/[MITgcm]/MITgcm/model/src/dynamics.F
ViewVC logotype

Annotation of /MITgcm/model/src/dynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.18 - (hide annotations) (download)
Wed Jun 10 16:05:39 1998 UTC (25 years, 11 months ago) by adcroft
Branch: MAIN
Changes since 1.17: +26 -19 lines
Added code to bring "salt" up-to-date with "theta".
One caveat is that implicit diffusion of salt is done with the
diffusivity of theta. We'll sort this out later. In explicit
mode, diffKzS is used.

1 adcroft 1.18 C $Header: /u/gcmpack/models/MITgcmUV/model/src/dynamics.F,v 1.17 1998/06/10 01:44:03 cnh Exp $
2 cnh 1.1
3     #include "CPP_EEOPTIONS.h"
4    
5 cnh 1.8 SUBROUTINE DYNAMICS(myTime, myIter, myThid)
6 cnh 1.1 C /==========================================================\
7     C | SUBROUTINE DYNAMICS |
8     C | o Controlling routine for the explicit part of the model |
9     C | dynamics. |
10     C |==========================================================|
11     C | This routine evaluates the "dynamics" terms for each |
12     C | block of ocean in turn. Because the blocks of ocean have |
13     C | overlap regions they are independent of one another. |
14     C | If terms involving lateral integrals are needed in this |
15     C | routine care will be needed. Similarly finite-difference |
16     C | operations with stencils wider than the overlap region |
17     C | require special consideration. |
18     C | Notes |
19     C | ===== |
20     C | C*P* comments indicating place holders for which code is |
21     C | presently being developed. |
22     C \==========================================================/
23    
24     C == Global variables ===
25     #include "SIZE.h"
26     #include "EEPARAMS.h"
27     #include "CG2D.h"
28 adcroft 1.6 #include "PARAMS.h"
29 adcroft 1.3 #include "DYNVARS.h"
30 cnh 1.1
31     C == Routine arguments ==
32 cnh 1.8 C myTime - Current time in simulation
33     C myIter - Current iteration number in simulation
34 cnh 1.1 C myThid - Thread number for this instance of the routine.
35     INTEGER myThid
36 cnh 1.8 _RL myTime
37     INTEGER myIter
38 cnh 1.1
39     C == Local variables
40     C xA, yA - Per block temporaries holding face areas
41     C uTrans, vTrans, wTrans - Per block temporaries holding flow transport
42 cnh 1.14 C wVel o uTrans: Zonal transport
43 cnh 1.1 C o vTrans: Meridional transport
44     C o wTrans: Vertical transport
45 cnh 1.14 C o wVel: Vertical velocity at upper and lower
46     C cell faces.
47 cnh 1.1 C maskC,maskUp o maskC: land/water mask for tracer cells
48     C o maskUp: land/water mask for W points
49     C aTerm, xTerm, cTerm - Work arrays for holding separate terms in
50     C mTerm, pTerm, tendency equations.
51     C fZon, fMer, fVer[STUV] o aTerm: Advection term
52     C o xTerm: Mixing term
53     C o cTerm: Coriolis term
54     C o mTerm: Metric term
55     C o pTerm: Pressure term
56     C o fZon: Zonal flux term
57     C o fMer: Meridional flux term
58     C o fVer: Vertical flux term - note fVer
59     C is "pipelined" in the vertical
60     C so we need an fVer for each
61     C variable.
62     C iMin, iMax - Ranges and sub-block indices on which calculations
63     C jMin, jMax are applied.
64     C bi, bj
65     C k, kUp, kDown, kM1 - Index for layer above and below. kUp and kDown
66     C are switched with layer to be the appropriate index
67     C into fVerTerm
68     _RS xA (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
69     _RS yA (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
70     _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
71     _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
72     _RL wTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
73 cnh 1.14 _RL wVel (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
74 cnh 1.1 _RS maskC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
75     _RS maskUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
76     _RL aTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
77     _RL xTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
78     _RL cTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
79     _RL mTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
80     _RL pTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
81     _RL fZon (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
82     _RL fMer (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
83     _RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
84     _RL fVerS (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
85     _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
86     _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
87     _RL pH (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)
88 adcroft 1.3 _RL rhokm1(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
89     _RL rhokp1(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
90 adcroft 1.10 _RL rhotmp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
91 adcroft 1.4 _RL pSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
92     _RL pSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
93 adcroft 1.6 _RL K13 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)
94     _RL K23 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)
95     _RL K33 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)
96     _RL KapGM (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
97 adcroft 1.12 _RL KappaZT(1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nz)
98 adcroft 1.18 _RL KappaZS(1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nz)
99 adcroft 1.12
100 cnh 1.1 INTEGER iMin, iMax
101     INTEGER jMin, jMax
102     INTEGER bi, bj
103     INTEGER i, j
104     INTEGER k, kM1, kUp, kDown
105    
106 adcroft 1.11 C--- The algorithm...
107     C
108     C "Correction Step"
109     C =================
110     C Here we update the horizontal velocities with the surface
111     C pressure such that the resulting flow is either consistent
112     C with the free-surface evolution or the rigid-lid:
113     C U[n] = U* + dt x d/dx P
114     C V[n] = V* + dt x d/dy P
115     C
116     C "Calculation of Gs"
117     C ===================
118     C This is where all the accelerations and tendencies (ie.
119     C physics, parameterizations etc...) are calculated
120     C w = sum_z ( div. u[n] )
121     C rho = rho ( theta[n], salt[n] )
122     C K31 = K31 ( rho )
123     C Gu[n] = Gu( u[n], v[n], w, rho, Ph, ... )
124     C Gv[n] = Gv( u[n], v[n], w, rho, Ph, ... )
125     C Gt[n] = Gt( theta[n], u[n], v[n], w, K31, ... )
126     C Gs[n] = Gs( salt[n], u[n], v[n], w, K31, ... )
127     C
128 adcroft 1.12 C "Time-stepping" or "Prediction"
129 adcroft 1.11 C ================================
130     C The models variables are stepped forward with the appropriate
131     C time-stepping scheme (currently we use Adams-Bashforth II)
132     C - For momentum, the result is always *only* a "prediction"
133     C in that the flow may be divergent and will be "corrected"
134     C later with a surface pressure gradient.
135     C - Normally for tracers the result is the new field at time
136     C level [n+1} *BUT* in the case of implicit diffusion the result
137     C is also *only* a prediction.
138     C - We denote "predictors" with an asterisk (*).
139     C U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
140     C V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
141     C theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
142     C salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
143 adcroft 1.12 C With implicit diffusion:
144 adcroft 1.11 C theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
145     C salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
146 adcroft 1.12 C (1 + dt * K * d_zz) theta[n] = theta*
147     C (1 + dt * K * d_zz) salt[n] = salt*
148 adcroft 1.11 C---
149    
150 cnh 1.1 C-- Set up work arrays with valid (i.e. not NaN) values
151     C These inital values do not alter the numerical results. They
152     C just ensure that all memory references are to valid floating
153     C point numbers. This prevents spurious hardware signals due to
154     C uninitialised but inert locations.
155     DO j=1-OLy,sNy+OLy
156     DO i=1-OLx,sNx+OLx
157 adcroft 1.5 xA(i,j) = 0. _d 0
158     yA(i,j) = 0. _d 0
159     uTrans(i,j) = 0. _d 0
160     vTrans(i,j) = 0. _d 0
161     aTerm(i,j) = 0. _d 0
162     xTerm(i,j) = 0. _d 0
163     cTerm(i,j) = 0. _d 0
164     mTerm(i,j) = 0. _d 0
165     pTerm(i,j) = 0. _d 0
166     fZon(i,j) = 0. _d 0
167     fMer(i,j) = 0. _d 0
168 cnh 1.1 DO K=1,nZ
169 adcroft 1.5 pH (i,j,k) = 0. _d 0
170 adcroft 1.6 K13(i,j,k) = 0. _d 0
171     K23(i,j,k) = 0. _d 0
172     K33(i,j,k) = 0. _d 0
173 adcroft 1.12 KappaZT(i,j,k) = 0. _d 0
174 cnh 1.1 ENDDO
175 adcroft 1.5 rhokm1(i,j) = 0. _d 0
176     rhokp1(i,j) = 0. _d 0
177 adcroft 1.10 rhotmp(i,j) = 0. _d 0
178 cnh 1.16 maskC (i,j) = 0. _d 0
179 cnh 1.1 ENDDO
180     ENDDO
181    
182     DO bj=myByLo(myThid),myByHi(myThid)
183     DO bi=myBxLo(myThid),myBxHi(myThid)
184    
185 cnh 1.7 C-- Set up work arrays that need valid initial values
186     DO j=1-OLy,sNy+OLy
187     DO i=1-OLx,sNx+OLx
188     wTrans(i,j) = 0. _d 0
189 cnh 1.14 wVel (i,j,1) = 0. _d 0
190     wVel (i,j,2) = 0. _d 0
191 cnh 1.7 fVerT(i,j,1) = 0. _d 0
192     fVerT(i,j,2) = 0. _d 0
193     fVerS(i,j,1) = 0. _d 0
194     fVerS(i,j,2) = 0. _d 0
195     fVerU(i,j,1) = 0. _d 0
196     fVerU(i,j,2) = 0. _d 0
197     fVerV(i,j,1) = 0. _d 0
198     fVerV(i,j,2) = 0. _d 0
199 adcroft 1.11 pH(i,j,1) = 0. _d 0
200     K13(i,j,1) = 0. _d 0
201     K23(i,j,1) = 0. _d 0
202     K33(i,j,1) = 0. _d 0
203     KapGM(i,j) = 0. _d 0
204 cnh 1.7 ENDDO
205     ENDDO
206    
207 cnh 1.1 iMin = 1-OLx+1
208     iMax = sNx+OLx
209     jMin = 1-OLy+1
210     jMax = sNy+OLy
211    
212 adcroft 1.4 C-- Calculate gradient of surface pressure
213     CALL GRAD_PSURF(
214     I bi,bj,iMin,iMax,jMin,jMax,
215     O pSurfX,pSurfY,
216     I myThid)
217    
218     C-- Update fields in top level according to tendency terms
219 adcroft 1.11 CALL CORRECTION_STEP(
220 adcroft 1.4 I bi,bj,iMin,iMax,jMin,jMax,1,pSurfX,pSurfY,myThid)
221 cnh 1.1
222 cnh 1.7 C-- Density of 1st level (below W(1)) reference to level 1
223     CALL FIND_RHO(
224 adcroft 1.10 I bi, bj, iMin, iMax, jMin, jMax, 1, 1, eosType,
225 cnh 1.7 O rhoKm1,
226     I myThid )
227     C-- Integrate hydrostatic balance for pH with BC of pH(z=0)=0
228     CALL CALC_PH(
229     I bi,bj,iMin,iMax,jMin,jMax,1,rhoKm1,rhoKm1,
230     U pH,
231 adcroft 1.5 I myThid )
232 adcroft 1.15 DO J=jMin,jMax
233     DO I=iMin,iMax
234 adcroft 1.10 rhoKp1(I,J)=rhoKm1(I,J)
235     ENDDO
236     ENDDO
237 adcroft 1.5
238 adcroft 1.3 DO K=2,Nz
239 adcroft 1.4 C-- Update fields in Kth level according to tendency terms
240 adcroft 1.11 CALL CORRECTION_STEP(
241 adcroft 1.4 I bi,bj,iMin,iMax,jMin,jMax,K,pSurfX,pSurfY,myThid)
242 adcroft 1.10 C-- Density of K-1 level (above W(K)) reference to K-1 level
243     copt CALL FIND_RHO(
244     copt I bi, bj, iMin, iMax, jMin, jMax, K-1, K-1, eosType,
245     copt O rhoKm1,
246     copt I myThid )
247     C rhoKm1=rhoKp1
248 adcroft 1.15 DO J=jMin,jMax
249     DO I=iMin,iMax
250 adcroft 1.10 rhoKm1(I,J)=rhoKp1(I,J)
251     ENDDO
252     ENDDO
253     C-- Density of K level (below W(K)) reference to K level
254 cnh 1.7 CALL FIND_RHO(
255 adcroft 1.10 I bi, bj, iMin, iMax, jMin, jMax, K, K, eosType,
256     O rhoKp1,
257 cnh 1.7 I myThid )
258 adcroft 1.10 C-- Density of K-1 level (above W(K)) reference to K level
259 cnh 1.7 CALL FIND_RHO(
260 adcroft 1.10 I bi, bj, iMin, iMax, jMin, jMax, K-1, K, eosType,
261     O rhotmp,
262 cnh 1.7 I myThid )
263 adcroft 1.6 C-- Calculate iso-neutral slopes for the GM/Redi parameterisation
264 cnh 1.7 CALL CALC_ISOSLOPES(
265     I bi, bj, iMin, iMax, jMin, jMax, K,
266 adcroft 1.10 I rhoKm1, rhoKp1, rhotmp,
267 cnh 1.7 O K13, K23, K33, KapGM,
268     I myThid )
269 cnh 1.1 C-- Calculate static stability and mix where convectively unstable
270 cnh 1.7 CALL CONVECT(
271 adcroft 1.13 I bi,bj,iMin,iMax,jMin,jMax,K,rhotmp,rhoKp1,
272 cnh 1.8 I myTime,myIter,myThid)
273 cnh 1.7 C-- Density of K-1 level (above W(K)) reference to K-1 level
274     CALL FIND_RHO(
275 adcroft 1.10 I bi, bj, iMin, iMax, jMin, jMax, K-1, K-1, eosType,
276 cnh 1.7 O rhoKm1,
277     I myThid )
278     C-- Density of K level (below W(K)) referenced to K level
279     CALL FIND_RHO(
280 adcroft 1.10 I bi, bj, iMin, iMax, jMin, jMax, K, K, eosType,
281 cnh 1.7 O rhoKp1,
282     I myThid )
283     C-- Integrate hydrostatic balance for pH with BC of pH(z=0)=0
284     CALL CALC_PH(
285     I bi,bj,iMin,iMax,jMin,jMax,K,rhoKm1,rhoKp1,
286     U pH,
287 adcroft 1.3 I myThid )
288 cnh 1.1
289 adcroft 1.11 ENDDO ! K
290    
291     C-- Initial boundary condition on barotropic divergence integral
292     DO j=1-OLy,sNy+OLy
293     DO i=1-OLx,sNx+OLx
294     cg2d_b(i,j,bi,bj) = 0. _d 0
295     ENDDO
296 cnh 1.7 ENDDO
297 adcroft 1.5
298 cnh 1.1 DO K = Nz, 1, -1
299     kM1 =max(1,k-1) ! Points to level above k (=k-1)
300     kUp =1+MOD(k+1,2) ! Cycles through 1,2 to point to layer above
301     kDown=1+MOD(k,2) ! Cycles through 2,1 to point to current layer
302     iMin = 1-OLx+2
303     iMax = sNx+OLx-1
304     jMin = 1-OLy+2
305     jMax = sNy+OLy-1
306    
307     C-- Get temporary terms used by tendency routines
308     CALL CALC_COMMON_FACTORS (
309     I bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,
310 cnh 1.14 O xA,yA,uTrans,vTrans,wTrans,wVel,maskC,maskUp,
311 cnh 1.1 I myThid)
312    
313 adcroft 1.12 C-- Calculate the total vertical diffusivity
314     CALL CALC_DIFFUSIVITY(
315     I bi,bj,iMin,iMax,jMin,jMax,K,
316     I maskC,maskUp,KapGM,K33,
317 adcroft 1.18 O KappaZT,KappaZS,
318 adcroft 1.12 I myThid)
319    
320 cnh 1.1 C-- Calculate accelerations in the momentum equations
321 cnh 1.9 IF ( momStepping ) THEN
322     CALL CALC_MOM_RHS(
323     I bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,
324 cnh 1.14 I xA,yA,uTrans,vTrans,wTrans,wVel,maskC,
325 cnh 1.9 I pH,
326     U aTerm,xTerm,cTerm,mTerm,pTerm,
327     U fZon, fMer, fVerU, fVerV,
328     I myThid)
329     ENDIF
330 cnh 1.1
331     C-- Calculate active tracer tendencies
332 cnh 1.9 IF ( tempStepping ) THEN
333     CALL CALC_GT(
334     I bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,
335     I xA,yA,uTrans,vTrans,wTrans,maskUp,
336 adcroft 1.12 I K13,K23,KappaZT,KapGM,
337 cnh 1.9 U aTerm,xTerm,fZon,fMer,fVerT,
338     I myThid)
339     ENDIF
340 adcroft 1.18 IF ( saltStepping ) THEN
341     CALL CALC_GS(
342     I bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,
343     I xA,yA,uTrans,vTrans,wTrans,maskUp,
344     I K13,K23,KappaZS,KapGM,
345     U aTerm,xTerm,fZon,fMer,fVerS,
346     I myThid)
347     ENDIF
348 cnh 1.1
349 adcroft 1.11 C-- Prediction step (step forward all model variables)
350     CALL TIMESTEP(
351     I bi,bj,iMin,iMax,jMin,jMax,K,
352     I myThid)
353    
354     C-- Diagnose barotropic divergence of predicted fields
355     CALL DIV_G(
356     I bi,bj,iMin,iMax,jMin,jMax,K,
357     I xA,yA,
358     I myThid)
359    
360     ENDDO ! K
361 adcroft 1.12
362     C-- Implicit diffusion
363     IF (implicitDiffusion) THEN
364     CALL IMPLDIFF( bi, bj, iMin, iMax, jMin, jMax,
365 adcroft 1.18 I KappaZT,KappaZS,
366 adcroft 1.12 I myThid )
367     ENDIF
368 cnh 1.1
369     ENDDO
370     ENDDO
371 adcroft 1.6
372 adcroft 1.18 write(0,*) 'dynamics: pS ',minval(cg2d_x(1:sNx,1:sNy,:,:)),
373     & maxval(cg2d_x(1:sNx,1:sNy,:,:))
374     write(0,*) 'dynamics: U ',minval(uVel(1:sNx,1:sNy,:,:,:)),
375     & maxval(uVel(1:sNx,1:sNy,:,:,:))
376     write(0,*) 'dynamics: V ',minval(vVel(1:sNx,1:sNy,:,:,:)),
377     & maxval(vVel(1:sNx,1:sNy,:,:,:))
378 adcroft 1.15 cblk write(0,*) 'dynamics: K13',minval(K13(1:sNx,1:sNy,:)),
379     cblk & maxval(K13(1:sNx,1:sNy,:))
380     cblk write(0,*) 'dynamics: K23',minval(K23(1:sNx,1:sNy,:)),
381     cblk & maxval(K23(1:sNx,1:sNy,:))
382     cblk write(0,*) 'dynamics: K33',minval(K33(1:sNx,1:sNy,:)),
383     cblk & maxval(K33(1:sNx,1:sNy,:))
384 adcroft 1.18 write(0,*) 'dynamics: gT ',minval(gT(1:sNx,1:sNy,:,:,:)),
385     & maxval(gT(1:sNx,1:sNy,:,:,:))
386     write(0,*) 'dynamics: T ',minval(Theta(1:sNx,1:sNy,:,:,:)),
387     & maxval(Theta(1:sNx,1:sNy,:,:,:))
388     write(0,*) 'dynamics: gS ',minval(gS(1:sNx,1:sNy,:,:,:)),
389     & maxval(gS(1:sNx,1:sNy,:,:,:))
390     write(0,*) 'dynamics: S ',minval(salt(1:sNx,1:sNy,:,:,:)),
391     & maxval(salt(1:sNx,1:sNy,:,:,:))
392 adcroft 1.15 cblk write(0,*) 'dynamics: pH ',minval(pH/(Gravity*Rhonil)),
393     cblk & maxval(pH/(Gravity*Rhonil))
394 cnh 1.1
395     RETURN
396     END

  ViewVC Help
Powered by ViewVC 1.1.22