/[MITgcm]/MITgcm/model/src/dynamics.F
ViewVC logotype

Annotation of /MITgcm/model/src/dynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.28 - (hide annotations) (download)
Thu Aug 20 19:25:05 1998 UTC (25 years, 8 months ago) by cnh
Branch: MAIN
Changes since 1.27: +2 -2 lines
Isomorphism consistency changes

1 cnh 1.28 C $Header: /u/gcmpack/models/MITgcmUV/model/src/dynamics.F,v 1.27 1998/08/20 16:03:15 cnh Exp $
2 cnh 1.1
3 adcroft 1.24 #include "CPP_OPTIONS.h"
4 cnh 1.1
5 cnh 1.8 SUBROUTINE DYNAMICS(myTime, myIter, myThid)
6 cnh 1.1 C /==========================================================\
7     C | SUBROUTINE DYNAMICS |
8     C | o Controlling routine for the explicit part of the model |
9     C | dynamics. |
10     C |==========================================================|
11     C | This routine evaluates the "dynamics" terms for each |
12     C | block of ocean in turn. Because the blocks of ocean have |
13     C | overlap regions they are independent of one another. |
14     C | If terms involving lateral integrals are needed in this |
15     C | routine care will be needed. Similarly finite-difference |
16     C | operations with stencils wider than the overlap region |
17     C | require special consideration. |
18     C | Notes |
19     C | ===== |
20     C | C*P* comments indicating place holders for which code is |
21     C | presently being developed. |
22     C \==========================================================/
23    
24     C == Global variables ===
25     #include "SIZE.h"
26     #include "EEPARAMS.h"
27     #include "CG2D.h"
28 adcroft 1.6 #include "PARAMS.h"
29 adcroft 1.3 #include "DYNVARS.h"
30 cnh 1.1
31     C == Routine arguments ==
32 cnh 1.8 C myTime - Current time in simulation
33     C myIter - Current iteration number in simulation
34 cnh 1.1 C myThid - Thread number for this instance of the routine.
35     INTEGER myThid
36 cnh 1.8 _RL myTime
37     INTEGER myIter
38 cnh 1.1
39     C == Local variables
40     C xA, yA - Per block temporaries holding face areas
41     C uTrans, vTrans, wTrans - Per block temporaries holding flow transport
42 cnh 1.14 C wVel o uTrans: Zonal transport
43 cnh 1.1 C o vTrans: Meridional transport
44     C o wTrans: Vertical transport
45 cnh 1.14 C o wVel: Vertical velocity at upper and lower
46     C cell faces.
47 cnh 1.1 C maskC,maskUp o maskC: land/water mask for tracer cells
48     C o maskUp: land/water mask for W points
49     C aTerm, xTerm, cTerm - Work arrays for holding separate terms in
50     C mTerm, pTerm, tendency equations.
51     C fZon, fMer, fVer[STUV] o aTerm: Advection term
52     C o xTerm: Mixing term
53     C o cTerm: Coriolis term
54     C o mTerm: Metric term
55     C o pTerm: Pressure term
56     C o fZon: Zonal flux term
57     C o fMer: Meridional flux term
58     C o fVer: Vertical flux term - note fVer
59     C is "pipelined" in the vertical
60     C so we need an fVer for each
61     C variable.
62 cnh 1.26 C rhoK, rhoKM1 - Density at current level, level above and level below.
63     C rhoKP1
64     C buoyK, buoyKM1 - Buoyancy at current level and level above.
65     C phiHyd - Hydrostatic part of the potential phi.
66     C In z coords phiHyd is the hydrostatic pressure anomaly
67     C In p coords phiHyd is the geopotential surface height anomaly.
68 cnh 1.1 C iMin, iMax - Ranges and sub-block indices on which calculations
69     C jMin, jMax are applied.
70     C bi, bj
71     C k, kUp, kDown, kM1 - Index for layer above and below. kUp and kDown
72     C are switched with layer to be the appropriate index
73     C into fVerTerm
74     _RS xA (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
75     _RS yA (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
76     _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
77     _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
78 cnh 1.27 _RL rTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
79     _RL rVel (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
80 cnh 1.1 _RS maskC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
81     _RS maskUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
82     _RL aTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
83     _RL xTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
84     _RL cTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
85     _RL mTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
86     _RL pTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
87     _RL fZon (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
88     _RL fMer (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
89     _RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
90     _RL fVerS (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
91     _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
92     _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
93 cnh 1.26 _RL phiHyd(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)
94 adcroft 1.3 _RL rhokm1(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
95     _RL rhokp1(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
96 cnh 1.19 _RL rhok (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
97 cnh 1.26 _RL buoyKM1(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
98     _RL buoyK (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
99 adcroft 1.10 _RL rhotmp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
100 adcroft 1.4 _RL pSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
101     _RL pSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
102 adcroft 1.6 _RL K13 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)
103     _RL K23 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)
104     _RL K33 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)
105     _RL KapGM (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
106 adcroft 1.12 _RL KappaZT(1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nz)
107 adcroft 1.18 _RL KappaZS(1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nz)
108 adcroft 1.12
109 cnh 1.1 INTEGER iMin, iMax
110     INTEGER jMin, jMax
111     INTEGER bi, bj
112     INTEGER i, j
113     INTEGER k, kM1, kUp, kDown
114 cnh 1.19 LOGICAL BOTTOM_LAYER
115 cnh 1.1
116 adcroft 1.11 C--- The algorithm...
117     C
118     C "Correction Step"
119     C =================
120     C Here we update the horizontal velocities with the surface
121     C pressure such that the resulting flow is either consistent
122     C with the free-surface evolution or the rigid-lid:
123     C U[n] = U* + dt x d/dx P
124     C V[n] = V* + dt x d/dy P
125     C
126     C "Calculation of Gs"
127     C ===================
128     C This is where all the accelerations and tendencies (ie.
129     C physics, parameterizations etc...) are calculated
130 cnh 1.27 C rVel = sum_r ( div. u[n] )
131 adcroft 1.11 C rho = rho ( theta[n], salt[n] )
132 cnh 1.27 C b = b(rho, theta)
133 adcroft 1.11 C K31 = K31 ( rho )
134 cnh 1.27 C Gu[n] = Gu( u[n], v[n], rVel, b, ... )
135     C Gv[n] = Gv( u[n], v[n], rVel, b, ... )
136     C Gt[n] = Gt( theta[n], u[n], v[n], rVel, K31, ... )
137     C Gs[n] = Gs( salt[n], u[n], v[n], rVel, K31, ... )
138 adcroft 1.11 C
139 adcroft 1.12 C "Time-stepping" or "Prediction"
140 adcroft 1.11 C ================================
141     C The models variables are stepped forward with the appropriate
142     C time-stepping scheme (currently we use Adams-Bashforth II)
143     C - For momentum, the result is always *only* a "prediction"
144     C in that the flow may be divergent and will be "corrected"
145     C later with a surface pressure gradient.
146     C - Normally for tracers the result is the new field at time
147     C level [n+1} *BUT* in the case of implicit diffusion the result
148     C is also *only* a prediction.
149     C - We denote "predictors" with an asterisk (*).
150     C U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
151     C V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
152     C theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
153     C salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
154 adcroft 1.12 C With implicit diffusion:
155 adcroft 1.11 C theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
156     C salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
157 adcroft 1.12 C (1 + dt * K * d_zz) theta[n] = theta*
158     C (1 + dt * K * d_zz) salt[n] = salt*
159 adcroft 1.11 C---
160    
161 cnh 1.1 C-- Set up work arrays with valid (i.e. not NaN) values
162     C These inital values do not alter the numerical results. They
163     C just ensure that all memory references are to valid floating
164     C point numbers. This prevents spurious hardware signals due to
165     C uninitialised but inert locations.
166     DO j=1-OLy,sNy+OLy
167     DO i=1-OLx,sNx+OLx
168 adcroft 1.5 xA(i,j) = 0. _d 0
169     yA(i,j) = 0. _d 0
170     uTrans(i,j) = 0. _d 0
171     vTrans(i,j) = 0. _d 0
172     aTerm(i,j) = 0. _d 0
173     xTerm(i,j) = 0. _d 0
174     cTerm(i,j) = 0. _d 0
175     mTerm(i,j) = 0. _d 0
176     pTerm(i,j) = 0. _d 0
177     fZon(i,j) = 0. _d 0
178     fMer(i,j) = 0. _d 0
179 cnh 1.1 DO K=1,nZ
180 adcroft 1.5 pH (i,j,k) = 0. _d 0
181 adcroft 1.6 K13(i,j,k) = 0. _d 0
182     K23(i,j,k) = 0. _d 0
183     K33(i,j,k) = 0. _d 0
184 adcroft 1.12 KappaZT(i,j,k) = 0. _d 0
185 cnh 1.1 ENDDO
186 adcroft 1.5 rhokm1(i,j) = 0. _d 0
187 cnh 1.19 rhok (i,j) = 0. _d 0
188 adcroft 1.5 rhokp1(i,j) = 0. _d 0
189 adcroft 1.10 rhotmp(i,j) = 0. _d 0
190 cnh 1.26 buoyKM1(i,j) = 0. _d 0
191     buoyK (i,j) = 0. _d 0
192 cnh 1.16 maskC (i,j) = 0. _d 0
193 cnh 1.1 ENDDO
194     ENDDO
195    
196     DO bj=myByLo(myThid),myByHi(myThid)
197     DO bi=myBxLo(myThid),myBxHi(myThid)
198    
199 cnh 1.7 C-- Set up work arrays that need valid initial values
200     DO j=1-OLy,sNy+OLy
201     DO i=1-OLx,sNx+OLx
202 cnh 1.27 rTrans(i,j) = 0. _d 0
203     rVel (i,j,1) = 0. _d 0
204     rVel (i,j,2) = 0. _d 0
205     fVerT(i,j,1) = 0. _d 0
206     fVerT(i,j,2) = 0. _d 0
207     fVerS(i,j,1) = 0. _d 0
208     fVerS(i,j,2) = 0. _d 0
209     fVerU(i,j,1) = 0. _d 0
210     fVerU(i,j,2) = 0. _d 0
211     fVerV(i,j,1) = 0. _d 0
212     fVerV(i,j,2) = 0. _d 0
213     phiHyd(i,j,1) = 0. _d 0
214     K13(i,j,1) = 0. _d 0
215     K23(i,j,1) = 0. _d 0
216     K33(i,j,1) = 0. _d 0
217     KapGM(i,j) = GMkbackground
218 cnh 1.7 ENDDO
219     ENDDO
220    
221 cnh 1.1 iMin = 1-OLx+1
222     iMax = sNx+OLx
223     jMin = 1-OLy+1
224     jMax = sNy+OLy
225    
226 cnh 1.19 K = 1
227     BOTTOM_LAYER = K .EQ. Nz
228    
229 adcroft 1.4 C-- Calculate gradient of surface pressure
230 cnh 1.28 CALL CALC_GRAD_ETA_SURF(
231 adcroft 1.4 I bi,bj,iMin,iMax,jMin,jMax,
232     O pSurfX,pSurfY,
233     I myThid)
234    
235     C-- Update fields in top level according to tendency terms
236 adcroft 1.11 CALL CORRECTION_STEP(
237 adcroft 1.21 I bi,bj,iMin,iMax,jMin,jMax,K,pSurfX,pSurfY,myTime,myThid)
238    
239     IF ( .NOT. BOTTOM_LAYER ) THEN
240     C-- Update fields in layer below according to tendency terms
241     CALL CORRECTION_STEP(
242     I bi,bj,iMin,iMax,jMin,jMax,K+1,pSurfX,pSurfY,myTime,myThid)
243     ENDIF
244 cnh 1.27
245 cnh 1.7 C-- Density of 1st level (below W(1)) reference to level 1
246     CALL FIND_RHO(
247 cnh 1.19 I bi, bj, iMin, iMax, jMin, jMax, K, K, eosType,
248 cnh 1.7 O rhoKm1,
249     I myThid )
250 cnh 1.19
251     IF ( .NOT. BOTTOM_LAYER ) THEN
252 cnh 1.26
253 cnh 1.19 C-- Check static stability with layer below
254     C and mix as needed.
255     CALL FIND_RHO(
256     I bi, bj, iMin, iMax, jMin, jMax, K+1, K, eosType,
257     O rhoKp1,
258     I myThid )
259     CALL CONVECT(
260     I bi,bj,iMin,iMax,jMin,jMax,K+1,rhoKm1,rhoKp1,
261     I myTime,myIter,myThid)
262 cnh 1.27
263 cnh 1.19 C-- Recompute density after mixing
264     CALL FIND_RHO(
265     I bi, bj, iMin, iMax, jMin, jMax, K, K, eosType,
266     O rhoKm1,
267     I myThid )
268     ENDIF
269    
270 cnh 1.26 C-- Calculate buoyancy
271     CALL CALC_BUOY(
272     I bi,bj,iMin,iMax,jMin,jMax,K,rhoKm1,
273     O buoyKm1,
274     I myThid )
275    
276 cnh 1.7 C-- Integrate hydrostatic balance for pH with BC of pH(z=0)=0
277 cnh 1.26 CALL CALC_PHI_HYD(
278     I bi,bj,iMin,iMax,jMin,jMax,K,buoyKm1,buoyKm1,
279     U phiHyd,
280 adcroft 1.5 I myThid )
281    
282 adcroft 1.3 DO K=2,Nz
283 cnh 1.19
284     BOTTOM_LAYER = K .EQ. Nz
285 adcroft 1.21 IF ( .NOT. BOTTOM_LAYER ) THEN
286     C-- Update fields in layer below according to tendency terms
287     CALL CORRECTION_STEP(
288     I bi,bj,iMin,iMax,jMin,jMax,K+1,pSurfX,pSurfY,myTime,myThid)
289     ENDIF
290 cnh 1.27
291 cnh 1.19 C-- Density of K level (below W(K)) reference to K level
292     CALL FIND_RHO(
293     I bi, bj, iMin, iMax, jMin, jMax, K, K, eosType,
294     O rhoK,
295     I myThid )
296 cnh 1.27
297 cnh 1.19 IF ( .NOT. BOTTOM_LAYER ) THEN
298 cnh 1.27 C-- Check static stability with layer below and mix as needed.
299     C-- Density of K+1 level (below W(K+1)) reference to K level.
300 cnh 1.19 CALL FIND_RHO(
301     I bi, bj, iMin, iMax, jMin, jMax, K+1, K, eosType,
302     O rhoKp1,
303     I myThid )
304     CALL CONVECT(
305     I bi,bj,iMin,iMax,jMin,jMax,K+1,rhoK,rhoKp1,
306     I myTime,myIter,myThid)
307     C-- Recompute density after mixing
308     CALL FIND_RHO(
309     I bi, bj, iMin, iMax, jMin, jMax, K, K, eosType,
310     O rhoK,
311     I myThid )
312     ENDIF
313 cnh 1.26
314     C-- Calculate buoyancy
315     CALL CALC_BUOY(
316     I bi,bj,iMin,iMax,jMin,jMax,K,rhoK,
317     O buoyK,
318     I myThid )
319    
320 cnh 1.19 C-- Integrate hydrostatic balance for pH with BC of pH(z=0)=0
321 cnh 1.26 CALL CALC_PHI_HYD(
322     I bi,bj,iMin,iMax,jMin,jMax,K,buoyKm1,buoyK,
323     U phiHyd,
324 cnh 1.19 I myThid )
325     C-- Calculate iso-neutral slopes for the GM/Redi parameterisation
326     CALL FIND_RHO(
327     I bi, bj, iMin, iMax, jMin, jMax, K-1, K, eosType,
328     O rhoTmp,
329     I myThid )
330     CALL CALC_ISOSLOPES(
331     I bi, bj, iMin, iMax, jMin, jMax, K,
332     I rhoKm1, rhoK, rhotmp,
333     O K13, K23, K33, KapGM,
334     I myThid )
335     DO J=jMin,jMax
336     DO I=iMin,iMax
337 cnh 1.27 rhoKm1 (I,J) = rhoK(I,J)
338     buoyKm1(I,J) = buoyK(I,J)
339 cnh 1.19 ENDDO
340 adcroft 1.10 ENDDO
341 cnh 1.1
342 adcroft 1.11 ENDDO ! K
343    
344 cnh 1.1 DO K = Nz, 1, -1
345     kM1 =max(1,k-1) ! Points to level above k (=k-1)
346     kUp =1+MOD(k+1,2) ! Cycles through 1,2 to point to layer above
347     kDown=1+MOD(k,2) ! Cycles through 2,1 to point to current layer
348     iMin = 1-OLx+2
349     iMax = sNx+OLx-1
350     jMin = 1-OLy+2
351     jMax = sNy+OLy-1
352    
353     C-- Get temporary terms used by tendency routines
354     CALL CALC_COMMON_FACTORS (
355     I bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,
356 cnh 1.14 O xA,yA,uTrans,vTrans,wTrans,wVel,maskC,maskUp,
357 cnh 1.1 I myThid)
358    
359 adcroft 1.12 C-- Calculate the total vertical diffusivity
360     CALL CALC_DIFFUSIVITY(
361     I bi,bj,iMin,iMax,jMin,jMax,K,
362     I maskC,maskUp,KapGM,K33,
363 adcroft 1.18 O KappaZT,KappaZS,
364 adcroft 1.12 I myThid)
365    
366 cnh 1.1 C-- Calculate accelerations in the momentum equations
367 cnh 1.9 IF ( momStepping ) THEN
368     CALL CALC_MOM_RHS(
369     I bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,
370 cnh 1.14 I xA,yA,uTrans,vTrans,wTrans,wVel,maskC,
371 cnh 1.26 I phiHyd,
372 cnh 1.9 U aTerm,xTerm,cTerm,mTerm,pTerm,
373     U fZon, fMer, fVerU, fVerV,
374     I myThid)
375     ENDIF
376 cnh 1.1
377     C-- Calculate active tracer tendencies
378 cnh 1.9 IF ( tempStepping ) THEN
379     CALL CALC_GT(
380     I bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,
381 adcroft 1.21 I xA,yA,uTrans,vTrans,wTrans,maskUp,maskC,
382 adcroft 1.12 I K13,K23,KappaZT,KapGM,
383 cnh 1.9 U aTerm,xTerm,fZon,fMer,fVerT,
384     I myThid)
385     ENDIF
386 adcroft 1.18 IF ( saltStepping ) THEN
387     CALL CALC_GS(
388     I bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,
389 adcroft 1.21 I xA,yA,uTrans,vTrans,wTrans,maskUp,maskC,
390 adcroft 1.18 I K13,K23,KappaZS,KapGM,
391     U aTerm,xTerm,fZon,fMer,fVerS,
392     I myThid)
393     ENDIF
394 cnh 1.1
395 adcroft 1.11 C-- Prediction step (step forward all model variables)
396     CALL TIMESTEP(
397     I bi,bj,iMin,iMax,jMin,jMax,K,
398     I myThid)
399    
400     C-- Diagnose barotropic divergence of predicted fields
401     CALL DIV_G(
402     I bi,bj,iMin,iMax,jMin,jMax,K,
403     I xA,yA,
404     I myThid)
405 adcroft 1.23
406     C-- Cumulative diagnostic calculations (ie. time-averaging)
407     #ifdef ALLOW_DIAGNOSTICS
408     IF (taveFreq.GT.0.) THEN
409     CALL DO_TIME_AVERAGES(
410     I myTime, myIter, bi, bj, K, kUp, kDown,
411 adcroft 1.25 I K13, K23, wVel, KapGM,
412 adcroft 1.23 I myThid )
413     ENDIF
414     #endif
415 adcroft 1.11
416     ENDDO ! K
417 adcroft 1.12
418     C-- Implicit diffusion
419     IF (implicitDiffusion) THEN
420     CALL IMPLDIFF( bi, bj, iMin, iMax, jMin, jMax,
421 adcroft 1.18 I KappaZT,KappaZS,
422 adcroft 1.12 I myThid )
423     ENDIF
424 cnh 1.1
425     ENDDO
426     ENDDO
427 adcroft 1.6
428 cnh 1.19 C write(0,*) 'dynamics: pS ',minval(cg2d_x(1:sNx,1:sNy,:,:)),
429     C & maxval(cg2d_x(1:sNx,1:sNy,:,:))
430 cnh 1.20 C write(0,*) 'dynamics: U ',minval(uVel(1:sNx,1:sNy,1,:,:),mask=uVel(1:sNx,1:sNy,1,:,:).NE.0.),
431 adcroft 1.21 C & maxval(uVel(1:sNx,1:sNy,1,:,:),mask=uVel(1:sNx,1:sNy,1,:,:).NE.0.)
432 cnh 1.20 C write(0,*) 'dynamics: V ',minval(vVel(1:sNx,1:sNy,1,:,:),mask=vVel(1:sNx,1:sNy,1,:,:).NE.0.),
433 adcroft 1.21 C & maxval(vVel(1:sNx,1:sNy,1,:,:),mask=vVel(1:sNx,1:sNy,1,:,:).NE.0.)
434 cnh 1.20 C write(0,*) 'dynamics: wVel(1) ',
435     C & minval(wVel(1:sNx,1:sNy,1),mask=wVel(1:sNx,1:sNy,1).NE.0.),
436 adcroft 1.21 C & maxval(wVel(1:sNx,1:sNy,1),mask=wVel(1:sNx,1:sNy,1).NE.0.)
437 cnh 1.20 C write(0,*) 'dynamics: wVel(2) ',
438     C & minval(wVel(1:sNx,1:sNy,2),mask=wVel(1:sNx,1:sNy,2).NE.0.),
439 adcroft 1.21 C & maxval(wVel(1:sNx,1:sNy,2),mask=wVel(1:sNx,1:sNy,2).NE.0.)
440 adcroft 1.15 cblk write(0,*) 'dynamics: K13',minval(K13(1:sNx,1:sNy,:)),
441     cblk & maxval(K13(1:sNx,1:sNy,:))
442     cblk write(0,*) 'dynamics: K23',minval(K23(1:sNx,1:sNy,:)),
443     cblk & maxval(K23(1:sNx,1:sNy,:))
444     cblk write(0,*) 'dynamics: K33',minval(K33(1:sNx,1:sNy,:)),
445     cblk & maxval(K33(1:sNx,1:sNy,:))
446 cnh 1.19 C write(0,*) 'dynamics: gT ',minval(gT(1:sNx,1:sNy,:,:,:)),
447     C & maxval(gT(1:sNx,1:sNy,:,:,:))
448     C write(0,*) 'dynamics: T ',minval(Theta(1:sNx,1:sNy,:,:,:)),
449     C & maxval(Theta(1:sNx,1:sNy,:,:,:))
450     C write(0,*) 'dynamics: gS ',minval(gS(1:sNx,1:sNy,:,:,:)),
451     C & maxval(gS(1:sNx,1:sNy,:,:,:))
452     C write(0,*) 'dynamics: S ',minval(salt(1:sNx,1:sNy,:,:,:)),
453     C & maxval(salt(1:sNx,1:sNy,:,:,:))
454 cnh 1.20 C write(0,*) 'dynamics: pH ',minval(pH/(Gravity*Rhonil),mask=ph.NE.0.),
455     C & maxval(pH/(Gravity*Rhonil))
456 cnh 1.1
457     RETURN
458     END

  ViewVC Help
Powered by ViewVC 1.1.22