/[MITgcm]/MITgcm/model/src/dynamics.F
ViewVC logotype

Contents of /MITgcm/model/src/dynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.12 - (show annotations) (download)
Mon Jun 1 22:27:14 1998 UTC (25 years, 11 months ago) by adcroft
Branch: MAIN
Changes since 1.11: +41 -26 lines
Implemented implicit vertical diffusion (tracers only).
Involved introducing a "total" diffusivity array (local 3D)
calculated by calc_diffusivity().
Made some small changes to time-stepping algorithm.
Switched on by setting implicitZdiffusion.
(note: *Not* fully tested with topography. But when switched off
this does produce identical results)

1 C $Header: /u/gcmpack/models/MITgcmUV/model/src/dynamics.F,v 1.11 1998/06/01 20:36:13 adcroft Exp $
2
3 #include "CPP_EEOPTIONS.h"
4
5 SUBROUTINE DYNAMICS(myTime, myIter, myThid)
6 C /==========================================================\
7 C | SUBROUTINE DYNAMICS |
8 C | o Controlling routine for the explicit part of the model |
9 C | dynamics. |
10 C |==========================================================|
11 C | This routine evaluates the "dynamics" terms for each |
12 C | block of ocean in turn. Because the blocks of ocean have |
13 C | overlap regions they are independent of one another. |
14 C | If terms involving lateral integrals are needed in this |
15 C | routine care will be needed. Similarly finite-difference |
16 C | operations with stencils wider than the overlap region |
17 C | require special consideration. |
18 C | Notes |
19 C | ===== |
20 C | C*P* comments indicating place holders for which code is |
21 C | presently being developed. |
22 C \==========================================================/
23
24 C == Global variables ===
25 #include "SIZE.h"
26 #include "EEPARAMS.h"
27 #include "CG2D.h"
28 #include "PARAMS.h"
29 #include "DYNVARS.h"
30
31 C == Routine arguments ==
32 C myTime - Current time in simulation
33 C myIter - Current iteration number in simulation
34 C myThid - Thread number for this instance of the routine.
35 INTEGER myThid
36 _RL myTime
37 INTEGER myIter
38
39 C == Local variables
40 C xA, yA - Per block temporaries holding face areas
41 C uTrans, vTrans, wTrans - Per block temporaries holding flow transport
42 C o uTrans: Zonal transport
43 C o vTrans: Meridional transport
44 C o wTrans: Vertical transport
45 C maskC,maskUp o maskC: land/water mask for tracer cells
46 C o maskUp: land/water mask for W points
47 C aTerm, xTerm, cTerm - Work arrays for holding separate terms in
48 C mTerm, pTerm, tendency equations.
49 C fZon, fMer, fVer[STUV] o aTerm: Advection term
50 C o xTerm: Mixing term
51 C o cTerm: Coriolis term
52 C o mTerm: Metric term
53 C o pTerm: Pressure term
54 C o fZon: Zonal flux term
55 C o fMer: Meridional flux term
56 C o fVer: Vertical flux term - note fVer
57 C is "pipelined" in the vertical
58 C so we need an fVer for each
59 C variable.
60 C iMin, iMax - Ranges and sub-block indices on which calculations
61 C jMin, jMax are applied.
62 C bi, bj
63 C k, kUp, kDown, kM1 - Index for layer above and below. kUp and kDown
64 C are switched with layer to be the appropriate index
65 C into fVerTerm
66 _RS xA (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
67 _RS yA (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
68 _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
69 _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
70 _RL wTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
71 _RS maskC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
72 _RS maskUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
73 _RL aTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
74 _RL xTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
75 _RL cTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
76 _RL mTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
77 _RL pTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
78 _RL fZon (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
79 _RL fMer (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
80 _RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
81 _RL fVerS (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
82 _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
83 _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
84 _RL pH (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)
85 _RL rhokm1(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
86 _RL rhokp1(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
87 _RL rhotmp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
88 _RL pSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
89 _RL pSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
90 _RL K13 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)
91 _RL K23 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)
92 _RL K33 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)
93 _RL KapGM (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
94 _RL KappaZT(1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nz)
95
96 INTEGER iMin, iMax
97 INTEGER jMin, jMax
98 INTEGER bi, bj
99 INTEGER i, j
100 INTEGER k, kM1, kUp, kDown
101
102 C--- The algorithm...
103 C
104 C "Correction Step"
105 C =================
106 C Here we update the horizontal velocities with the surface
107 C pressure such that the resulting flow is either consistent
108 C with the free-surface evolution or the rigid-lid:
109 C U[n] = U* + dt x d/dx P
110 C V[n] = V* + dt x d/dy P
111 C
112 C "Calculation of Gs"
113 C ===================
114 C This is where all the accelerations and tendencies (ie.
115 C physics, parameterizations etc...) are calculated
116 C w = sum_z ( div. u[n] )
117 C rho = rho ( theta[n], salt[n] )
118 C K31 = K31 ( rho )
119 C Gu[n] = Gu( u[n], v[n], w, rho, Ph, ... )
120 C Gv[n] = Gv( u[n], v[n], w, rho, Ph, ... )
121 C Gt[n] = Gt( theta[n], u[n], v[n], w, K31, ... )
122 C Gs[n] = Gs( salt[n], u[n], v[n], w, K31, ... )
123 C
124 C "Time-stepping" or "Prediction"
125 C ================================
126 C The models variables are stepped forward with the appropriate
127 C time-stepping scheme (currently we use Adams-Bashforth II)
128 C - For momentum, the result is always *only* a "prediction"
129 C in that the flow may be divergent and will be "corrected"
130 C later with a surface pressure gradient.
131 C - Normally for tracers the result is the new field at time
132 C level [n+1} *BUT* in the case of implicit diffusion the result
133 C is also *only* a prediction.
134 C - We denote "predictors" with an asterisk (*).
135 C U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
136 C V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
137 C theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
138 C salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
139 C With implicit diffusion:
140 C theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
141 C salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
142 C (1 + dt * K * d_zz) theta[n] = theta*
143 C (1 + dt * K * d_zz) salt[n] = salt*
144 C---
145
146 C-- Set up work arrays with valid (i.e. not NaN) values
147 C These inital values do not alter the numerical results. They
148 C just ensure that all memory references are to valid floating
149 C point numbers. This prevents spurious hardware signals due to
150 C uninitialised but inert locations.
151 DO j=1-OLy,sNy+OLy
152 DO i=1-OLx,sNx+OLx
153 xA(i,j) = 0. _d 0
154 yA(i,j) = 0. _d 0
155 uTrans(i,j) = 0. _d 0
156 vTrans(i,j) = 0. _d 0
157 aTerm(i,j) = 0. _d 0
158 xTerm(i,j) = 0. _d 0
159 cTerm(i,j) = 0. _d 0
160 mTerm(i,j) = 0. _d 0
161 pTerm(i,j) = 0. _d 0
162 fZon(i,j) = 0. _d 0
163 fMer(i,j) = 0. _d 0
164 DO K=1,nZ
165 pH (i,j,k) = 0. _d 0
166 K13(i,j,k) = 0. _d 0
167 K23(i,j,k) = 0. _d 0
168 K33(i,j,k) = 0. _d 0
169 KappaZT(i,j,k) = 0. _d 0
170 ENDDO
171 rhokm1(i,j) = 0. _d 0
172 rhokp1(i,j) = 0. _d 0
173 rhotmp(i,j) = 0. _d 0
174 ENDDO
175 ENDDO
176
177 DO bj=myByLo(myThid),myByHi(myThid)
178 DO bi=myBxLo(myThid),myBxHi(myThid)
179
180 C-- Set up work arrays that need valid initial values
181 DO j=1-OLy,sNy+OLy
182 DO i=1-OLx,sNx+OLx
183 wTrans(i,j) = 0. _d 0
184 fVerT(i,j,1) = 0. _d 0
185 fVerT(i,j,2) = 0. _d 0
186 fVerS(i,j,1) = 0. _d 0
187 fVerS(i,j,2) = 0. _d 0
188 fVerU(i,j,1) = 0. _d 0
189 fVerU(i,j,2) = 0. _d 0
190 fVerV(i,j,1) = 0. _d 0
191 fVerV(i,j,2) = 0. _d 0
192 pH(i,j,1) = 0. _d 0
193 K13(i,j,1) = 0. _d 0
194 K23(i,j,1) = 0. _d 0
195 K33(i,j,1) = 0. _d 0
196 KapGM(i,j) = 0. _d 0
197 ENDDO
198 ENDDO
199
200 iMin = 1-OLx+1
201 iMax = sNx+OLx
202 jMin = 1-OLy+1
203 jMax = sNy+OLy
204
205 C-- Calculate gradient of surface pressure
206 CALL GRAD_PSURF(
207 I bi,bj,iMin,iMax,jMin,jMax,
208 O pSurfX,pSurfY,
209 I myThid)
210
211 C-- Update fields in top level according to tendency terms
212 CALL CORRECTION_STEP(
213 I bi,bj,iMin,iMax,jMin,jMax,1,pSurfX,pSurfY,myThid)
214
215 C-- Density of 1st level (below W(1)) reference to level 1
216 CALL FIND_RHO(
217 I bi, bj, iMin, iMax, jMin, jMax, 1, 1, eosType,
218 O rhoKm1,
219 I myThid )
220 C-- Integrate hydrostatic balance for pH with BC of pH(z=0)=0
221 CALL CALC_PH(
222 I bi,bj,iMin,iMax,jMin,jMax,1,rhoKm1,rhoKm1,
223 U pH,
224 I myThid )
225 DO J=1-Oly,sNy+Oly
226 DO I=1-Olx,sNx+Olx
227 rhoKp1(I,J)=rhoKm1(I,J)
228 ENDDO
229 ENDDO
230
231 DO K=2,Nz
232 C-- Update fields in Kth level according to tendency terms
233 CALL CORRECTION_STEP(
234 I bi,bj,iMin,iMax,jMin,jMax,K,pSurfX,pSurfY,myThid)
235 C-- Density of K-1 level (above W(K)) reference to K-1 level
236 copt CALL FIND_RHO(
237 copt I bi, bj, iMin, iMax, jMin, jMax, K-1, K-1, eosType,
238 copt O rhoKm1,
239 copt I myThid )
240 C rhoKm1=rhoKp1
241 DO J=1-Oly,sNy+Oly
242 DO I=1-Olx,sNx+Olx
243 rhoKm1(I,J)=rhoKp1(I,J)
244 ENDDO
245 ENDDO
246 C-- Density of K level (below W(K)) reference to K level
247 CALL FIND_RHO(
248 I bi, bj, iMin, iMax, jMin, jMax, K, K, eosType,
249 O rhoKp1,
250 I myThid )
251 C-- Density of K-1 level (above W(K)) reference to K level
252 CALL FIND_RHO(
253 I bi, bj, iMin, iMax, jMin, jMax, K-1, K, eosType,
254 O rhotmp,
255 I myThid )
256 C-- Calculate iso-neutral slopes for the GM/Redi parameterisation
257 CALL CALC_ISOSLOPES(
258 I bi, bj, iMin, iMax, jMin, jMax, K,
259 I rhoKm1, rhoKp1, rhotmp,
260 O K13, K23, K33, KapGM,
261 I myThid )
262 C-- Calculate static stability and mix where convectively unstable
263 CALL CONVECT(
264 I bi,bj,iMin,iMax,jMin,jMax,K,rhoKm1,rhoKp1,
265 I myTime,myIter,myThid)
266 C-- Density of K-1 level (above W(K)) reference to K-1 level
267 CALL FIND_RHO(
268 I bi, bj, iMin, iMax, jMin, jMax, K-1, K-1, eosType,
269 O rhoKm1,
270 I myThid )
271 C-- Density of K level (below W(K)) referenced to K level
272 CALL FIND_RHO(
273 I bi, bj, iMin, iMax, jMin, jMax, K, K, eosType,
274 O rhoKp1,
275 I myThid )
276 C-- Integrate hydrostatic balance for pH with BC of pH(z=0)=0
277 CALL CALC_PH(
278 I bi,bj,iMin,iMax,jMin,jMax,K,rhoKm1,rhoKp1,
279 U pH,
280 I myThid )
281
282 ENDDO ! K
283
284 C-- Initial boundary condition on barotropic divergence integral
285 DO j=1-OLy,sNy+OLy
286 DO i=1-OLx,sNx+OLx
287 cg2d_b(i,j,bi,bj) = 0. _d 0
288 ENDDO
289 ENDDO
290
291 DO K = Nz, 1, -1
292 kM1 =max(1,k-1) ! Points to level above k (=k-1)
293 kUp =1+MOD(k+1,2) ! Cycles through 1,2 to point to layer above
294 kDown=1+MOD(k,2) ! Cycles through 2,1 to point to current layer
295 iMin = 1-OLx+2
296 iMax = sNx+OLx-1
297 jMin = 1-OLy+2
298 jMax = sNy+OLy-1
299
300 C-- Get temporary terms used by tendency routines
301 CALL CALC_COMMON_FACTORS (
302 I bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,
303 O xA,yA,uTrans,vTrans,wTrans,maskC,maskUp,
304 I myThid)
305
306 C-- Calculate the total vertical diffusivity
307 CALL CALC_DIFFUSIVITY(
308 I bi,bj,iMin,iMax,jMin,jMax,K,
309 I maskC,maskUp,KapGM,K33,
310 O KappaZT,
311 I myThid)
312
313
314 C-- Calculate accelerations in the momentum equations
315 IF ( momStepping ) THEN
316 CALL CALC_MOM_RHS(
317 I bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,
318 I xA,yA,uTrans,vTrans,wTrans,maskC,
319 I pH,
320 U aTerm,xTerm,cTerm,mTerm,pTerm,
321 U fZon, fMer, fVerU, fVerV,
322 I myThid)
323 ENDIF
324
325 C-- Calculate active tracer tendencies
326 IF ( tempStepping ) THEN
327 CALL CALC_GT(
328 I bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,
329 I xA,yA,uTrans,vTrans,wTrans,maskUp,
330 I K13,K23,KappaZT,KapGM,
331 U aTerm,xTerm,fZon,fMer,fVerT,
332 I myThid)
333 ENDIF
334 Cdbg CALL CALC_GS(
335 Cdbg I bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,
336 Cdbg I xA,yA,uTrans,vTrans,wTrans,maskUp,
337 Cdbg I K13,K23,K33,KapGM,
338 Cdbg U aTerm,xTerm,fZon,fMer,fVerS,
339 Cdbg I myThid)
340
341 C-- Prediction step (step forward all model variables)
342 CALL TIMESTEP(
343 I bi,bj,iMin,iMax,jMin,jMax,K,
344 I myThid)
345
346 C-- Diagnose barotropic divergence of predicted fields
347 CALL DIV_G(
348 I bi,bj,iMin,iMax,jMin,jMax,K,
349 I xA,yA,
350 I myThid)
351
352 ENDDO ! K
353
354 C-- Implicit diffusion
355 IF (implicitDiffusion) THEN
356 CALL IMPLDIFF( bi, bj, iMin, iMax, jMin, jMax,
357 I KappaZT,
358 I myThid )
359 ENDIF
360
361 ENDDO
362 ENDDO
363
364 write(0,*) 'dynamics: pS',minval(cg2d_x),maxval(cg2d_x)
365 write(0,*) 'dynamics: U',minval(uVel(1:sNx,1:sNy,:,:,:)),
366 & maxval(uVel(1:sNx,1:sNy,:,:,:))
367 write(0,*) 'dynamics: V',minval(vVel(1:sNx,1:sNy,:,:,:)),
368 & maxval(vVel(1:sNx,1:sNy,:,:,:))
369 write(0,*) 'dynamics: K13',minval(K13(1:sNx,1:sNy,:)),
370 & maxval(K13(1:sNx,1:sNy,:))
371 write(0,*) 'dynamics: K23',minval(K23(1:sNx,1:sNy,:)),
372 & maxval(K23(1:sNx,1:sNy,:))
373 write(0,*) 'dynamics: K33',minval(K33(1:sNx,1:sNy,:)),
374 & maxval(K33(1:sNx,1:sNy,:))
375 write(0,*) 'dynamics: gT',minval(gT(1:sNx,1:sNy,:,:,:)),
376 & maxval(gT(1:sNx,1:sNy,:,:,:))
377 write(0,*) 'dynamics: T',minval(Theta(1:sNx,1:sNy,:,:,:)),
378 & maxval(Theta(1:sNx,1:sNy,:,:,:))
379 write(0,*) 'dynamics: pH',minval(pH/(Gravity*Rhonil)),
380 & maxval(pH/(Gravity*Rhonil))
381
382 RETURN
383 END

  ViewVC Help
Powered by ViewVC 1.1.22