--- MITgcm/model/src/dynamics.F 1998/09/06 17:35:20 1.33 +++ MITgcm/model/src/dynamics.F 2002/05/30 02:30:12 1.87 @@ -1,126 +1,168 @@ -C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/model/src/dynamics.F,v 1.33 1998/09/06 17:35:20 cnh Exp $ +C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/model/src/dynamics.F,v 1.87 2002/05/30 02:30:12 heimbach Exp $ +C $Name: $ #include "CPP_OPTIONS.h" +CBOP +C !ROUTINE: DYNAMICS +C !INTERFACE: SUBROUTINE DYNAMICS(myTime, myIter, myThid) -C /==========================================================\ -C | SUBROUTINE DYNAMICS | -C | o Controlling routine for the explicit part of the model | -C | dynamics. | -C |==========================================================| -C | This routine evaluates the "dynamics" terms for each | -C | block of ocean in turn. Because the blocks of ocean have | -C | overlap regions they are independent of one another. | -C | If terms involving lateral integrals are needed in this | -C | routine care will be needed. Similarly finite-difference | -C | operations with stencils wider than the overlap region | -C | require special consideration. | -C | Notes | -C | ===== | -C | C*P* comments indicating place holders for which code is | -C | presently being developed. | -C \==========================================================/ - +C !DESCRIPTION: \bv +C *==========================================================* +C | SUBROUTINE DYNAMICS +C | o Controlling routine for the explicit part of the model +C | dynamics. +C *==========================================================* +C | This routine evaluates the "dynamics" terms for each +C | block of ocean in turn. Because the blocks of ocean have +C | overlap regions they are independent of one another. +C | If terms involving lateral integrals are needed in this +C | routine care will be needed. Similarly finite-difference +C | operations with stencils wider than the overlap region +C | require special consideration. +C | The algorithm... +C | +C | "Correction Step" +C | ================= +C | Here we update the horizontal velocities with the surface +C | pressure such that the resulting flow is either consistent +C | with the free-surface evolution or the rigid-lid: +C | U[n] = U* + dt x d/dx P +C | V[n] = V* + dt x d/dy P +C | +C | "Calculation of Gs" +C | =================== +C | This is where all the accelerations and tendencies (ie. +C | physics, parameterizations etc...) are calculated +C | rho = rho ( theta[n], salt[n] ) +C | b = b(rho, theta) +C | K31 = K31 ( rho ) +C | Gu[n] = Gu( u[n], v[n], wVel, b, ... ) +C | Gv[n] = Gv( u[n], v[n], wVel, b, ... ) +C | Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... ) +C | Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... ) +C | +C | "Time-stepping" or "Prediction" +C | ================================ +C | The models variables are stepped forward with the appropriate +C | time-stepping scheme (currently we use Adams-Bashforth II) +C | - For momentum, the result is always *only* a "prediction" +C | in that the flow may be divergent and will be "corrected" +C | later with a surface pressure gradient. +C | - Normally for tracers the result is the new field at time +C | level [n+1} *BUT* in the case of implicit diffusion the result +C | is also *only* a prediction. +C | - We denote "predictors" with an asterisk (*). +C | U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] ) +C | V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] ) +C | theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) +C | salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) +C | With implicit diffusion: +C | theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) +C | salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) +C | (1 + dt * K * d_zz) theta[n] = theta* +C | (1 + dt * K * d_zz) salt[n] = salt* +C | +C *==========================================================* +C \ev +C !USES: + IMPLICIT NONE C == Global variables === #include "SIZE.h" #include "EEPARAMS.h" -#include "CG2D.h" #include "PARAMS.h" #include "DYNVARS.h" +#include "GRID.h" +#ifdef ALLOW_PASSIVE_TRACER +#include "TR1.h" +#endif +#ifdef ALLOW_AUTODIFF_TAMC +# include "tamc.h" +# include "tamc_keys.h" +# include "FFIELDS.h" +# ifdef ALLOW_KPP +# include "KPP.h" +# endif +#endif /* ALLOW_AUTODIFF_TAMC */ +#ifdef ALLOW_TIMEAVE +#include "TIMEAVE_STATV.h" +#endif +C !CALLING SEQUENCE: +C DYNAMICS() +C | +C |-- CALC_GRAD_PHI_SURF +C | +C |-- CALC_VISCOSITY +C | +C |-- CALC_PHI_HYD +C | +C |-- MOM_FLUXFORM +C | +C |-- MOM_VECINV +C | +C |-- TIMESTEP +C | +C |-- OBCS_APPLY_UV +C | +C |-- IMPLDIFF +C | +C |-- OBCS_APPLY_UV +C | +C |-- CALL TIMEAVE_CUMUL_1T +C |-- CALL DEBUG_STATS_RL + +C !INPUT/OUTPUT PARAMETERS: C == Routine arguments == C myTime - Current time in simulation C myIter - Current iteration number in simulation C myThid - Thread number for this instance of the routine. - INTEGER myThid _RL myTime INTEGER myIter + INTEGER myThid +C !LOCAL VARIABLES: C == Local variables -C xA, yA - Per block temporaries holding face areas -C uTrans, vTrans, rTrans - Per block temporaries holding flow transport -C rVel o uTrans: Zonal transport -C o vTrans: Meridional transport -C o rTrans: Vertical transport -C o rVel: Vertical velocity at upper and lower -C cell faces. -C maskC,maskUp o maskC: land/water mask for tracer cells -C o maskUp: land/water mask for W points -C aTerm, xTerm, cTerm - Work arrays for holding separate terms in -C mTerm, pTerm, tendency equations. -C fZon, fMer, fVer[STUV] o aTerm: Advection term -C o xTerm: Mixing term -C o cTerm: Coriolis term -C o mTerm: Metric term -C o pTerm: Pressure term -C o fZon: Zonal flux term -C o fMer: Meridional flux term -C o fVer: Vertical flux term - note fVer +C fVer[STUV] o fVer: Vertical flux term - note fVer C is "pipelined" in the vertical C so we need an fVer for each C variable. -C rhoK, rhoKM1 - Density at current level, level above and level below. -C rhoKP1 -C buoyK, buoyKM1 - Buoyancy at current level and level above. +C rhoK, rhoKM1 - Density at current level, and level above C phiHyd - Hydrostatic part of the potential phiHydi. -C In z coords phiHydiHyd is the hydrostatic pressure anomaly -C In p coords phiHydiHyd is the geopotential surface height -C anomaly. -C etaSurfX, - Holds surface elevation gradient in X and Y. -C etaSurfY -C K13, K23, K33 - Non-zero elements of small-angle approximation -C diffusion tensor. -C KapGM - Spatially varying Visbeck et. al mixing coeff. -C KappaRT, - Total diffusion in vertical for T and S. -C KappaRS ( background + spatially varying, isopycnal term). +C In z coords phiHydiHyd is the hydrostatic +C Potential (=pressure/rho0) anomaly +C In p coords phiHydiHyd is the geopotential +C surface height anomaly. +C phiSurfX, - gradient of Surface potentiel (Pressure/rho, ocean) +C phiSurfY or geopotentiel (atmos) in X and Y direction C iMin, iMax - Ranges and sub-block indices on which calculations C jMin, jMax are applied. C bi, bj -C k, kUp, - Index for layer above and below. kUp and kDown -C kDown, kM1 are switched with layer to be the appropriate index -C into fVerTerm - _RS xA (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RS yA (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL uTrans (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL vTrans (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL rTrans (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL rVel (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) - _RS maskC (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RS maskUp (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL aTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL xTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL cTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL mTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL pTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL fZon (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL fMer (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) - _RL fVerS (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) +C k, kup, - Index for layer above and below. kup and kDown +C kDown, km1 are switched with layer to be the appropriate +C index into fVerTerm. _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) _RL phiHyd (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) _RL rhokm1 (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL rhokp1 (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL rhok (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL buoyKM1 (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL buoyK (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL rhotmp (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL etaSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL etaSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL K13 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) - _RL K23 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) - _RL K33 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) - _RL KapGM (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL KappaRT (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr) - _RL KappaRS (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr) + _RL phiSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL KappaRU (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr) + _RL KappaRV (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr) INTEGER iMin, iMax INTEGER jMin, jMax INTEGER bi, bj INTEGER i, j - INTEGER k, kM1, kUp, kDown - LOGICAL BOTTOM_LAYER + INTEGER k, km1, kp1, kup, kDown +Cjmc : add for phiHyd output <- but not working if multi tile per CPU +c CHARACTER*(MAX_LEN_MBUF) suff +c LOGICAL DIFFERENT_MULTIPLE +c EXTERNAL DIFFERENT_MULTIPLE +Cjmc(end) + C--- The algorithm... C C "Correction Step" @@ -134,15 +176,14 @@ C "Calculation of Gs" C =================== C This is where all the accelerations and tendencies (ie. -C phiHydysics, parameterizations etc...) are calculated -C rVel = sum_r ( div. u[n] ) +C physics, parameterizations etc...) are calculated C rho = rho ( theta[n], salt[n] ) C b = b(rho, theta) C K31 = K31 ( rho ) -C Gu[n] = Gu( u[n], v[n], rVel, b, ... ) -C Gv[n] = Gv( u[n], v[n], rVel, b, ... ) -C Gt[n] = Gt( theta[n], u[n], v[n], rVel, K31, ... ) -C Gs[n] = Gs( salt[n], u[n], v[n], rVel, K31, ... ) +C Gu[n] = Gu( u[n], v[n], wVel, b, ... ) +C Gv[n] = Gv( u[n], v[n], wVel, b, ... ) +C Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... ) +C Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... ) C C "Time-stepping" or "Prediction" C ================================ @@ -165,6 +206,7 @@ C (1 + dt * K * d_zz) theta[n] = theta* C (1 + dt * K * d_zz) salt[n] = salt* C--- +CEOP C-- Set up work arrays with valid (i.e. not NaN) values C These inital values do not alter the numerical results. They @@ -173,287 +215,267 @@ C uninitialised but inert locations. DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx - xA(i,j) = 0. _d 0 - yA(i,j) = 0. _d 0 - uTrans(i,j) = 0. _d 0 - vTrans(i,j) = 0. _d 0 - aTerm(i,j) = 0. _d 0 - xTerm(i,j) = 0. _d 0 - cTerm(i,j) = 0. _d 0 - mTerm(i,j) = 0. _d 0 - pTerm(i,j) = 0. _d 0 - fZon(i,j) = 0. _d 0 - fMer(i,j) = 0. _d 0 - DO K=1,Nr - phiHyd (i,j,k) = 0. _d 0 - K13(i,j,k) = 0. _d 0 - K23(i,j,k) = 0. _d 0 - K33(i,j,k) = 0. _d 0 - KappaRT(i,j,k) = 0. _d 0 - KappaRS(i,j,k) = 0. _d 0 - ENDDO rhoKM1 (i,j) = 0. _d 0 rhok (i,j) = 0. _d 0 - rhoKP1 (i,j) = 0. _d 0 - rhoTMP (i,j) = 0. _d 0 - buoyKM1(i,j) = 0. _d 0 - buoyK (i,j) = 0. _d 0 - maskC (i,j) = 0. _d 0 + phiSurfX(i,j) = 0. _d 0 + phiSurfY(i,j) = 0. _d 0 ENDDO ENDDO +#ifdef ALLOW_AUTODIFF_TAMC +C-- HPF directive to help TAMC +CHPF$ INDEPENDENT +#endif /* ALLOW_AUTODIFF_TAMC */ + DO bj=myByLo(myThid),myByHi(myThid) + +#ifdef ALLOW_AUTODIFF_TAMC +C-- HPF directive to help TAMC +CHPF$ INDEPENDENT, NEW (fVerU,fVerV +CHPF$& ,phiHyd +CHPF$& ,KappaRU,KappaRV +CHPF$& ) +#endif /* ALLOW_AUTODIFF_TAMC */ + DO bi=myBxLo(myThid),myBxHi(myThid) +#ifdef ALLOW_AUTODIFF_TAMC + act1 = bi - myBxLo(myThid) + max1 = myBxHi(myThid) - myBxLo(myThid) + 1 + act2 = bj - myByLo(myThid) + max2 = myByHi(myThid) - myByLo(myThid) + 1 + act3 = myThid - 1 + max3 = nTx*nTy + act4 = ikey_dynamics - 1 + ikey = (act1 + 1) + act2*max1 + & + act3*max1*max2 + & + act4*max1*max2*max3 +#endif /* ALLOW_AUTODIFF_TAMC */ + C-- Set up work arrays that need valid initial values DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx - rTrans(i,j) = 0. _d 0 - rVel (i,j,1) = 0. _d 0 - rVel (i,j,2) = 0. _d 0 - fVerT (i,j,1) = 0. _d 0 - fVerT (i,j,2) = 0. _d 0 - fVerS (i,j,1) = 0. _d 0 - fVerS (i,j,2) = 0. _d 0 - fVerU (i,j,1) = 0. _d 0 - fVerU (i,j,2) = 0. _d 0 - fVerV (i,j,1) = 0. _d 0 - fVerV (i,j,2) = 0. _d 0 - phiHyd(i,j,1) = 0. _d 0 - K13 (i,j,1) = 0. _d 0 - K23 (i,j,1) = 0. _d 0 - K33 (i,j,1) = 0. _d 0 - KapGM (i,j) = GMkbackground + DO k=1,Nr + phiHyd(i,j,k) = 0. _d 0 + KappaRU(i,j,k) = 0. _d 0 + KappaRV(i,j,k) = 0. _d 0 + ENDDO + fVerU (i,j,1) = 0. _d 0 + fVerU (i,j,2) = 0. _d 0 + fVerV (i,j,1) = 0. _d 0 + fVerV (i,j,2) = 0. _d 0 ENDDO ENDDO - iMin = 1-OLx+1 - iMax = sNx+OLx - jMin = 1-OLy+1 - jMax = sNy+OLy - - K = 1 - BOTTOM_LAYER = K .EQ. Nr - -C-- Calculate gradient of surface pressure - CALL CALC_GRAD_ETA_SURF( - I bi,bj,iMin,iMax,jMin,jMax, - O etaSurfX,etaSurfY, - I myThid) -C-- Update fields in top level according to tendency terms - CALL CORRECTION_STEP( - I bi,bj,iMin,iMax,jMin,jMax,K, - I etaSurfX,etaSurfY,myTime,myThid) - IF ( .NOT. BOTTOM_LAYER ) THEN -C-- Update fields in layer below according to tendency terms - CALL CORRECTION_STEP( - I bi,bj,iMin,iMax,jMin,jMax,K+1, - I etaSurfX,etaSurfY,myTime,myThid) - ENDIF -C-- Density of 1st level (below W(1)) reference to level 1 - CALL FIND_RHO( - I bi, bj, iMin, iMax, jMin, jMax, K, K, eosType, - O rhoKm1, - I myThid ) - - IF ( .NOT. BOTTOM_LAYER ) THEN -C-- Check static stability with layer below -C-- and mix as needed. - CALL FIND_RHO( - I bi, bj, iMin, iMax, jMin, jMax, K+1, K, eosType, - O rhoKp1, - I myThid ) - CALL CONVECT( - I bi,bj,iMin,iMax,jMin,jMax,K+1,rhoKm1,rhoKp1, - I myTime,myIter,myThid) -C-- Recompute density after mixing - CALL FIND_RHO( - I bi, bj, iMin, iMax, jMin, jMax, K, K, eosType, - O rhoKm1, - I myThid ) +C-- Start computation of dynamics + iMin = 1-OLx+2 + iMax = sNx+OLx-1 + jMin = 1-OLy+2 + jMax = sNy+OLy-1 + +#ifdef ALLOW_AUTODIFF_TAMC +CADJ STORE wvel (:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte +#endif /* ALLOW_AUTODIFF_TAMC */ + +C-- Explicit part of the Surface Potentiel Gradient (add in TIMESTEP) +C (note: this loop will be replaced by CALL CALC_GRAD_ETA) + IF (implicSurfPress.NE.1.) THEN + CALL CALC_GRAD_PHI_SURF( + I bi,bj,iMin,iMax,jMin,jMax, + I etaN, + O phiSurfX,phiSurfY, + I myThid ) ENDIF -C-- Calculate buoyancy - CALL CALC_BUOYANCY( - I bi,bj,iMin,iMax,jMin,jMax,K,rhoKm1, - O buoyKm1, - I myThid ) -C-- Integrate hydrostatic balance for phiHyd with BC of phiHyd(z=0)=0 - CALL CALC_PHI_HYD( - I bi,bj,iMin,iMax,jMin,jMax,K,buoyKm1,buoyKm1, - U phiHyd, - I myThid ) - - DO K=2,Nr - BOTTOM_LAYER = K .EQ. Nr - IF ( .NOT. BOTTOM_LAYER ) THEN -C-- Update fields in layer below according to tendency terms - CALL CORRECTION_STEP( - I bi,bj,iMin,iMax,jMin,jMax,K+1, - I etaSurfX,etaSurfY,myTime,myThid) - ENDIF -C-- Density of K level (below W(K)) reference to K level - CALL FIND_RHO( - I bi, bj, iMin, iMax, jMin, jMax, K, K, eosType, - O rhoK, - I myThid ) - IF ( .NOT. BOTTOM_LAYER ) THEN -C-- Check static stability with layer below and mix as needed. -C-- Density of K+1 level (below W(K+1)) reference to K level. - CALL FIND_RHO( - I bi, bj, iMin, iMax, jMin, jMax, K+1, K, eosType, - O rhoKp1, - I myThid ) - CALL CONVECT( - I bi,bj,iMin,iMax,jMin,jMax,K+1,rhoK,rhoKp1, - I myTime,myIter,myThid) -C-- Recompute density after mixing - CALL FIND_RHO( - I bi, bj, iMin, iMax, jMin, jMax, K, K, eosType, - O rhoK, - I myThid ) - ENDIF -C-- Calculate buoyancy - CALL CALC_BUOYANCY( - I bi,bj,iMin,iMax,jMin,jMax,K,rhoK, - O buoyK, - I myThid ) -C-- Integrate hydrostatic balance for phiHyd with BC of phiHyd(z=0)=0 - CALL CALC_PHI_HYD( - I bi,bj,iMin,iMax,jMin,jMax,K,buoyKm1,buoyK, - U phiHyd, - I myThid ) -C-- Calculate iso-neutral slopes for the GM/Redi parameterisation - CALL FIND_RHO( - I bi, bj, iMin, iMax, jMin, jMax, K-1, K, eosType, - O rhoTmp, - I myThid ) - CALL CALC_ISOSLOPES( - I bi, bj, iMin, iMax, jMin, jMax, K, - I rhoKm1, rhoK, rhotmp, - O K13, K23, K33, KapGM, - I myThid ) - DO J=jMin,jMax - DO I=iMin,iMax - rhoKm1 (I,J) = rhoK(I,J) - buoyKm1(I,J) = buoyK(I,J) - ENDDO - ENDDO - ENDDO ! K - DO K = Nr, 1, -1 +#ifdef ALLOW_AUTODIFF_TAMC +CADJ STORE uvel (:,:,:,bi,bj) = comlev1_bibj, key=ikey, byte=isbyte +CADJ STORE vvel (:,:,:,bi,bj) = comlev1_bibj, key=ikey, byte=isbyte +#ifdef ALLOW_KPP +CADJ STORE KPPviscAz (:,:,:,bi,bj) +CADJ & = comlev1_bibj, key=ikey, byte=isbyte +#endif /* ALLOW_KPP */ +#endif /* ALLOW_AUTODIFF_TAMC */ - kM1 =max(1,k-1) ! Points to level above k (=k-1) - kUp =1+MOD(k+1,2) ! Cycles through 1,2 to point to layer above - kDown=1+MOD(k,2) ! Cycles through 2,1 to point to current layer - iMin = 1-OLx+2 - iMax = sNx+OLx-1 - jMin = 1-OLy+2 - jMax = sNy+OLy-1 - -C-- Get temporary terms used by tendency routines - CALL CALC_COMMON_FACTORS ( - I bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown, - O xA,yA,uTrans,vTrans,rTrans,rVel,maskC,maskUp, - I myThid) -CcnhDebugStarts - IF ( K .EQ. 1 ) THEN - CALL PLOT_FIELD_XYRL( rVel(1,1,1), 'K=1 Current rVel.1 ' , myIter, myThid ) - CALL PLOT_FIELD_XYRL( rVel(1,1,2), 'K=1 Current rVel.2 ' , myIter, myThid ) - ENDIF -CcnhDebugEnds +#ifdef INCLUDE_CALC_DIFFUSIVITY_CALL C-- Calculate the total vertical diffusivity - CALL CALC_DIFFUSIVITY( - I bi,bj,iMin,iMax,jMin,jMax,K, - I maskC,maskUp,KapGM,K33, - O KappaRT,KappaRS, + DO k=1,Nr + CALL CALC_VISCOSITY( + I bi,bj,iMin,iMax,jMin,jMax,k, + O KappaRU,KappaRV, I myThid) -C-- Calculate accelerations in the momentum equations - IF ( momStepping ) THEN - CALL CALC_MOM_RHS( - I bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown, - I xA,yA,uTrans,vTrans,rTrans,rVel,maskC, - I phiHyd, - U aTerm,xTerm,cTerm,mTerm,pTerm, - U fZon, fMer, fVerU, fVerV, - I myThid) - ENDIF -C-- Calculate active tracer tendencies - IF ( tempStepping ) THEN - CALL CALC_GT( - I bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown, - I xA,yA,uTrans,vTrans,rTrans,maskUp,maskC, - I K13,K23,KappaRT,KapGM, - U aTerm,xTerm,fZon,fMer,fVerT, - I myThid) - ENDIF - IF ( saltStepping ) THEN - CALL CALC_GS( - I bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown, - I xA,yA,uTrans,vTrans,rTrans,maskUp,maskC, - I K13,K23,KappaRS,KapGM, - U aTerm,xTerm,fZon,fMer,fVerS, - I myThid) - ENDIF -C-- Prediction step (step forward all model variables) - CALL TIMESTEP( - I bi,bj,iMin,iMax,jMin,jMax,K, - I myThid) -C-- Diagnose barotropic divergence of predicted fields - CALL CALC_DIV_GHAT( - I bi,bj,iMin,iMax,jMin,jMax,K, - I xA,yA, - I myThid) - -C-- Cumulative diagnostic calculations (ie. time-averaging) -#ifdef ALLOW_DIAGNOSTICS - IF (taveFreq.GT.0.) THEN - CALL DO_TIME_AVERAGES( - I myTime, myIter, bi, bj, K, kUp, kDown, - I K13, K23, rVel, KapGM, - I myThid ) + ENDDO +#endif + +C-- Start of dynamics loop + DO k=1,Nr + +C-- km1 Points to level above k (=k-1) +C-- kup Cycles through 1,2 to point to layer above +C-- kDown Cycles through 2,1 to point to current layer + + km1 = MAX(1,k-1) + kp1 = MIN(k+1,Nr) + kup = 1+MOD(k+1,2) + kDown= 1+MOD(k,2) + +#ifdef ALLOW_AUTODIFF_TAMC + kkey = (ikey-1)*Nr + k +#endif /* ALLOW_AUTODIFF_TAMC */ + +C-- Integrate hydrostatic balance for phiHyd with BC of +C phiHyd(z=0)=0 +C distinguishe between Stagger and Non Stagger time stepping + IF (staggerTimeStep) THEN + CALL CALC_PHI_HYD( + I bi,bj,iMin,iMax,jMin,jMax,k, + I gT, gS, + U phiHyd, + I myThid ) + ELSE + CALL CALC_PHI_HYD( + I bi,bj,iMin,iMax,jMin,jMax,k, + I theta, salt, + U phiHyd, + I myThid ) ENDIF + +C-- Calculate accelerations in the momentum equations (gU, gV, ...) +C and step forward storing the result in gUnm1, gVnm1, etc... + IF ( momStepping ) THEN +#ifndef DISABLE_MOM_FLUXFORM + IF (.NOT. vectorInvariantMomentum) CALL MOM_FLUXFORM( + I bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown, + I phiHyd,KappaRU,KappaRV, + U fVerU, fVerV, + I myTime, myIter, myThid) +#endif +#ifndef DISABLE_MOM_VECINV + IF (vectorInvariantMomentum) CALL MOM_VECINV( + I bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown, + I phiHyd,KappaRU,KappaRV, + U fVerU, fVerV, + I myTime, myIter, myThid) #endif + CALL TIMESTEP( + I bi,bj,iMin,iMax,jMin,jMax,k, + I phiHyd, phiSurfX, phiSurfY, + I myIter, myThid) + +#ifdef ALLOW_OBCS +C-- Apply open boundary conditions + IF (useOBCS) THEN + CALL OBCS_APPLY_UV( bi, bj, k, gUnm1, gVnm1, myThid ) + END IF +#endif /* ALLOW_OBCS */ + +#ifdef ALLOW_AUTODIFF_TAMC +#ifdef INCLUDE_CD_CODE + ELSE + DO j=1-OLy,sNy+OLy + DO i=1-OLx,sNx+OLx + guCD(i,j,k,bi,bj) = 0.0 + gvCD(i,j,k,bi,bj) = 0.0 + END DO + END DO +#endif /* INCLUDE_CD_CODE */ +#endif /* ALLOW_AUTODIFF_TAMC */ + ENDIF + - ENDDO ! K +C-- end of dynamics k loop (1:Nr) + ENDDO -C-- Implicit diffusion - IF (implicitDiffusion) THEN - CALL IMPLDIFF( bi, bj, iMin, iMax, jMin, jMax, - I KappaRT,KappaRS, - I myThid ) + + +C-- Implicit viscosity + IF (implicitViscosity.AND.momStepping) THEN +#ifdef ALLOW_AUTODIFF_TAMC + idkey = iikey + 3 +CADJ STORE gUNm1(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte +#endif /* ALLOW_AUTODIFF_TAMC */ + CALL IMPLDIFF( + I bi, bj, iMin, iMax, jMin, jMax, + I deltaTmom, KappaRU,recip_HFacW, + U gUNm1, + I myThid ) +#ifdef ALLOW_AUTODIFF_TAMC + idkey = iikey + 4 +CADJ STORE gVNm1(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte +#endif /* ALLOW_AUTODIFF_TAMC */ + CALL IMPLDIFF( + I bi, bj, iMin, iMax, jMin, jMax, + I deltaTmom, KappaRV,recip_HFacS, + U gVNm1, + I myThid ) + +#ifdef ALLOW_OBCS +C-- Apply open boundary conditions + IF (useOBCS) THEN + DO K=1,Nr + CALL OBCS_APPLY_UV( bi, bj, k, gUnm1, gVnm1, myThid ) + ENDDO + END IF +#endif /* ALLOW_OBCS */ + +#ifdef INCLUDE_CD_CODE +#ifdef ALLOW_AUTODIFF_TAMC + idkey = iikey + 5 +CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte +#endif /* ALLOW_AUTODIFF_TAMC */ + CALL IMPLDIFF( + I bi, bj, iMin, iMax, jMin, jMax, + I deltaTmom, KappaRU,recip_HFacW, + U vVelD, + I myThid ) +#ifdef ALLOW_AUTODIFF_TAMC + idkey = iikey + 6 +CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte +#endif /* ALLOW_AUTODIFF_TAMC */ + CALL IMPLDIFF( + I bi, bj, iMin, iMax, jMin, jMax, + I deltaTmom, KappaRV,recip_HFacS, + U uVelD, + I myThid ) +#endif /* INCLUDE_CD_CODE */ +C-- End If implicitViscosity.AND.momStepping ENDIF +Cjmc : add for phiHyd output <- but not working if multi tile per CPU +c IF ( DIFFERENT_MULTIPLE(dumpFreq,myTime+deltaTClock,myTime) +c & .AND. buoyancyRelation .eq. 'ATMOSPHERIC' ) THEN +c WRITE(suff,'(I10.10)') myIter+1 +c CALL WRITE_FLD_XYZ_RL('PH.',suff,phiHyd,myIter+1,myThid) +c ENDIF +Cjmc(end) + +#ifdef ALLOW_TIMEAVE + IF (taveFreq.GT.0.) THEN + CALL TIMEAVE_CUMUL_1T(phiHydtave, phiHyd, Nr, + I deltaTclock, bi, bj, myThid) + ENDIF +#endif /* ALLOW_TIMEAVE */ + ENDDO ENDDO -C write(0,*) 'dynamics: pS ',minval(cg2d_x(1:sNx,1:sNy,:,:)), -C & maxval(cg2d_x(1:sNx,1:sNy,:,:)) -C write(0,*) 'dynamics: U ',minval(uVel(1:sNx,1:sNy,1,:,:),mask=uVel(1:sNx,1:sNy,1,:,:).NE.0.), -C & maxval(uVel(1:sNx,1:sNy,1,:,:),mask=uVel(1:sNx,1:sNy,1,:,:).NE.0.) -C write(0,*) 'dynamics: V ',minval(vVel(1:sNx,1:sNy,1,:,:),mask=vVel(1:sNx,1:sNy,1,:,:).NE.0.), -C & maxval(vVel(1:sNx,1:sNy,1,:,:),mask=vVel(1:sNx,1:sNy,1,:,:).NE.0.) -C write(0,*) 'dynamics: rVel(1) ', -C & minval(rVel(1:sNx,1:sNy,1),mask=rVel(1:sNx,1:sNy,1).NE.0.), -C & maxval(rVel(1:sNx,1:sNy,1),mask=rVel(1:sNx,1:sNy,1).NE.0.) -C write(0,*) 'dynamics: rVel(2) ', -C & minval(rVel(1:sNx,1:sNy,2),mask=rVel(1:sNx,1:sNy,2).NE.0.), -C & maxval(rVel(1:sNx,1:sNy,2),mask=rVel(1:sNx,1:sNy,2).NE.0.) -cblk write(0,*) 'dynamics: K13',minval(K13(1:sNx,1:sNy,:)), -cblk & maxval(K13(1:sNx,1:sNy,:)) -cblk write(0,*) 'dynamics: K23',minval(K23(1:sNx,1:sNy,:)), -cblk & maxval(K23(1:sNx,1:sNy,:)) -cblk write(0,*) 'dynamics: K33',minval(K33(1:sNx,1:sNy,:)), -cblk & maxval(K33(1:sNx,1:sNy,:)) -C write(0,*) 'dynamics: gT ',minval(gT(1:sNx,1:sNy,:,:,:)), -C & maxval(gT(1:sNx,1:sNy,:,:,:)) -C write(0,*) 'dynamics: T ',minval(Theta(1:sNx,1:sNy,:,:,:)), -C & maxval(Theta(1:sNx,1:sNy,:,:,:)) -C write(0,*) 'dynamics: gS ',minval(gS(1:sNx,1:sNy,:,:,:)), -C & maxval(gS(1:sNx,1:sNy,:,:,:)) -C write(0,*) 'dynamics: S ',minval(salt(1:sNx,1:sNy,:,:,:)), -C & maxval(salt(1:sNx,1:sNy,:,:,:)) -C write(0,*) 'dynamics: phiHyd ',minval(phiHyd/(Gravity*Rhonil),mask=phiHyd.NE.0.), -C & maxval(phiHyd/(Gravity*Rhonil)) +#ifndef DISABLE_DEBUGMODE + If (debugMode) THEN + CALL DEBUG_STATS_RL(1,EtaN,'EtaN (DYNAMICS)',myThid) + CALL DEBUG_STATS_RL(Nr,uVel,'Uvel (DYNAMICS)',myThid) + CALL DEBUG_STATS_RL(Nr,vVel,'Vvel (DYNAMICS)',myThid) + CALL DEBUG_STATS_RL(Nr,wVel,'Wvel (DYNAMICS)',myThid) + CALL DEBUG_STATS_RL(Nr,theta,'Theta (DYNAMICS)',myThid) + CALL DEBUG_STATS_RL(Nr,salt,'Salt (DYNAMICS)',myThid) + CALL DEBUG_STATS_RL(Nr,Gu,'Gu (DYNAMICS)',myThid) + CALL DEBUG_STATS_RL(Nr,Gv,'Gv (DYNAMICS)',myThid) + CALL DEBUG_STATS_RL(Nr,Gt,'Gt (DYNAMICS)',myThid) + CALL DEBUG_STATS_RL(Nr,Gs,'Gs (DYNAMICS)',myThid) + CALL DEBUG_STATS_RL(Nr,GuNm1,'GuNm1 (DYNAMICS)',myThid) + CALL DEBUG_STATS_RL(Nr,GvNm1,'GvNm1 (DYNAMICS)',myThid) + CALL DEBUG_STATS_RL(Nr,GtNm1,'GtNm1 (DYNAMICS)',myThid) + CALL DEBUG_STATS_RL(Nr,GsNm1,'GsNm1 (DYNAMICS)',myThid) + ENDIF +#endif RETURN END