/[MITgcm]/MITgcm/model/src/dynamics.F
ViewVC logotype

Annotation of /MITgcm/model/src/dynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.84 - (hide annotations) (download)
Fri Nov 16 03:25:40 2001 UTC (22 years, 6 months ago) by jmc
Branch: MAIN
CVS Tags: checkpoint43a-release1mods, release1-branch_tutorials, chkpt44a_post, chkpt44c_pre, release1-branch-end, checkpoint44b_post, chkpt44a_pre, checkpoint44b_pre, checkpoint44, chkpt44c_post, release1-branch_branchpoint
Branch point for: release1-branch
Changes since 1.83: +1 -9 lines
fix diagnostic of convective adjustment (IVDC)
 (broken since thermo-/dynamics split)

1 jmc 1.84 C $Header: /u/gcmpack/models/MITgcmUV/model/src/dynamics.F,v 1.83 2001/09/27 20:12:10 heimbach Exp $
2 heimbach 1.78 C $Name: $
3 cnh 1.1
4 adcroft 1.24 #include "CPP_OPTIONS.h"
5 cnh 1.1
6 cnh 1.82 CBOP
7     C !ROUTINE: DYNAMICS
8     C !INTERFACE:
9 cnh 1.8 SUBROUTINE DYNAMICS(myTime, myIter, myThid)
10 cnh 1.82 C !DESCRIPTION: \bv
11     C *==========================================================*
12     C | SUBROUTINE DYNAMICS
13     C | o Controlling routine for the explicit part of the model
14     C | dynamics.
15     C *==========================================================*
16     C | This routine evaluates the "dynamics" terms for each
17     C | block of ocean in turn. Because the blocks of ocean have
18     C | overlap regions they are independent of one another.
19     C | If terms involving lateral integrals are needed in this
20     C | routine care will be needed. Similarly finite-difference
21     C | operations with stencils wider than the overlap region
22     C | require special consideration.
23     C | The algorithm...
24     C |
25     C | "Correction Step"
26     C | =================
27     C | Here we update the horizontal velocities with the surface
28     C | pressure such that the resulting flow is either consistent
29     C | with the free-surface evolution or the rigid-lid:
30     C | U[n] = U* + dt x d/dx P
31     C | V[n] = V* + dt x d/dy P
32     C |
33     C | "Calculation of Gs"
34     C | ===================
35     C | This is where all the accelerations and tendencies (ie.
36     C | physics, parameterizations etc...) are calculated
37     C | rho = rho ( theta[n], salt[n] )
38     C | b = b(rho, theta)
39     C | K31 = K31 ( rho )
40     C | Gu[n] = Gu( u[n], v[n], wVel, b, ... )
41     C | Gv[n] = Gv( u[n], v[n], wVel, b, ... )
42     C | Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
43     C | Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
44     C |
45     C | "Time-stepping" or "Prediction"
46     C | ================================
47     C | The models variables are stepped forward with the appropriate
48     C | time-stepping scheme (currently we use Adams-Bashforth II)
49     C | - For momentum, the result is always *only* a "prediction"
50     C | in that the flow may be divergent and will be "corrected"
51     C | later with a surface pressure gradient.
52     C | - Normally for tracers the result is the new field at time
53     C | level [n+1} *BUT* in the case of implicit diffusion the result
54     C | is also *only* a prediction.
55     C | - We denote "predictors" with an asterisk (*).
56     C | U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
57     C | V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
58     C | theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
59     C | salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
60     C | With implicit diffusion:
61     C | theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
62     C | salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
63     C | (1 + dt * K * d_zz) theta[n] = theta*
64     C | (1 + dt * K * d_zz) salt[n] = salt*
65     C |
66     C *==========================================================*
67     C \ev
68     C !USES:
69 adcroft 1.40 IMPLICIT NONE
70 cnh 1.1 C == Global variables ===
71     #include "SIZE.h"
72     #include "EEPARAMS.h"
73 adcroft 1.6 #include "PARAMS.h"
74 adcroft 1.3 #include "DYNVARS.h"
75 adcroft 1.42 #include "GRID.h"
76 heimbach 1.74 #ifdef ALLOW_PASSIVE_TRACER
77 heimbach 1.72 #include "TR1.h"
78 heimbach 1.74 #endif
79 heimbach 1.49 #ifdef ALLOW_AUTODIFF_TAMC
80 heimbach 1.53 # include "tamc.h"
81     # include "tamc_keys.h"
82 heimbach 1.67 # include "FFIELDS.h"
83     # ifdef ALLOW_KPP
84     # include "KPP.h"
85     # endif
86     # ifdef ALLOW_GMREDI
87     # include "GMREDI.h"
88     # endif
89 heimbach 1.53 #endif /* ALLOW_AUTODIFF_TAMC */
90 jmc 1.64 #ifdef ALLOW_TIMEAVE
91     #include "TIMEAVE_STATV.h"
92 jmc 1.62 #endif
93    
94 cnh 1.82 C !CALLING SEQUENCE:
95     C DYNAMICS()
96     C |
97     C |-- CALC_GRAD_PHI_SURF
98     C |
99     C |-- CALC_VISCOSITY
100     C |
101     C |-- CALC_PHI_HYD
102     C |
103     C |-- MOM_FLUXFORM
104     C |
105     C |-- MOM_VECINV
106     C |
107     C |-- TIMESTEP
108     C |
109     C |-- OBCS_APPLY_UV
110     C |
111     C |-- IMPLDIFF
112     C |
113     C |-- OBCS_APPLY_UV
114     C |
115     C |-- CALL TIMEAVE_CUMUL_1T
116     C |-- CALL DEBUG_STATS_RL
117    
118     C !INPUT/OUTPUT PARAMETERS:
119 cnh 1.1 C == Routine arguments ==
120 cnh 1.8 C myTime - Current time in simulation
121     C myIter - Current iteration number in simulation
122 cnh 1.1 C myThid - Thread number for this instance of the routine.
123 cnh 1.8 _RL myTime
124     INTEGER myIter
125 adcroft 1.47 INTEGER myThid
126 cnh 1.1
127 cnh 1.82 C !LOCAL VARIABLES:
128 cnh 1.1 C == Local variables
129 adcroft 1.58 C fVer[STUV] o fVer: Vertical flux term - note fVer
130 cnh 1.1 C is "pipelined" in the vertical
131     C so we need an fVer for each
132     C variable.
133 adcroft 1.58 C rhoK, rhoKM1 - Density at current level, and level above
134 cnh 1.31 C phiHyd - Hydrostatic part of the potential phiHydi.
135 cnh 1.38 C In z coords phiHydiHyd is the hydrostatic
136 jmc 1.65 C Potential (=pressure/rho0) anomaly
137 cnh 1.38 C In p coords phiHydiHyd is the geopotential
138 jmc 1.65 C surface height anomaly.
139 jmc 1.63 C phiSurfX, - gradient of Surface potentiel (Pressure/rho, ocean)
140     C phiSurfY or geopotentiel (atmos) in X and Y direction
141 cnh 1.30 C iMin, iMax - Ranges and sub-block indices on which calculations
142     C jMin, jMax are applied.
143 cnh 1.1 C bi, bj
144 heimbach 1.53 C k, kup, - Index for layer above and below. kup and kDown
145     C kDown, km1 are switched with layer to be the appropriate
146 cnh 1.38 C index into fVerTerm.
147 cnh 1.30 _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
148     _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
149 cnh 1.31 _RL phiHyd (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
150 cnh 1.30 _RL rhokm1 (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
151     _RL rhok (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
152 jmc 1.63 _RL phiSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
153     _RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
154 adcroft 1.42 _RL KappaRU (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
155     _RL KappaRV (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
156 adcroft 1.50 _RL sigmaX (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
157     _RL sigmaY (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
158     _RL sigmaR (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
159 adcroft 1.12
160 cnh 1.1 INTEGER iMin, iMax
161     INTEGER jMin, jMax
162     INTEGER bi, bj
163     INTEGER i, j
164 heimbach 1.77 INTEGER k, km1, kp1, kup, kDown
165 cnh 1.1
166 jmc 1.62 Cjmc : add for phiHyd output <- but not working if multi tile per CPU
167     c CHARACTER*(MAX_LEN_MBUF) suff
168     c LOGICAL DIFFERENT_MULTIPLE
169     c EXTERNAL DIFFERENT_MULTIPLE
170     Cjmc(end)
171    
172 adcroft 1.11 C--- The algorithm...
173     C
174     C "Correction Step"
175     C =================
176     C Here we update the horizontal velocities with the surface
177     C pressure such that the resulting flow is either consistent
178     C with the free-surface evolution or the rigid-lid:
179     C U[n] = U* + dt x d/dx P
180     C V[n] = V* + dt x d/dy P
181     C
182     C "Calculation of Gs"
183     C ===================
184     C This is where all the accelerations and tendencies (ie.
185 heimbach 1.53 C physics, parameterizations etc...) are calculated
186 adcroft 1.11 C rho = rho ( theta[n], salt[n] )
187 cnh 1.27 C b = b(rho, theta)
188 adcroft 1.11 C K31 = K31 ( rho )
189 jmc 1.61 C Gu[n] = Gu( u[n], v[n], wVel, b, ... )
190     C Gv[n] = Gv( u[n], v[n], wVel, b, ... )
191     C Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
192     C Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
193 adcroft 1.11 C
194 adcroft 1.12 C "Time-stepping" or "Prediction"
195 adcroft 1.11 C ================================
196     C The models variables are stepped forward with the appropriate
197     C time-stepping scheme (currently we use Adams-Bashforth II)
198     C - For momentum, the result is always *only* a "prediction"
199     C in that the flow may be divergent and will be "corrected"
200     C later with a surface pressure gradient.
201     C - Normally for tracers the result is the new field at time
202     C level [n+1} *BUT* in the case of implicit diffusion the result
203     C is also *only* a prediction.
204     C - We denote "predictors" with an asterisk (*).
205     C U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
206     C V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
207     C theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
208     C salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
209 adcroft 1.12 C With implicit diffusion:
210 adcroft 1.11 C theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
211     C salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
212 adcroft 1.12 C (1 + dt * K * d_zz) theta[n] = theta*
213     C (1 + dt * K * d_zz) salt[n] = salt*
214 adcroft 1.11 C---
215 cnh 1.82 CEOP
216 adcroft 1.11
217 heimbach 1.76 C-- Set up work arrays with valid (i.e. not NaN) values
218     C These inital values do not alter the numerical results. They
219     C just ensure that all memory references are to valid floating
220     C point numbers. This prevents spurious hardware signals due to
221     C uninitialised but inert locations.
222     DO j=1-OLy,sNy+OLy
223     DO i=1-OLx,sNx+OLx
224     DO k=1,Nr
225     phiHyd(i,j,k) = 0. _d 0
226 heimbach 1.78 KappaRU(i,j,k) = 0. _d 0
227     KappaRV(i,j,k) = 0. _d 0
228 heimbach 1.76 sigmaX(i,j,k) = 0. _d 0
229     sigmaY(i,j,k) = 0. _d 0
230     sigmaR(i,j,k) = 0. _d 0
231     ENDDO
232     rhoKM1 (i,j) = 0. _d 0
233     rhok (i,j) = 0. _d 0
234     phiSurfX(i,j) = 0. _d 0
235     phiSurfY(i,j) = 0. _d 0
236     ENDDO
237     ENDDO
238    
239     #ifdef ALLOW_AUTODIFF_TAMC
240     C-- HPF directive to help TAMC
241     CHPF$ INDEPENDENT
242     #endif /* ALLOW_AUTODIFF_TAMC */
243    
244 cnh 1.1 DO bj=myByLo(myThid),myByHi(myThid)
245 heimbach 1.76
246     #ifdef ALLOW_AUTODIFF_TAMC
247     C-- HPF directive to help TAMC
248     CHPF$ INDEPENDENT, NEW (fVerU,fVerV
249     CHPF$& ,phiHyd
250     CHPF$& ,KappaRU,KappaRV
251     CHPF$& )
252     #endif /* ALLOW_AUTODIFF_TAMC */
253    
254 cnh 1.1 DO bi=myBxLo(myThid),myBxHi(myThid)
255 heimbach 1.76
256     #ifdef ALLOW_AUTODIFF_TAMC
257     act1 = bi - myBxLo(myThid)
258     max1 = myBxHi(myThid) - myBxLo(myThid) + 1
259     act2 = bj - myByLo(myThid)
260     max2 = myByHi(myThid) - myByLo(myThid) + 1
261     act3 = myThid - 1
262     max3 = nTx*nTy
263     act4 = ikey_dynamics - 1
264     ikey = (act1 + 1) + act2*max1
265     & + act3*max1*max2
266     & + act4*max1*max2*max3
267     #endif /* ALLOW_AUTODIFF_TAMC */
268    
269     C-- Set up work arrays that need valid initial values
270     DO j=1-OLy,sNy+OLy
271     DO i=1-OLx,sNx+OLx
272     fVerU (i,j,1) = 0. _d 0
273     fVerU (i,j,2) = 0. _d 0
274     fVerV (i,j,1) = 0. _d 0
275     fVerV (i,j,2) = 0. _d 0
276     ENDDO
277     ENDDO
278 heimbach 1.49
279 jmc 1.63 C-- Start computation of dynamics
280     iMin = 1-OLx+2
281     iMax = sNx+OLx-1
282     jMin = 1-OLy+2
283     jMax = sNy+OLy-1
284    
285 heimbach 1.76 #ifdef ALLOW_AUTODIFF_TAMC
286     CADJ STORE wvel (:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte
287     #endif /* ALLOW_AUTODIFF_TAMC */
288    
289 jmc 1.65 C-- Explicit part of the Surface Potentiel Gradient (add in TIMESTEP)
290 jmc 1.63 C (note: this loop will be replaced by CALL CALC_GRAD_ETA)
291     IF (implicSurfPress.NE.1.) THEN
292 jmc 1.65 CALL CALC_GRAD_PHI_SURF(
293     I bi,bj,iMin,iMax,jMin,jMax,
294     I etaN,
295     O phiSurfX,phiSurfY,
296     I myThid )
297 jmc 1.63 ENDIF
298 heimbach 1.83
299     #ifdef ALLOW_AUTODIFF_TAMC
300     CADJ STORE uvel (:,:,:,bi,bj) = comlev1_bibj, key=ikey, byte=isbyte
301     CADJ STORE vvel (:,:,:,bi,bj) = comlev1_bibj, key=ikey, byte=isbyte
302     #ifdef ALLOW_KPP
303     CADJ STORE KPPviscAz (:,:,:,bi,bj)
304     CADJ & = comlev1_bibj, key=ikey, byte=isbyte
305     #endif /* ALLOW_KPP */
306     #endif /* ALLOW_AUTODIFF_TAMC */
307 adcroft 1.58
308 heimbach 1.77 #ifdef INCLUDE_CALC_DIFFUSIVITY_CALL
309     C-- Calculate the total vertical diffusivity
310     DO k=1,Nr
311     CALL CALC_VISCOSITY(
312     I bi,bj,iMin,iMax,jMin,jMax,k,
313     O KappaRU,KappaRV,
314     I myThid)
315     ENDDO
316     #endif
317    
318 adcroft 1.58 C-- Start of dynamics loop
319     DO k=1,Nr
320    
321     C-- km1 Points to level above k (=k-1)
322     C-- kup Cycles through 1,2 to point to layer above
323     C-- kDown Cycles through 2,1 to point to current layer
324    
325     km1 = MAX(1,k-1)
326 heimbach 1.77 kp1 = MIN(k+1,Nr)
327 adcroft 1.58 kup = 1+MOD(k+1,2)
328     kDown= 1+MOD(k,2)
329    
330 heimbach 1.76 #ifdef ALLOW_AUTODIFF_TAMC
331     kkey = (ikey-1)*Nr + k
332     #endif /* ALLOW_AUTODIFF_TAMC */
333    
334 adcroft 1.58 C-- Integrate hydrostatic balance for phiHyd with BC of
335     C phiHyd(z=0)=0
336     C distinguishe between Stagger and Non Stagger time stepping
337     IF (staggerTimeStep) THEN
338     CALL CALC_PHI_HYD(
339     I bi,bj,iMin,iMax,jMin,jMax,k,
340 adcroft 1.81 I gT, gS,
341 adcroft 1.58 U phiHyd,
342     I myThid )
343     ELSE
344     CALL CALC_PHI_HYD(
345     I bi,bj,iMin,iMax,jMin,jMax,k,
346     I theta, salt,
347     U phiHyd,
348     I myThid )
349     ENDIF
350    
351     C-- Calculate accelerations in the momentum equations (gU, gV, ...)
352     C and step forward storing the result in gUnm1, gVnm1, etc...
353     IF ( momStepping ) THEN
354 adcroft 1.79 #ifndef DISABLE_MOM_FLUXFORM
355     IF (.NOT. vectorInvariantMomentum) CALL MOM_FLUXFORM(
356 adcroft 1.58 I bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
357     I phiHyd,KappaRU,KappaRV,
358     U fVerU, fVerV,
359 adcroft 1.80 I myTime, myIter, myThid)
360 adcroft 1.79 #endif
361     #ifndef DISABLE_MOM_VECINV
362     IF (vectorInvariantMomentum) CALL MOM_VECINV(
363     I bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
364     I phiHyd,KappaRU,KappaRV,
365     U fVerU, fVerV,
366 adcroft 1.80 I myTime, myIter, myThid)
367 adcroft 1.79 #endif
368 adcroft 1.58 CALL TIMESTEP(
369 jmc 1.63 I bi,bj,iMin,iMax,jMin,jMax,k,
370     I phiHyd, phiSurfX, phiSurfY,
371 adcroft 1.58 I myIter, myThid)
372    
373     #ifdef ALLOW_OBCS
374     C-- Apply open boundary conditions
375     IF (useOBCS) THEN
376     CALL OBCS_APPLY_UV( bi, bj, k, gUnm1, gVnm1, myThid )
377     END IF
378     #endif /* ALLOW_OBCS */
379    
380     #ifdef ALLOW_AUTODIFF_TAMC
381     #ifdef INCLUDE_CD_CODE
382     ELSE
383     DO j=1-OLy,sNy+OLy
384     DO i=1-OLx,sNx+OLx
385     guCD(i,j,k,bi,bj) = 0.0
386     gvCD(i,j,k,bi,bj) = 0.0
387     END DO
388     END DO
389     #endif /* INCLUDE_CD_CODE */
390     #endif /* ALLOW_AUTODIFF_TAMC */
391     ENDIF
392    
393    
394     C-- end of dynamics k loop (1:Nr)
395     ENDDO
396    
397    
398    
399 adcroft 1.44 C-- Implicit viscosity
400 adcroft 1.58 IF (implicitViscosity.AND.momStepping) THEN
401     #ifdef ALLOW_AUTODIFF_TAMC
402     idkey = iikey + 3
403 heimbach 1.66 CADJ STORE gUNm1(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte
404 adcroft 1.58 #endif /* ALLOW_AUTODIFF_TAMC */
405 adcroft 1.42 CALL IMPLDIFF(
406     I bi, bj, iMin, iMax, jMin, jMax,
407     I deltaTmom, KappaRU,recip_HFacW,
408     U gUNm1,
409     I myThid )
410 adcroft 1.58 #ifdef ALLOW_AUTODIFF_TAMC
411     idkey = iikey + 4
412 heimbach 1.66 CADJ STORE gVNm1(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte
413 adcroft 1.58 #endif /* ALLOW_AUTODIFF_TAMC */
414 adcroft 1.42 CALL IMPLDIFF(
415     I bi, bj, iMin, iMax, jMin, jMax,
416     I deltaTmom, KappaRV,recip_HFacS,
417     U gVNm1,
418     I myThid )
419 heimbach 1.49
420 adcroft 1.58 #ifdef ALLOW_OBCS
421     C-- Apply open boundary conditions
422     IF (useOBCS) THEN
423     DO K=1,Nr
424     CALL OBCS_APPLY_UV( bi, bj, k, gUnm1, gVnm1, myThid )
425     ENDDO
426     END IF
427     #endif /* ALLOW_OBCS */
428 heimbach 1.49
429 adcroft 1.58 #ifdef INCLUDE_CD_CODE
430     #ifdef ALLOW_AUTODIFF_TAMC
431     idkey = iikey + 5
432 heimbach 1.66 CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte
433 adcroft 1.58 #endif /* ALLOW_AUTODIFF_TAMC */
434 adcroft 1.42 CALL IMPLDIFF(
435     I bi, bj, iMin, iMax, jMin, jMax,
436     I deltaTmom, KappaRU,recip_HFacW,
437     U vVelD,
438     I myThid )
439 adcroft 1.58 #ifdef ALLOW_AUTODIFF_TAMC
440     idkey = iikey + 6
441 heimbach 1.66 CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte
442 adcroft 1.58 #endif /* ALLOW_AUTODIFF_TAMC */
443 adcroft 1.42 CALL IMPLDIFF(
444     I bi, bj, iMin, iMax, jMin, jMax,
445     I deltaTmom, KappaRV,recip_HFacS,
446     U uVelD,
447     I myThid )
448 adcroft 1.58 #endif /* INCLUDE_CD_CODE */
449     C-- End If implicitViscosity.AND.momStepping
450 heimbach 1.53 ENDIF
451 cnh 1.1
452 jmc 1.62 Cjmc : add for phiHyd output <- but not working if multi tile per CPU
453     c IF ( DIFFERENT_MULTIPLE(dumpFreq,myTime+deltaTClock,myTime)
454     c & .AND. buoyancyRelation .eq. 'ATMOSPHERIC' ) THEN
455     c WRITE(suff,'(I10.10)') myIter+1
456     c CALL WRITE_FLD_XYZ_RL('PH.',suff,phiHyd,myIter+1,myThid)
457     c ENDIF
458     Cjmc(end)
459    
460 jmc 1.64 #ifdef ALLOW_TIMEAVE
461 jmc 1.62 IF (taveFreq.GT.0.) THEN
462 adcroft 1.68 CALL TIMEAVE_CUMUL_1T(phiHydtave, phiHyd, Nr,
463 jmc 1.64 I deltaTclock, bi, bj, myThid)
464 jmc 1.62 ENDIF
465 jmc 1.64 #endif /* ALLOW_TIMEAVE */
466 jmc 1.62
467 cnh 1.1 ENDDO
468     ENDDO
469 adcroft 1.69
470 adcroft 1.79 #ifndef DISABLE_DEBUGMODE
471 adcroft 1.70 If (debugMode) THEN
472 adcroft 1.69 CALL DEBUG_STATS_RL(1,EtaN,'EtaN (DYNAMICS)',myThid)
473 adcroft 1.73 CALL DEBUG_STATS_RL(Nr,uVel,'Uvel (DYNAMICS)',myThid)
474 adcroft 1.69 CALL DEBUG_STATS_RL(Nr,vVel,'Vvel (DYNAMICS)',myThid)
475     CALL DEBUG_STATS_RL(Nr,wVel,'Wvel (DYNAMICS)',myThid)
476     CALL DEBUG_STATS_RL(Nr,theta,'Theta (DYNAMICS)',myThid)
477     CALL DEBUG_STATS_RL(Nr,salt,'Salt (DYNAMICS)',myThid)
478     CALL DEBUG_STATS_RL(Nr,Gu,'Gu (DYNAMICS)',myThid)
479     CALL DEBUG_STATS_RL(Nr,Gv,'Gv (DYNAMICS)',myThid)
480     CALL DEBUG_STATS_RL(Nr,Gt,'Gt (DYNAMICS)',myThid)
481     CALL DEBUG_STATS_RL(Nr,Gs,'Gs (DYNAMICS)',myThid)
482     CALL DEBUG_STATS_RL(Nr,GuNm1,'GuNm1 (DYNAMICS)',myThid)
483     CALL DEBUG_STATS_RL(Nr,GvNm1,'GvNm1 (DYNAMICS)',myThid)
484     CALL DEBUG_STATS_RL(Nr,GtNm1,'GtNm1 (DYNAMICS)',myThid)
485     CALL DEBUG_STATS_RL(Nr,GsNm1,'GsNm1 (DYNAMICS)',myThid)
486 adcroft 1.70 ENDIF
487 adcroft 1.69 #endif
488 cnh 1.1
489     RETURN
490     END

  ViewVC Help
Powered by ViewVC 1.1.22