/[MITgcm]/MITgcm/model/src/dynamics.F
ViewVC logotype

Annotation of /MITgcm/model/src/dynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.30 - (hide annotations) (download)
Thu Aug 20 20:05:01 1998 UTC (25 years, 9 months ago) by cnh
Branch: MAIN
Changes since 1.29: +103 -110 lines
Isomorphism consistency changes

1 cnh 1.30 C $Header: /u/gcmpack/models/MITgcmUV/model/src/dynamics.F,v 1.29 1998/08/20 19:26:40 cnh Exp $
2 cnh 1.1
3 adcroft 1.24 #include "CPP_OPTIONS.h"
4 cnh 1.1
5 cnh 1.8 SUBROUTINE DYNAMICS(myTime, myIter, myThid)
6 cnh 1.1 C /==========================================================\
7     C | SUBROUTINE DYNAMICS |
8     C | o Controlling routine for the explicit part of the model |
9     C | dynamics. |
10     C |==========================================================|
11     C | This routine evaluates the "dynamics" terms for each |
12     C | block of ocean in turn. Because the blocks of ocean have |
13     C | overlap regions they are independent of one another. |
14     C | If terms involving lateral integrals are needed in this |
15     C | routine care will be needed. Similarly finite-difference |
16     C | operations with stencils wider than the overlap region |
17     C | require special consideration. |
18     C | Notes |
19     C | ===== |
20     C | C*P* comments indicating place holders for which code is |
21     C | presently being developed. |
22     C \==========================================================/
23    
24     C == Global variables ===
25     #include "SIZE.h"
26     #include "EEPARAMS.h"
27     #include "CG2D.h"
28 adcroft 1.6 #include "PARAMS.h"
29 adcroft 1.3 #include "DYNVARS.h"
30 cnh 1.1
31     C == Routine arguments ==
32 cnh 1.8 C myTime - Current time in simulation
33     C myIter - Current iteration number in simulation
34 cnh 1.1 C myThid - Thread number for this instance of the routine.
35     INTEGER myThid
36 cnh 1.8 _RL myTime
37     INTEGER myIter
38 cnh 1.1
39     C == Local variables
40     C xA, yA - Per block temporaries holding face areas
41 cnh 1.30 C uTrans, vTrans, rTrans - Per block temporaries holding flow transport
42     C rVel o uTrans: Zonal transport
43 cnh 1.1 C o vTrans: Meridional transport
44 cnh 1.30 C o rTrans: Vertical transport
45     C o rVel: Vertical velocity at upper and lower
46 cnh 1.14 C cell faces.
47 cnh 1.1 C maskC,maskUp o maskC: land/water mask for tracer cells
48     C o maskUp: land/water mask for W points
49     C aTerm, xTerm, cTerm - Work arrays for holding separate terms in
50     C mTerm, pTerm, tendency equations.
51     C fZon, fMer, fVer[STUV] o aTerm: Advection term
52     C o xTerm: Mixing term
53     C o cTerm: Coriolis term
54     C o mTerm: Metric term
55     C o pTerm: Pressure term
56     C o fZon: Zonal flux term
57     C o fMer: Meridional flux term
58     C o fVer: Vertical flux term - note fVer
59     C is "pipelined" in the vertical
60     C so we need an fVer for each
61     C variable.
62 cnh 1.26 C rhoK, rhoKM1 - Density at current level, level above and level below.
63     C rhoKP1
64     C buoyK, buoyKM1 - Buoyancy at current level and level above.
65     C phiHyd - Hydrostatic part of the potential phi.
66     C In z coords phiHyd is the hydrostatic pressure anomaly
67 cnh 1.30 C In p coords phiHyd is the geopotential surface height
68     C anomaly.
69     C etaSurfX, - Holds surface elevation gradient in X and Y.
70     C etaSurfY
71     C K13, K23, K33 - Non-zero elements of small-angle approximation
72     C diffusion tensor.
73     C KapGM - Spatially varying Visbeck et. al mixing coeff.
74     C KappaRT, - Total diffusion in vertical for T and S.
75     C KappaRS ( background + spatially varying, isopycnal term).
76     C iMin, iMax - Ranges and sub-block indices on which calculations
77     C jMin, jMax are applied.
78 cnh 1.1 C bi, bj
79 cnh 1.30 C k, kUp, - Index for layer above and below. kUp and kDown
80     C kDown, kM1 are switched with layer to be the appropriate index
81     C into fVerTerm
82     _RS xA (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
83     _RS yA (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
84     _RL uTrans (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
85     _RL vTrans (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
86     _RL rTrans (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
87     _RL rVel (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
88     _RS maskC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
89     _RS maskUp (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
90     _RL aTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
91     _RL xTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
92     _RL cTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
93     _RL mTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
94     _RL pTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
95     _RL fZon (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
96     _RL fMer (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
97     _RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
98     _RL fVerS (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
99     _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
100     _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
101     _RL phiHyd (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)
102     _RL rhokm1 (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
103     _RL rhokp1 (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
104     _RL rhok (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
105     _RL buoyKM1 (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
106     _RL buoyK (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
107     _RL rhotmp (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
108 cnh 1.29 _RL etaSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
109     _RL etaSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
110 cnh 1.30 _RL K13 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)
111     _RL K23 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)
112     _RL K33 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)
113     _RL KapGM (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
114     _RL KappaZT (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nz)
115     _RL KappaZS (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nz)
116 adcroft 1.12
117 cnh 1.1 INTEGER iMin, iMax
118     INTEGER jMin, jMax
119     INTEGER bi, bj
120     INTEGER i, j
121     INTEGER k, kM1, kUp, kDown
122 cnh 1.19 LOGICAL BOTTOM_LAYER
123 cnh 1.1
124 adcroft 1.11 C--- The algorithm...
125     C
126     C "Correction Step"
127     C =================
128     C Here we update the horizontal velocities with the surface
129     C pressure such that the resulting flow is either consistent
130     C with the free-surface evolution or the rigid-lid:
131     C U[n] = U* + dt x d/dx P
132     C V[n] = V* + dt x d/dy P
133     C
134     C "Calculation of Gs"
135     C ===================
136     C This is where all the accelerations and tendencies (ie.
137     C physics, parameterizations etc...) are calculated
138 cnh 1.27 C rVel = sum_r ( div. u[n] )
139 adcroft 1.11 C rho = rho ( theta[n], salt[n] )
140 cnh 1.27 C b = b(rho, theta)
141 adcroft 1.11 C K31 = K31 ( rho )
142 cnh 1.27 C Gu[n] = Gu( u[n], v[n], rVel, b, ... )
143     C Gv[n] = Gv( u[n], v[n], rVel, b, ... )
144     C Gt[n] = Gt( theta[n], u[n], v[n], rVel, K31, ... )
145     C Gs[n] = Gs( salt[n], u[n], v[n], rVel, K31, ... )
146 adcroft 1.11 C
147 adcroft 1.12 C "Time-stepping" or "Prediction"
148 adcroft 1.11 C ================================
149     C The models variables are stepped forward with the appropriate
150     C time-stepping scheme (currently we use Adams-Bashforth II)
151     C - For momentum, the result is always *only* a "prediction"
152     C in that the flow may be divergent and will be "corrected"
153     C later with a surface pressure gradient.
154     C - Normally for tracers the result is the new field at time
155     C level [n+1} *BUT* in the case of implicit diffusion the result
156     C is also *only* a prediction.
157     C - We denote "predictors" with an asterisk (*).
158     C U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
159     C V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
160     C theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
161     C salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
162 adcroft 1.12 C With implicit diffusion:
163 adcroft 1.11 C theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
164     C salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
165 adcroft 1.12 C (1 + dt * K * d_zz) theta[n] = theta*
166     C (1 + dt * K * d_zz) salt[n] = salt*
167 adcroft 1.11 C---
168    
169 cnh 1.1 C-- Set up work arrays with valid (i.e. not NaN) values
170     C These inital values do not alter the numerical results. They
171     C just ensure that all memory references are to valid floating
172     C point numbers. This prevents spurious hardware signals due to
173     C uninitialised but inert locations.
174     DO j=1-OLy,sNy+OLy
175     DO i=1-OLx,sNx+OLx
176 adcroft 1.5 xA(i,j) = 0. _d 0
177     yA(i,j) = 0. _d 0
178     uTrans(i,j) = 0. _d 0
179     vTrans(i,j) = 0. _d 0
180     aTerm(i,j) = 0. _d 0
181     xTerm(i,j) = 0. _d 0
182     cTerm(i,j) = 0. _d 0
183     mTerm(i,j) = 0. _d 0
184     pTerm(i,j) = 0. _d 0
185     fZon(i,j) = 0. _d 0
186     fMer(i,j) = 0. _d 0
187 cnh 1.1 DO K=1,nZ
188 adcroft 1.5 pH (i,j,k) = 0. _d 0
189 cnh 1.30 K13(i,j,k) = 0. _d 0
190     K23(i,j,k) = 0. _d 0
191     K33(i,j,k) = 0. _d 0
192 adcroft 1.12 KappaZT(i,j,k) = 0. _d 0
193 cnh 1.1 ENDDO
194 cnh 1.30 rhoKM1 (i,j) = 0. _d 0
195     rhok (i,j) = 0. _d 0
196     rhoKP1 (i,j) = 0. _d 0
197     rhoTMP (i,j) = 0. _d 0
198 cnh 1.26 buoyKM1(i,j) = 0. _d 0
199     buoyK (i,j) = 0. _d 0
200 cnh 1.30 maskC (i,j) = 0. _d 0
201 cnh 1.1 ENDDO
202     ENDDO
203    
204     DO bj=myByLo(myThid),myByHi(myThid)
205     DO bi=myBxLo(myThid),myBxHi(myThid)
206    
207 cnh 1.7 C-- Set up work arrays that need valid initial values
208     DO j=1-OLy,sNy+OLy
209     DO i=1-OLx,sNx+OLx
210 cnh 1.27 rTrans(i,j) = 0. _d 0
211     rVel (i,j,1) = 0. _d 0
212     rVel (i,j,2) = 0. _d 0
213 cnh 1.30 fVerT (i,j,1) = 0. _d 0
214     fVerT (i,j,2) = 0. _d 0
215     fVerS (i,j,1) = 0. _d 0
216     fVerS (i,j,2) = 0. _d 0
217     fVerU (i,j,1) = 0. _d 0
218     fVerU (i,j,2) = 0. _d 0
219     fVerV (i,j,1) = 0. _d 0
220     fVerV (i,j,2) = 0. _d 0
221 cnh 1.27 phiHyd(i,j,1) = 0. _d 0
222 cnh 1.30 K13 (i,j,1) = 0. _d 0
223     K23 (i,j,1) = 0. _d 0
224     K33 (i,j,1) = 0. _d 0
225     KapGM (i,j) = GMkbackground
226 cnh 1.7 ENDDO
227     ENDDO
228    
229 cnh 1.1 iMin = 1-OLx+1
230     iMax = sNx+OLx
231     jMin = 1-OLy+1
232     jMax = sNy+OLy
233    
234 cnh 1.19 K = 1
235     BOTTOM_LAYER = K .EQ. Nz
236    
237 adcroft 1.4 C-- Calculate gradient of surface pressure
238 cnh 1.28 CALL CALC_GRAD_ETA_SURF(
239 adcroft 1.4 I bi,bj,iMin,iMax,jMin,jMax,
240 cnh 1.29 O etaSurfX,etaSurfY,
241 adcroft 1.4 I myThid)
242     C-- Update fields in top level according to tendency terms
243 adcroft 1.11 CALL CORRECTION_STEP(
244 cnh 1.30 I bi,bj,iMin,iMax,jMin,jMax,K,
245     I etaSurfX,etaSurfY,myTime,myThid)
246 adcroft 1.21 IF ( .NOT. BOTTOM_LAYER ) THEN
247     C-- Update fields in layer below according to tendency terms
248     CALL CORRECTION_STEP(
249 cnh 1.30 I bi,bj,iMin,iMax,jMin,jMax,K+1,
250     I etaSurfX,etaSurfY,myTime,myThid)
251 adcroft 1.21 ENDIF
252 cnh 1.7 C-- Density of 1st level (below W(1)) reference to level 1
253     CALL FIND_RHO(
254 cnh 1.19 I bi, bj, iMin, iMax, jMin, jMax, K, K, eosType,
255 cnh 1.7 O rhoKm1,
256     I myThid )
257 cnh 1.19
258     IF ( .NOT. BOTTOM_LAYER ) THEN
259     C-- Check static stability with layer below
260 cnh 1.30 C-- and mix as needed.
261 cnh 1.19 CALL FIND_RHO(
262     I bi, bj, iMin, iMax, jMin, jMax, K+1, K, eosType,
263     O rhoKp1,
264     I myThid )
265     CALL CONVECT(
266     I bi,bj,iMin,iMax,jMin,jMax,K+1,rhoKm1,rhoKp1,
267     I myTime,myIter,myThid)
268     C-- Recompute density after mixing
269     CALL FIND_RHO(
270     I bi, bj, iMin, iMax, jMin, jMax, K, K, eosType,
271     O rhoKm1,
272     I myThid )
273     ENDIF
274 cnh 1.26 C-- Calculate buoyancy
275     CALL CALC_BUOY(
276     I bi,bj,iMin,iMax,jMin,jMax,K,rhoKm1,
277     O buoyKm1,
278     I myThid )
279 cnh 1.7 C-- Integrate hydrostatic balance for pH with BC of pH(z=0)=0
280 cnh 1.26 CALL CALC_PHI_HYD(
281     I bi,bj,iMin,iMax,jMin,jMax,K,buoyKm1,buoyKm1,
282     U phiHyd,
283 adcroft 1.5 I myThid )
284    
285 adcroft 1.3 DO K=2,Nz
286 cnh 1.19 BOTTOM_LAYER = K .EQ. Nz
287 adcroft 1.21 IF ( .NOT. BOTTOM_LAYER ) THEN
288     C-- Update fields in layer below according to tendency terms
289     CALL CORRECTION_STEP(
290 cnh 1.30 I bi,bj,iMin,iMax,jMin,jMax,K+1,
291     I etaSurfX,etaSurfY,myTime,myThid)
292 adcroft 1.21 ENDIF
293 cnh 1.19 C-- Density of K level (below W(K)) reference to K level
294     CALL FIND_RHO(
295     I bi, bj, iMin, iMax, jMin, jMax, K, K, eosType,
296     O rhoK,
297     I myThid )
298     IF ( .NOT. BOTTOM_LAYER ) THEN
299 cnh 1.27 C-- Check static stability with layer below and mix as needed.
300     C-- Density of K+1 level (below W(K+1)) reference to K level.
301 cnh 1.19 CALL FIND_RHO(
302     I bi, bj, iMin, iMax, jMin, jMax, K+1, K, eosType,
303     O rhoKp1,
304     I myThid )
305     CALL CONVECT(
306     I bi,bj,iMin,iMax,jMin,jMax,K+1,rhoK,rhoKp1,
307     I myTime,myIter,myThid)
308     C-- Recompute density after mixing
309     CALL FIND_RHO(
310     I bi, bj, iMin, iMax, jMin, jMax, K, K, eosType,
311     O rhoK,
312     I myThid )
313     ENDIF
314 cnh 1.26 C-- Calculate buoyancy
315     CALL CALC_BUOY(
316     I bi,bj,iMin,iMax,jMin,jMax,K,rhoK,
317     O buoyK,
318     I myThid )
319 cnh 1.19 C-- Integrate hydrostatic balance for pH with BC of pH(z=0)=0
320 cnh 1.26 CALL CALC_PHI_HYD(
321 cnh 1.30 I bi,bj,iMin,iMax,jMin,jMax,K,buoyKm1,buoyK,
322     U phiHyd,
323     I myThid )
324 cnh 1.19 C-- Calculate iso-neutral slopes for the GM/Redi parameterisation
325     CALL FIND_RHO(
326 cnh 1.30 I bi, bj, iMin, iMax, jMin, jMax, K-1, K, eosType,
327     O rhoTmp,
328     I myThid )
329 cnh 1.19 CALL CALC_ISOSLOPES(
330 cnh 1.30 I bi, bj, iMin, iMax, jMin, jMax, K,
331     I rhoKm1, rhoK, rhotmp,
332     O K13, K23, K33, KapGM,
333     I myThid )
334 cnh 1.19 DO J=jMin,jMax
335     DO I=iMin,iMax
336 cnh 1.27 rhoKm1 (I,J) = rhoK(I,J)
337     buoyKm1(I,J) = buoyK(I,J)
338 cnh 1.19 ENDDO
339 adcroft 1.10 ENDDO
340 adcroft 1.11 ENDDO ! K
341    
342 cnh 1.1 DO K = Nz, 1, -1
343 cnh 1.30
344 cnh 1.1 kM1 =max(1,k-1) ! Points to level above k (=k-1)
345     kUp =1+MOD(k+1,2) ! Cycles through 1,2 to point to layer above
346     kDown=1+MOD(k,2) ! Cycles through 2,1 to point to current layer
347     iMin = 1-OLx+2
348     iMax = sNx+OLx-1
349     jMin = 1-OLy+2
350     jMax = sNy+OLy-1
351    
352     C-- Get temporary terms used by tendency routines
353     CALL CALC_COMMON_FACTORS (
354     I bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,
355 cnh 1.30 O xA,yA,uTrans,vTrans,rTrans,rVel,maskC,maskUp,
356 cnh 1.1 I myThid)
357 adcroft 1.12 C-- Calculate the total vertical diffusivity
358     CALL CALC_DIFFUSIVITY(
359     I bi,bj,iMin,iMax,jMin,jMax,K,
360     I maskC,maskUp,KapGM,K33,
361 adcroft 1.18 O KappaZT,KappaZS,
362 adcroft 1.12 I myThid)
363 cnh 1.1 C-- Calculate accelerations in the momentum equations
364 cnh 1.9 IF ( momStepping ) THEN
365     CALL CALC_MOM_RHS(
366     I bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,
367 cnh 1.30 I xA,yA,uTrans,vTrans,rTrans,rVel,maskC,
368 cnh 1.26 I phiHyd,
369 cnh 1.9 U aTerm,xTerm,cTerm,mTerm,pTerm,
370     U fZon, fMer, fVerU, fVerV,
371     I myThid)
372     ENDIF
373 cnh 1.1 C-- Calculate active tracer tendencies
374 cnh 1.9 IF ( tempStepping ) THEN
375     CALL CALC_GT(
376     I bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,
377 cnh 1.30 I xA,yA,uTrans,vTrans,rTrans,maskUp,maskC,
378     I K13,K23,KappaRT,KapGM,
379 cnh 1.9 U aTerm,xTerm,fZon,fMer,fVerT,
380     I myThid)
381     ENDIF
382 adcroft 1.18 IF ( saltStepping ) THEN
383     CALL CALC_GS(
384     I bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,
385 cnh 1.30 I xA,yA,uTrans,vTrans,rTrans,maskUp,maskC,
386     I K13,K23,KappaRS,KapGM,
387 adcroft 1.18 U aTerm,xTerm,fZon,fMer,fVerS,
388     I myThid)
389     ENDIF
390 adcroft 1.11 C-- Prediction step (step forward all model variables)
391     CALL TIMESTEP(
392     I bi,bj,iMin,iMax,jMin,jMax,K,
393     I myThid)
394     C-- Diagnose barotropic divergence of predicted fields
395 cnh 1.30 CALL CALC_DIV_G(
396 adcroft 1.11 I bi,bj,iMin,iMax,jMin,jMax,K,
397     I xA,yA,
398     I myThid)
399 adcroft 1.23
400     C-- Cumulative diagnostic calculations (ie. time-averaging)
401     #ifdef ALLOW_DIAGNOSTICS
402     IF (taveFreq.GT.0.) THEN
403     CALL DO_TIME_AVERAGES(
404     I myTime, myIter, bi, bj, K, kUp, kDown,
405 cnh 1.30 I K13, K23, rVel, KapGM,
406 adcroft 1.23 I myThid )
407     ENDIF
408     #endif
409 adcroft 1.11
410     ENDDO ! K
411 adcroft 1.12
412     C-- Implicit diffusion
413     IF (implicitDiffusion) THEN
414     CALL IMPLDIFF( bi, bj, iMin, iMax, jMin, jMax,
415 adcroft 1.18 I KappaZT,KappaZS,
416 adcroft 1.12 I myThid )
417     ENDIF
418 cnh 1.1
419     ENDDO
420     ENDDO
421 adcroft 1.6
422 cnh 1.19 C write(0,*) 'dynamics: pS ',minval(cg2d_x(1:sNx,1:sNy,:,:)),
423     C & maxval(cg2d_x(1:sNx,1:sNy,:,:))
424 cnh 1.20 C write(0,*) 'dynamics: U ',minval(uVel(1:sNx,1:sNy,1,:,:),mask=uVel(1:sNx,1:sNy,1,:,:).NE.0.),
425 adcroft 1.21 C & maxval(uVel(1:sNx,1:sNy,1,:,:),mask=uVel(1:sNx,1:sNy,1,:,:).NE.0.)
426 cnh 1.20 C write(0,*) 'dynamics: V ',minval(vVel(1:sNx,1:sNy,1,:,:),mask=vVel(1:sNx,1:sNy,1,:,:).NE.0.),
427 adcroft 1.21 C & maxval(vVel(1:sNx,1:sNy,1,:,:),mask=vVel(1:sNx,1:sNy,1,:,:).NE.0.)
428 cnh 1.30 C write(0,*) 'dynamics: rVel(1) ',
429     C & minval(rVel(1:sNx,1:sNy,1),mask=rVel(1:sNx,1:sNy,1).NE.0.),
430     C & maxval(rVel(1:sNx,1:sNy,1),mask=rVel(1:sNx,1:sNy,1).NE.0.)
431     C write(0,*) 'dynamics: rVel(2) ',
432     C & minval(rVel(1:sNx,1:sNy,2),mask=rVel(1:sNx,1:sNy,2).NE.0.),
433     C & maxval(rVel(1:sNx,1:sNy,2),mask=rVel(1:sNx,1:sNy,2).NE.0.)
434 adcroft 1.15 cblk write(0,*) 'dynamics: K13',minval(K13(1:sNx,1:sNy,:)),
435     cblk & maxval(K13(1:sNx,1:sNy,:))
436     cblk write(0,*) 'dynamics: K23',minval(K23(1:sNx,1:sNy,:)),
437     cblk & maxval(K23(1:sNx,1:sNy,:))
438     cblk write(0,*) 'dynamics: K33',minval(K33(1:sNx,1:sNy,:)),
439     cblk & maxval(K33(1:sNx,1:sNy,:))
440 cnh 1.19 C write(0,*) 'dynamics: gT ',minval(gT(1:sNx,1:sNy,:,:,:)),
441     C & maxval(gT(1:sNx,1:sNy,:,:,:))
442     C write(0,*) 'dynamics: T ',minval(Theta(1:sNx,1:sNy,:,:,:)),
443     C & maxval(Theta(1:sNx,1:sNy,:,:,:))
444     C write(0,*) 'dynamics: gS ',minval(gS(1:sNx,1:sNy,:,:,:)),
445     C & maxval(gS(1:sNx,1:sNy,:,:,:))
446     C write(0,*) 'dynamics: S ',minval(salt(1:sNx,1:sNy,:,:,:)),
447     C & maxval(salt(1:sNx,1:sNy,:,:,:))
448 cnh 1.20 C write(0,*) 'dynamics: pH ',minval(pH/(Gravity*Rhonil),mask=ph.NE.0.),
449     C & maxval(pH/(Gravity*Rhonil))
450 cnh 1.1
451     RETURN
452     END

  ViewVC Help
Powered by ViewVC 1.1.22