/[MITgcm]/MITgcm/model/src/dynamics.F
ViewVC logotype

Contents of /MITgcm/model/src/dynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.39 - (show annotations) (download)
Tue Dec 8 19:44:28 1998 UTC (25 years, 5 months ago) by adcroft
Branch: MAIN
Changes since 1.38: +5 -1 lines
Implementation of Open Boundaries:
 o new source code: ini_obcs.F set_obcs.F apply_obcs1.F apply_obcs2.F
                    OBCS.h
 o modified code at a few points, key changes are in
    dynamcis.F the_model_main.F and ini_cg2d.F
 o documentation in OBCS.h and doc/OpenBound.*

1 C $Header: /u/gcmpack/models/MITgcmUV/model/src/dynamics.F,v 1.38 1998/11/06 22:44:45 cnh Exp $
2
3 #include "CPP_OPTIONS.h"
4
5 SUBROUTINE DYNAMICS(myTime, myIter, myThid)
6 C /==========================================================\
7 C | SUBROUTINE DYNAMICS |
8 C | o Controlling routine for the explicit part of the model |
9 C | dynamics. |
10 C |==========================================================|
11 C | This routine evaluates the "dynamics" terms for each |
12 C | block of ocean in turn. Because the blocks of ocean have |
13 C | overlap regions they are independent of one another. |
14 C | If terms involving lateral integrals are needed in this |
15 C | routine care will be needed. Similarly finite-difference |
16 C | operations with stencils wider than the overlap region |
17 C | require special consideration. |
18 C | Notes |
19 C | ===== |
20 C | C*P* comments indicating place holders for which code is |
21 C | presently being developed. |
22 C \==========================================================/
23
24 C == Global variables ===
25 #include "SIZE.h"
26 #include "EEPARAMS.h"
27 #include "CG2D.h"
28 #include "PARAMS.h"
29 #include "DYNVARS.h"
30
31 C == Routine arguments ==
32 C myTime - Current time in simulation
33 C myIter - Current iteration number in simulation
34 C myThid - Thread number for this instance of the routine.
35 INTEGER myThid
36 _RL myTime
37 INTEGER myIter
38
39 C == Local variables
40 C xA, yA - Per block temporaries holding face areas
41 C uTrans, vTrans, rTrans - Per block temporaries holding flow
42 C transport
43 C rVel o uTrans: Zonal transport
44 C o vTrans: Meridional transport
45 C o rTrans: Vertical transport
46 C o rVel: Vertical velocity at upper and
47 C lower cell faces.
48 C maskC,maskUp o maskC: land/water mask for tracer cells
49 C o maskUp: land/water mask for W points
50 C aTerm, xTerm, cTerm - Work arrays for holding separate terms in
51 C mTerm, pTerm, tendency equations.
52 C fZon, fMer, fVer[STUV] o aTerm: Advection term
53 C o xTerm: Mixing term
54 C o cTerm: Coriolis term
55 C o mTerm: Metric term
56 C o pTerm: Pressure term
57 C o fZon: Zonal flux term
58 C o fMer: Meridional flux term
59 C o fVer: Vertical flux term - note fVer
60 C is "pipelined" in the vertical
61 C so we need an fVer for each
62 C variable.
63 C rhoK, rhoKM1 - Density at current level, level above and level
64 C below.
65 C rhoKP1
66 C buoyK, buoyKM1 - Buoyancy at current level and level above.
67 C phiHyd - Hydrostatic part of the potential phiHydi.
68 C In z coords phiHydiHyd is the hydrostatic
69 C pressure anomaly
70 C In p coords phiHydiHyd is the geopotential
71 C surface height
72 C anomaly.
73 C etaSurfX, - Holds surface elevation gradient in X and Y.
74 C etaSurfY
75 C K13, K23, K33 - Non-zero elements of small-angle approximation
76 C diffusion tensor.
77 C KapGM - Spatially varying Visbeck et. al mixing coeff.
78 C KappaRT, - Total diffusion in vertical for T and S.
79 C KappaRS (background + spatially varying, isopycnal term).
80 C iMin, iMax - Ranges and sub-block indices on which calculations
81 C jMin, jMax are applied.
82 C bi, bj
83 C k, kUp, - Index for layer above and below. kUp and kDown
84 C kDown, kM1 are switched with layer to be the appropriate
85 C index into fVerTerm.
86 _RS xA (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
87 _RS yA (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
88 _RL uTrans (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
89 _RL vTrans (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
90 _RL rTrans (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
91 _RL rVel (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
92 _RS maskC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
93 _RS maskUp (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
94 _RL aTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
95 _RL xTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
96 _RL cTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
97 _RL mTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
98 _RL pTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
99 _RL fZon (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
100 _RL fMer (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
101 _RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
102 _RL fVerS (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
103 _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
104 _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
105 _RL phiHyd (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
106 _RL rhokm1 (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
107 _RL rhokp1 (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
108 _RL rhok (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
109 _RL buoyKM1 (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
110 _RL buoyK (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
111 _RL rhotmp (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
112 _RL etaSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
113 _RL etaSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
114 _RL K13 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
115 _RL K23 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
116 _RL K33 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
117 _RL KapGM (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
118 _RL KappaRT (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
119 _RL KappaRS (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
120
121 INTEGER iMin, iMax
122 INTEGER jMin, jMax
123 INTEGER bi, bj
124 INTEGER i, j
125 INTEGER k, kM1, kUp, kDown
126 LOGICAL BOTTOM_LAYER
127
128 C--- The algorithm...
129 C
130 C "Correction Step"
131 C =================
132 C Here we update the horizontal velocities with the surface
133 C pressure such that the resulting flow is either consistent
134 C with the free-surface evolution or the rigid-lid:
135 C U[n] = U* + dt x d/dx P
136 C V[n] = V* + dt x d/dy P
137 C
138 C "Calculation of Gs"
139 C ===================
140 C This is where all the accelerations and tendencies (ie.
141 C phiHydysics, parameterizations etc...) are calculated
142 C rVel = sum_r ( div. u[n] )
143 C rho = rho ( theta[n], salt[n] )
144 C b = b(rho, theta)
145 C K31 = K31 ( rho )
146 C Gu[n] = Gu( u[n], v[n], rVel, b, ... )
147 C Gv[n] = Gv( u[n], v[n], rVel, b, ... )
148 C Gt[n] = Gt( theta[n], u[n], v[n], rVel, K31, ... )
149 C Gs[n] = Gs( salt[n], u[n], v[n], rVel, K31, ... )
150 C
151 C "Time-stepping" or "Prediction"
152 C ================================
153 C The models variables are stepped forward with the appropriate
154 C time-stepping scheme (currently we use Adams-Bashforth II)
155 C - For momentum, the result is always *only* a "prediction"
156 C in that the flow may be divergent and will be "corrected"
157 C later with a surface pressure gradient.
158 C - Normally for tracers the result is the new field at time
159 C level [n+1} *BUT* in the case of implicit diffusion the result
160 C is also *only* a prediction.
161 C - We denote "predictors" with an asterisk (*).
162 C U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
163 C V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
164 C theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
165 C salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
166 C With implicit diffusion:
167 C theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
168 C salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
169 C (1 + dt * K * d_zz) theta[n] = theta*
170 C (1 + dt * K * d_zz) salt[n] = salt*
171 C---
172
173 C-- Set up work arrays with valid (i.e. not NaN) values
174 C These inital values do not alter the numerical results. They
175 C just ensure that all memory references are to valid floating
176 C point numbers. This prevents spurious hardware signals due to
177 C uninitialised but inert locations.
178 DO j=1-OLy,sNy+OLy
179 DO i=1-OLx,sNx+OLx
180 xA(i,j) = 0. _d 0
181 yA(i,j) = 0. _d 0
182 uTrans(i,j) = 0. _d 0
183 vTrans(i,j) = 0. _d 0
184 aTerm(i,j) = 0. _d 0
185 xTerm(i,j) = 0. _d 0
186 cTerm(i,j) = 0. _d 0
187 mTerm(i,j) = 0. _d 0
188 pTerm(i,j) = 0. _d 0
189 fZon(i,j) = 0. _d 0
190 fMer(i,j) = 0. _d 0
191 DO K=1,Nr
192 phiHyd (i,j,k) = 0. _d 0
193 K13(i,j,k) = 0. _d 0
194 K23(i,j,k) = 0. _d 0
195 K33(i,j,k) = 0. _d 0
196 KappaRT(i,j,k) = 0. _d 0
197 KappaRS(i,j,k) = 0. _d 0
198 ENDDO
199 rhoKM1 (i,j) = 0. _d 0
200 rhok (i,j) = 0. _d 0
201 rhoKP1 (i,j) = 0. _d 0
202 rhoTMP (i,j) = 0. _d 0
203 buoyKM1(i,j) = 0. _d 0
204 buoyK (i,j) = 0. _d 0
205 maskC (i,j) = 0. _d 0
206 ENDDO
207 ENDDO
208
209
210 DO bj=myByLo(myThid),myByHi(myThid)
211 DO bi=myBxLo(myThid),myBxHi(myThid)
212
213 C-- Set up work arrays that need valid initial values
214 DO j=1-OLy,sNy+OLy
215 DO i=1-OLx,sNx+OLx
216 rTrans(i,j) = 0. _d 0
217 rVel (i,j,1) = 0. _d 0
218 rVel (i,j,2) = 0. _d 0
219 fVerT (i,j,1) = 0. _d 0
220 fVerT (i,j,2) = 0. _d 0
221 fVerS (i,j,1) = 0. _d 0
222 fVerS (i,j,2) = 0. _d 0
223 fVerU (i,j,1) = 0. _d 0
224 fVerU (i,j,2) = 0. _d 0
225 fVerV (i,j,1) = 0. _d 0
226 fVerV (i,j,2) = 0. _d 0
227 phiHyd(i,j,1) = 0. _d 0
228 K13 (i,j,1) = 0. _d 0
229 K23 (i,j,1) = 0. _d 0
230 K33 (i,j,1) = 0. _d 0
231 KapGM (i,j) = GMkbackground
232 ENDDO
233 ENDDO
234
235 iMin = 1-OLx+1
236 iMax = sNx+OLx
237 jMin = 1-OLy+1
238 jMax = sNy+OLy
239
240
241 K = 1
242 BOTTOM_LAYER = K .EQ. Nr
243
244 #ifdef DO_PIPELINED_CORRECTION_STEP
245 C-- Calculate gradient of surface pressure
246 CALL CALC_GRAD_ETA_SURF(
247 I bi,bj,iMin,iMax,jMin,jMax,
248 O etaSurfX,etaSurfY,
249 I myThid)
250 C-- Update fields in top level according to tendency terms
251 CALL CORRECTION_STEP(
252 I bi,bj,iMin,iMax,jMin,jMax,K,
253 I etaSurfX,etaSurfY,myTime,myThid)
254 IF (openBoundaries) CALL APPLY_OBCS1( bi, bj, K, myThid )
255 IF ( .NOT. BOTTOM_LAYER ) THEN
256 C-- Update fields in layer below according to tendency terms
257 CALL CORRECTION_STEP(
258 I bi,bj,iMin,iMax,jMin,jMax,K+1,
259 I etaSurfX,etaSurfY,myTime,myThid)
260 IF (openBoundaries) CALL APPLY_OBCS1( bi, bj, K+1, myThid )
261 ENDIF
262 #endif
263 C-- Density of 1st level (below W(1)) reference to level 1
264 #ifdef INCLUDE_FIND_RHO_CALL
265 CALL FIND_RHO(
266 I bi, bj, iMin, iMax, jMin, jMax, K, K, eosType,
267 O rhoKm1,
268 I myThid )
269 #endif
270
271 IF ( .NOT. BOTTOM_LAYER ) THEN
272 C-- Check static stability with layer below
273 C-- and mix as needed.
274 #ifdef INCLUDE_FIND_RHO_CALL
275 CALL FIND_RHO(
276 I bi, bj, iMin, iMax, jMin, jMax, K+1, K, eosType,
277 O rhoKp1,
278 I myThid )
279 #endif
280 #ifdef INCLUDE_CONVECT_CALL
281 CALL CONVECT(
282 I bi,bj,iMin,iMax,jMin,jMax,K+1,rhoKm1,rhoKp1,
283 I myTime,myIter,myThid)
284 #endif
285 C-- Recompute density after mixing
286 #ifdef INCLUDE_FIND_RHO_CALL
287 CALL FIND_RHO(
288 I bi, bj, iMin, iMax, jMin, jMax, K, K, eosType,
289 O rhoKm1,
290 I myThid )
291 #endif
292 ENDIF
293 C-- Calculate buoyancy
294 CALL CALC_BUOYANCY(
295 I bi,bj,iMin,iMax,jMin,jMax,K,rhoKm1,
296 O buoyKm1,
297 I myThid )
298 C-- Integrate hydrostatic balance for phiHyd with BC of
299 C-- phiHyd(z=0)=0
300 CALL CALC_PHI_HYD(
301 I bi,bj,iMin,iMax,jMin,jMax,K,buoyKm1,buoyKm1,
302 U phiHyd,
303 I myThid )
304
305 DO K=2,Nr
306 BOTTOM_LAYER = K .EQ. Nr
307 #ifdef DO_PIPELINED_CORRECTION_STEP
308 IF ( .NOT. BOTTOM_LAYER ) THEN
309 C-- Update fields in layer below according to tendency terms
310 CALL CORRECTION_STEP(
311 I bi,bj,iMin,iMax,jMin,jMax,K+1,
312 I etaSurfX,etaSurfY,myTime,myThid)
313 IF (openBoundaries) CALL APPLY_OBCS1( bi, bj, K+1, myThid )
314 ENDIF
315 #endif
316 C-- Density of K level (below W(K)) reference to K level
317 #ifdef INCLUDE_FIND_RHO_CALL
318 CALL FIND_RHO(
319 I bi, bj, iMin, iMax, jMin, jMax, K, K, eosType,
320 O rhoK,
321 I myThid )
322 #endif
323 IF ( .NOT. BOTTOM_LAYER ) THEN
324 C-- Check static stability with layer below and mix as needed.
325 C-- Density of K+1 level (below W(K+1)) reference to K level.
326 #ifdef INCLUDE_FIND_RHO_CALL
327 CALL FIND_RHO(
328 I bi, bj, iMin, iMax, jMin, jMax, K+1, K, eosType,
329 O rhoKp1,
330 I myThid )
331 #endif
332 #ifdef INCLUDE_CONVECT_CALL
333 CALL CONVECT(
334 I bi,bj,iMin,iMax,jMin,jMax,K+1,rhoK,rhoKp1,
335 I myTime,myIter,myThid)
336 #endif
337 C-- Recompute density after mixing
338 #ifdef INCLUDE_FIND_RHO_CALL
339 CALL FIND_RHO(
340 I bi, bj, iMin, iMax, jMin, jMax, K, K, eosType,
341 O rhoK,
342 I myThid )
343 #endif
344 ENDIF
345 C-- Calculate buoyancy
346 CALL CALC_BUOYANCY(
347 I bi,bj,iMin,iMax,jMin,jMax,K,rhoK,
348 O buoyK,
349 I myThid )
350 C-- Integrate hydrostatic balance for phiHyd with BC of
351 C-- phiHyd(z=0)=0
352 CALL CALC_PHI_HYD(
353 I bi,bj,iMin,iMax,jMin,jMax,K,buoyKm1,buoyK,
354 U phiHyd,
355 I myThid )
356 C-- Calculate iso-neutral slopes for the GM/Redi parameterisation
357 #ifdef INCLUDE_FIND_RHO_CALL
358 CALL FIND_RHO(
359 I bi, bj, iMin, iMax, jMin, jMax, K-1, K, eosType,
360 O rhoTmp,
361 I myThid )
362 #endif
363 #ifdef INCLUDE_CALC_ISOSLOPES_CALL
364 CALL CALC_ISOSLOPES(
365 I bi, bj, iMin, iMax, jMin, jMax, K,
366 I rhoKm1, rhoK, rhotmp,
367 O K13, K23, K33, KapGM,
368 I myThid )
369 #endif
370 DO J=jMin,jMax
371 DO I=iMin,iMax
372 #ifdef INCLUDE_FIND_RHO_CALL
373 rhoKm1 (I,J) = rhoK(I,J)
374 #endif
375 buoyKm1(I,J) = buoyK(I,J)
376 ENDDO
377 ENDDO
378 ENDDO ! K
379
380 DO K = Nr, 1, -1
381
382 kM1 =max(1,k-1) ! Points to level above k (=k-1)
383 kUp =1+MOD(k+1,2) ! Cycles through 1,2 to point to layer above
384 kDown=1+MOD(k,2) ! Cycles through 2,1 to point to current layer
385 iMin = 1-OLx+2
386 iMax = sNx+OLx-1
387 jMin = 1-OLy+2
388 jMax = sNy+OLy-1
389
390 C-- Get temporary terms used by tendency routines
391 CALL CALC_COMMON_FACTORS (
392 I bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,
393 O xA,yA,uTrans,vTrans,rTrans,rVel,maskC,maskUp,
394 I myThid)
395 #ifdef INCLUDE_CALC_DIFFUSIVITY_CALL
396 C-- Calculate the total vertical diffusivity
397 CALL CALC_DIFFUSIVITY(
398 I bi,bj,iMin,iMax,jMin,jMax,K,
399 I maskC,maskUp,KapGM,K33,
400 O KappaRT,KappaRS,
401 I myThid)
402 #endif
403 C-- Calculate accelerations in the momentum equations
404 IF ( momStepping ) THEN
405 CALL CALC_MOM_RHS(
406 I bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,
407 I xA,yA,uTrans,vTrans,rTrans,rVel,maskC,
408 I phiHyd,
409 U aTerm,xTerm,cTerm,mTerm,pTerm,
410 U fZon, fMer, fVerU, fVerV,
411 I myTime, myThid)
412 ENDIF
413 C-- Calculate active tracer tendencies
414 IF ( tempStepping ) THEN
415 CALL CALC_GT(
416 I bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,
417 I xA,yA,uTrans,vTrans,rTrans,maskUp,maskC,
418 I K13,K23,KappaRT,KapGM,
419 U aTerm,xTerm,fZon,fMer,fVerT,
420 I myTime, myThid)
421 ENDIF
422 IF ( saltStepping ) THEN
423 CALL CALC_GS(
424 I bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,
425 I xA,yA,uTrans,vTrans,rTrans,maskUp,maskC,
426 I K13,K23,KappaRS,KapGM,
427 U aTerm,xTerm,fZon,fMer,fVerS,
428 I myTime, myThid)
429 ENDIF
430 C-- Prediction step (step forward all model variables)
431 CALL TIMESTEP(
432 I bi,bj,iMin,iMax,jMin,jMax,K,
433 I myThid)
434 IF (openBoundaries) CALL APPLY_OBCS2( bi, bj, K, myThid )
435 C-- Diagnose barotropic divergence of predicted fields
436 CALL CALC_DIV_GHAT(
437 I bi,bj,iMin,iMax,jMin,jMax,K,
438 I xA,yA,
439 I myThid)
440
441 C-- Cumulative diagnostic calculations (ie. time-averaging)
442 #ifdef INCLUDE_DIAGNOSTICS_INTERFACE_CODE
443 IF (taveFreq.GT.0.) THEN
444 CALL DO_TIME_AVERAGES(
445 I myTime, myIter, bi, bj, K, kUp, kDown,
446 I K13, K23, rVel, KapGM,
447 I myThid )
448 ENDIF
449 #endif
450
451 ENDDO ! K
452
453 C-- Implicit diffusion
454 IF (implicitDiffusion) THEN
455 CALL IMPLDIFF( bi, bj, iMin, iMax, jMin, jMax,
456 I KappaRT,KappaRS,
457 I myThid )
458 ENDIF
459
460 ENDDO
461 ENDDO
462
463 C write(0,*) 'dynamics: pS ',minval(cg2d_x(1:sNx,1:sNy,:,:)),
464 C & maxval(cg2d_x(1:sNx,1:sNy,:,:))
465 C write(0,*) 'dynamics: U ',minval(uVel(1:sNx,1:sNy,1,:,:),mask=uVel(1:sNx,1:sNy,1,:,:).NE.0.),
466 C & maxval(uVel(1:sNx,1:sNy,1,:,:),mask=uVel(1:sNx,1:sNy,1,:,:).NE.0.)
467 C write(0,*) 'dynamics: V ',minval(vVel(1:sNx,1:sNy,1,:,:),mask=vVel(1:sNx,1:sNy,1,:,:).NE.0.),
468 C & maxval(vVel(1:sNx,1:sNy,1,:,:),mask=vVel(1:sNx,1:sNy,1,:,:).NE.0.)
469 C write(0,*) 'dynamics: rVel(1) ',
470 C & minval(rVel(1:sNx,1:sNy,1),mask=rVel(1:sNx,1:sNy,1).NE.0.),
471 C & maxval(rVel(1:sNx,1:sNy,1),mask=rVel(1:sNx,1:sNy,1).NE.0.)
472 C write(0,*) 'dynamics: rVel(2) ',
473 C & minval(rVel(1:sNx,1:sNy,2),mask=rVel(1:sNx,1:sNy,2).NE.0.),
474 C & maxval(rVel(1:sNx,1:sNy,2),mask=rVel(1:sNx,1:sNy,2).NE.0.)
475 cblk write(0,*) 'dynamics: K13',minval(K13(1:sNx,1:sNy,:)),
476 cblk & maxval(K13(1:sNx,1:sNy,:))
477 cblk write(0,*) 'dynamics: K23',minval(K23(1:sNx,1:sNy,:)),
478 cblk & maxval(K23(1:sNx,1:sNy,:))
479 cblk write(0,*) 'dynamics: K33',minval(K33(1:sNx,1:sNy,:)),
480 cblk & maxval(K33(1:sNx,1:sNy,:))
481 C write(0,*) 'dynamics: gT ',minval(gT(1:sNx,1:sNy,:,:,:)),
482 C & maxval(gT(1:sNx,1:sNy,:,:,:))
483 C write(0,*) 'dynamics: T ',minval(Theta(1:sNx,1:sNy,:,:,:)),
484 C & maxval(Theta(1:sNx,1:sNy,:,:,:))
485 C write(0,*) 'dynamics: gS ',minval(gS(1:sNx,1:sNy,:,:,:)),
486 C & maxval(gS(1:sNx,1:sNy,:,:,:))
487 C write(0,*) 'dynamics: S ',minval(salt(1:sNx,1:sNy,:,:,:)),
488 C & maxval(salt(1:sNx,1:sNy,:,:,:))
489 C write(0,*) 'dynamics: phiHyd ',minval(phiHyd/(Gravity*Rhonil),mask=phiHyd.NE.0.),
490 C & maxval(phiHyd/(Gravity*Rhonil))
491 C CALL PLOT_FIELD_XYZRL( gU, ' GU exiting dyanmics ' ,
492 C &Nr, 1, myThid )
493 C CALL PLOT_FIELD_XYZRL( gV, ' GV exiting dyanmics ' ,
494 C &Nr, 1, myThid )
495 C CALL PLOT_FIELD_XYZRL( gS, ' GS exiting dyanmics ' ,
496 C &Nr, 1, myThid )
497 C CALL PLOT_FIELD_XYZRL( gT, ' GT exiting dyanmics ' ,
498 C &Nr, 1, myThid )
499 C CALL PLOT_FIELD_XYZRL( phiHyd, ' phiHyd exiting dyanmics ' ,
500 C &Nr, 1, myThid )
501
502
503 RETURN
504 END

  ViewVC Help
Powered by ViewVC 1.1.22