamics
283 iMin = 0
284 iMax = sNx+1
285 jMin = 0
286 jMax = sNy+1
287
288 #ifdef ALLOW_AUTODIFF_TAMC
289 CADJ STORE wvel (:,:,:,bi,bj) =
290 CADJ & comlev1_bibj, key = idynkey, byte = isbyte
291 #endif /* ALLOW_AUTODIFF_TAMC */
292
293 C-- Explicit part of the Surface Potentiel Gradient (add in TIMESTEP)
294 C (note: this loop will be replaced by CALL CALC_GRAD_ETA)
295 IF (implicSurfPress.NE.1.) THEN
296 CALL CALC_GRAD_PHI_SURF(
297 I bi,bj,iMin,iMax,jMin,jMax,
298 I etaN,
299 O phiSurfX,phiSurfY,
300 I myThid )
301 ENDIF
302
303 #ifdef ALLOW_AUTODIFF_TAMC
304 CADJ STORE uvel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
305 CADJ STORE vvel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
306 #ifdef ALLOW_KPP
307 CADJ STORE KPPviscAz (:,:,:,bi,bj)
308 CADJ & = comlev1_bibj, key=idynkey, byte=isbyte
309 #endif /* ALLOW_KPP */
310 #endif /* ALLOW_AUTODIFF_TAMC */
311
312 #ifdef INCLUDE_CALC_DIFFUSIVITY_CALL
313 C-- Calculate the total vertical diffusivity
314 DO k=1,Nr
315 CALL CALC_VISCOSITY(
316 I bi,bj,iMin,iMax,jMin,jMax,k,
317 O KappaRU,KappaRV,
318 I myThid)
319 ENDDO
320 #endif
321
322 C-- Start of dynamics loop
323 DO k=1,Nr
324
325 C-- km1 Points to level above k (=k-1)
326 C-- kup Cycles through 1,2 to point to layer above
327 C-- kDown Cycles through 2,1 to point to current layer
328
329 km1 = MAX(1,k-1)
330 kp1 = MIN(k+1,Nr)
331 kup = 1+MOD(k+1,2)
332 kDown= 1+MOD(k,2)
333
334 #ifdef ALLOW_AUTODIFF_TAMC
335 kkey = (idynkey-1)*Nr + k
336 CADJ STORE pressure(:,:,k,bi,bj) = comlev1_bibj_k ,
337 CADJ & key=kkey , byte=isbyte
338 #endif /* ALLOW_AUTODIFF_TAMC */
339
340 C-- Integrate hydrostatic balance for phiHyd with BC of
341 C phiHyd(z=0)=0
342 C distinguishe between Stagger and Non Stagger time stepping
343 IF (staggerTimeStep) THEN
344 CALL CALC_PHI_HYD(
345 I bi,bj,iMin,iMax,jMin,jMax,k,
346 I gT, gS,
347 U phiHyd,
348 O dPhiHydX, dPhiHydY,
349 I myTime, myIter, myThid )
350 ELSE
351 CALL CALC_PHI_HYD(
352 I bi,bj,iMin,iMax,jMin,jMax,k,
353 I theta, salt,
354 U phiHyd,
355 O dPhiHydX, dPhiHydY,
356 I myTime, myIter, myThid )
357 ENDIF
358
359 C calculate pressure from phiHyd and store it on common block
360 C variable pressure
361 CALL STORE_PRESSURE( bi, bj, k, phiHyd, myThid )
362
363 C-- Calculate accelerations in the momentum equations (gU, gV, ...)
364 C and step forward storing the result in gUnm1, gVnm1, etc...
365 IF ( momStepping ) THEN
366 #ifndef DISABLE_MOM_FLUXFORM
367 IF (.NOT. vectorInvariantMomentum) CALL MOM_FLUXFORM(
368 I bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
369 I phiHyd,dPhiHydX,dPhiHydY,KappaRU,KappaRV,
370 U fVerU, fVerV,
371 I myTime, myIter, myThid)
372 #endif
373 #ifndef DISABLE_MOM_VECINV
374 IF (vectorInvariantMomentum) CALL MOM_VECINV(
375 I bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
376 I dPhiHydX,dPhiHydY,KappaRU,KappaRV,
377 U fVerU, fVerV,
378 I myTime, myIter, myThid)
379 #endif
380 CALL TIMESTEP(
381 I bi,bj,iMin,iMax,jMin,jMax,k,
382 I phiHyd, dPhiHydX,dPhiHydY, phiSurfX, phiSurfY,
383 I myIter, myThid)
384
385 #ifdef ALLOW_OBCS
386 C-- Apply open boundary conditions
387 IF (useOBCS) THEN
388 CALL OBCS_APPLY_UV( bi, bj, k, gUnm1, gVnm1, myThid )
389 END IF
390 #endif /* ALLOW_OBCS */
391
392 #ifdef ALLOW_AUTODIFF_TAMC
393 #ifdef INCLUDE_CD_CODE
394 ELSE
395 DO j=1-OLy,sNy+OLy
396 DO i=1-OLx,sNx+OLx
397 guCD(i,j,k,bi,bj) = 0.0
398 gvCD(i,j,k,bi,bj) = 0.0
399 END DO
400 END DO
401 #endif /* INCLUDE_CD_CODE */
402 #endif /* ALLOW_AUTODIFF_TAMC */
403 ENDIF
404
405
406 C-- end of dynamics k loop (1:Nr)
407 ENDDO
408
409 C-- Implicit viscosity
410 IF (implicitViscosity.AND.momStepping) THEN
411 #ifdef ALLOW_AUTODIFF_TAMC
412 CADJ STORE gUNm1(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
413 #endif /* ALLOW_AUTODIFF_TAMC */
414 CALL IMPLDIFF(
415 I bi, bj, iMin, iMax, jMin, jMax,
416 I deltaTmom, KappaRU,recip_HFacW,
417 U gUNm1,
418 I myThid )
419 #ifdef ALLOW_AUTODIFF_TAMC
420 CADJ STORE gVNm1(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
421 #endif /* ALLOW_AUTODIFF_TAMC */
422 CALL IMPLDIFF(
423 I bi, bj, iMin, iMax, jMin, jMax,
424 I deltaTmom, KappaRV,recip_HFacS,
425 U gVNm1,
426 I myThid )
427
428 #ifdef ALLOW_OBCS
429 C-- Apply open boundary conditions
430 IF (useOBCS) THEN
431 DO K=1,Nr
432 CALL OBCS_APPLY_UV( bi, bj, k, gUnm1, gVnm1, myThid )
433 ENDDO
434 END IF
435 #endif /* ALLOW_OBCS */
436
437 #ifdef INCLUDE_CD_CODE
438 #ifdef ALLOW_AUTODIFF_TAMC
439 CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
440 #endif /* ALLOW_AUTODIFF_TAMC */
441 CALL IMPLDIFF(
442 I bi, bj, iMin, iMax, jMin, jMax,
443 I deltaTmom, KappaRU,recip_HFacW,
444 U vVelD,
445 I myThid )
446 #ifdef ALLOW_AUTODIFF_TAMC
447 CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
448 #endif /* ALLOW_AUTODIFF_TAMC */
449 CALL IMPLDIFF(
450 I bi, bj, iMin, iMax, jMin, jMax,
451 I deltaTmom, KappaRV,recip_HFacS,
452 U uVelD,
453 I myThid )
454 #endif /* INCLUDE_CD_CODE */
455 C-- End If implicitViscosity.AND.momStepping
456 ENDIF
457
458 C- jmc: add for diagnostic of phiHyd
459 IF ( DIFFERENT_MULTIPLE(diagFreq,myTime+deltaTClock,myTime)
460 & .AND. buoyancyRelation .NE. 'OCEANIC' ) THEN
461 CALL WRITE_LOCAL_RL('Ph','I10',Nr,phiHyd,
462 & bi,bj,1,myIter+1,myThid)
463 ENDIF
464
465 #ifdef ALLOW_TIMEAVE
466 IF (taveFreq.GT.0.) THEN
467 CALL TIMEAVE_CUMUL_1T(phiHydtave, phiHyd, Nr,
468 I deltaTclock, bi, bj, myThid)
469 ENDIF
470 #endif /* ALLOW_TIMEAVE */
471
472 ENDDO
473 ENDDO
474
475 Cml(
476 C In order to compare the variance of phiHydLow of a p/z-coordinate
477 C run with etaH of a z/p-coordinate run the drift of phiHydLow
478 C has to be removed by something like the following subroutine:
479 C CALL REMOVE_MEAN_RL( 1, phiHydLow, maskH, maskH, rA, drF,
480 C & 'phiHydLow', myThid )
481 Cml)
482
483 #ifndef DISABLE_DEBUGMODE
484 If (debugMode) THEN
485 CALL DEBUG_STATS_RL(1,EtaN,'EtaN (DYNAMICS)',myThid)
486 CALL DEBUG_STATS_RL(Nr,uVel,'Uvel (DYNAMICS)',myThid)
487 CALL DEBUG_STATS_RL(Nr,vVel,'Vvel (DYNAMICS)',myThid)
488 CALL DEBUG_STATS_RL(Nr,wVel,'Wvel (DYNAMICS)',myThid)
489 CALL DEBUG_STATS_RL(Nr,theta,'Theta (DYNAMICS)',myThid)
490 CALL DEBUG_STATS_RL(Nr,salt,'Salt (DYNAMICS)',myThid)
491 CALL DEBUG_STATS_RL(Nr,Gu,'Gu (DYNAMICS)',myThid)
492 CALL DEBUG_STATS_RL(Nr,Gv,'Gv (DYNAMICS)',myThid)
493 CALL DEBUG_STATS_RL(Nr,Gt,'Gt (DYNAMICS)',myThid)
494 CALL DEBUG_STATS_RL(Nr,Gs,'Gs (DYNAMICS)',myThid)
495 CALL DEBUG_STATS_RL(Nr,GuNm1,'GuNm1 (DYNAMICS)',myThid)
496 CALL DEBUG_STATS_RL(Nr,GvNm1,'GvNm1 (DYNAMICS)',myThid)
497 CALL DEBUG_STATS_RL(Nr,GtNm1,'GtNm1 (DYNAMICS)',myThid)
498 CALL DEBUG_STATS_RL(Nr,GsNm1,'GsNm1 (DYNAMICS)',myThid)
499 ENDIF
500 #endif
501
502 RETURN
503 END

  ViewVC Help
Powered by ViewVC 1.1.22