/[MITgcm]/MITgcm/model/src/dynamics.F
ViewVC logotype

Annotation of /MITgcm/model/src/dynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.173 - (hide annotations) (download)
Fri Aug 15 19:22:06 2014 UTC (9 years, 9 months ago) by jmc
Branch: MAIN
Changes since 1.172: +1 -7 lines
remove gT,gS

1 jmc 1.173 C $Header: /u/gcmpack/MITgcm/model/src/dynamics.F,v 1.172 2014/08/14 16:52:40 jmc Exp $
2 heimbach 1.78 C $Name: $
3 cnh 1.1
4 edhill 1.100 #include "PACKAGES_CONFIG.h"
5 adcroft 1.24 #include "CPP_OPTIONS.h"
6 jmc 1.170 #ifdef ALLOW_AUTODIFF
7     # include "AUTODIFF_OPTIONS.h"
8     #endif
9 jmc 1.167 #ifdef ALLOW_MOM_COMMON
10     # include "MOM_COMMON_OPTIONS.h"
11     #endif
12 heimbach 1.131 #ifdef ALLOW_OBCS
13     # include "OBCS_OPTIONS.h"
14     #endif
15    
16 jmc 1.125 #undef DYNAMICS_GUGV_EXCH_CHECK
17 cnh 1.1
18 cnh 1.82 CBOP
19     C !ROUTINE: DYNAMICS
20     C !INTERFACE:
21 cnh 1.8 SUBROUTINE DYNAMICS(myTime, myIter, myThid)
22 cnh 1.82 C !DESCRIPTION: \bv
23     C *==========================================================*
24 jmc 1.144 C | SUBROUTINE DYNAMICS
25     C | o Controlling routine for the explicit part of the model
26     C | dynamics.
27 cnh 1.82 C *==========================================================*
28 jmc 1.144 C | This routine evaluates the "dynamics" terms for each
29     C | block of ocean in turn. Because the blocks of ocean have
30     C | overlap regions they are independent of one another.
31     C | If terms involving lateral integrals are needed in this
32     C | routine care will be needed. Similarly finite-difference
33     C | operations with stencils wider than the overlap region
34     C | require special consideration.
35 cnh 1.82 C | The algorithm...
36     C |
37     C | "Correction Step"
38     C | =================
39     C | Here we update the horizontal velocities with the surface
40     C | pressure such that the resulting flow is either consistent
41     C | with the free-surface evolution or the rigid-lid:
42     C | U[n] = U* + dt x d/dx P
43     C | V[n] = V* + dt x d/dy P
44 jmc 1.122 C | W[n] = W* + dt x d/dz P (NH mode)
45 cnh 1.82 C |
46     C | "Calculation of Gs"
47     C | ===================
48     C | This is where all the accelerations and tendencies (ie.
49     C | physics, parameterizations etc...) are calculated
50     C | rho = rho ( theta[n], salt[n] )
51     C | b = b(rho, theta)
52     C | K31 = K31 ( rho )
53     C | Gu[n] = Gu( u[n], v[n], wVel, b, ... )
54     C | Gv[n] = Gv( u[n], v[n], wVel, b, ... )
55     C | Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
56     C | Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
57     C |
58     C | "Time-stepping" or "Prediction"
59     C | ================================
60     C | The models variables are stepped forward with the appropriate
61     C | time-stepping scheme (currently we use Adams-Bashforth II)
62     C | - For momentum, the result is always *only* a "prediction"
63     C | in that the flow may be divergent and will be "corrected"
64     C | later with a surface pressure gradient.
65     C | - Normally for tracers the result is the new field at time
66     C | level [n+1} *BUT* in the case of implicit diffusion the result
67     C | is also *only* a prediction.
68     C | - We denote "predictors" with an asterisk (*).
69     C | U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
70     C | V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
71     C | theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
72     C | salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
73     C | With implicit diffusion:
74     C | theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
75     C | salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
76     C | (1 + dt * K * d_zz) theta[n] = theta*
77     C | (1 + dt * K * d_zz) salt[n] = salt*
78     C |
79     C *==========================================================*
80     C \ev
81     C !USES:
82 adcroft 1.40 IMPLICIT NONE
83 cnh 1.1 C == Global variables ===
84     #include "SIZE.h"
85     #include "EEPARAMS.h"
86 adcroft 1.6 #include "PARAMS.h"
87 jmc 1.165 #include "GRID.h"
88 adcroft 1.3 #include "DYNVARS.h"
89 jmc 1.167 #ifdef ALLOW_MOM_COMMON
90     # include "MOM_VISC.h"
91     #endif
92 edhill 1.103 #ifdef ALLOW_CD_CODE
93 jmc 1.165 # include "CD_CODE_VARS.h"
94 edhill 1.103 #endif
95 jmc 1.170 #ifdef ALLOW_AUTODIFF
96 heimbach 1.53 # include "tamc.h"
97     # include "tamc_keys.h"
98 heimbach 1.67 # include "FFIELDS.h"
99 heimbach 1.91 # include "EOS.h"
100 heimbach 1.67 # ifdef ALLOW_KPP
101     # include "KPP.h"
102     # endif
103 heimbach 1.131 # ifdef ALLOW_PTRACERS
104     # include "PTRACERS_SIZE.h"
105 jmc 1.139 # include "PTRACERS_FIELDS.h"
106 heimbach 1.131 # endif
107     # ifdef ALLOW_OBCS
108 jmc 1.165 # include "OBCS_PARAMS.h"
109 jmc 1.157 # include "OBCS_FIELDS.h"
110 heimbach 1.131 # ifdef ALLOW_PTRACERS
111     # include "OBCS_PTRACERS.h"
112     # endif
113     # endif
114 heimbach 1.133 # ifdef ALLOW_MOM_FLUXFORM
115     # include "MOM_FLUXFORM.h"
116     # endif
117 jmc 1.170 #endif /* ALLOW_AUTODIFF */
118 jmc 1.62
119 cnh 1.82 C !CALLING SEQUENCE:
120     C DYNAMICS()
121     C |
122 jmc 1.122 C |-- CALC_EP_FORCING
123     C |
124 cnh 1.82 C |-- CALC_GRAD_PHI_SURF
125     C |
126     C |-- CALC_VISCOSITY
127     C |
128 jmc 1.167 C |-- MOM_CALC_3D_STRAIN
129     C |
130 m_bates 1.166 C |-- CALC_EDDY_STRESS
131     C |
132 jmc 1.136 C |-- CALC_PHI_HYD
133 cnh 1.82 C |
134 jmc 1.136 C |-- MOM_FLUXFORM
135 cnh 1.82 C |
136 jmc 1.136 C |-- MOM_VECINV
137 cnh 1.82 C |
138 jmc 1.167 C |-- MOM_CALC_SMAG_3D
139     C |-- MOM_UV_SMAG_3D
140     C |
141 jmc 1.136 C |-- TIMESTEP
142 cnh 1.82 C |
143 jmc 1.136 C |-- MOM_U_IMPLICIT_R
144     C |-- MOM_V_IMPLICIT_R
145 jmc 1.122 C |
146 jmc 1.136 C |-- IMPLDIFF
147 cnh 1.82 C |
148     C |-- OBCS_APPLY_UV
149     C |
150 jmc 1.122 C |-- CALC_GW
151     C |
152     C |-- DIAGNOSTICS_FILL
153     C |-- DEBUG_STATS_RL
154 cnh 1.82
155     C !INPUT/OUTPUT PARAMETERS:
156 cnh 1.1 C == Routine arguments ==
157 jmc 1.140 C myTime :: Current time in simulation
158     C myIter :: Current iteration number in simulation
159     C myThid :: Thread number for this instance of the routine.
160 cnh 1.8 _RL myTime
161     INTEGER myIter
162 adcroft 1.47 INTEGER myThid
163 cnh 1.1
164 jmc 1.145 C !FUNCTIONS:
165     #ifdef ALLOW_DIAGNOSTICS
166     LOGICAL DIAGNOSTICS_IS_ON
167     EXTERNAL DIAGNOSTICS_IS_ON
168     #endif
169    
170 cnh 1.82 C !LOCAL VARIABLES:
171 cnh 1.1 C == Local variables
172 jmc 1.113 C fVer[UV] o fVer: Vertical flux term - note fVer
173     C is "pipelined" in the vertical
174     C so we need an fVer for each
175     C variable.
176 jmc 1.94 C phiHydC :: hydrostatic potential anomaly at cell center
177     C In z coords phiHyd is the hydrostatic potential
178     C (=pressure/rho0) anomaly
179     C In p coords phiHyd is the geopotential height anomaly.
180     C phiHydF :: hydrostatic potential anomaly at middle between 2 centers
181     C dPhiHydX,Y :: Gradient (X & Y directions) of hydrostatic potential anom.
182     C phiSurfX, :: gradient of Surface potential (Pressure/rho, ocean)
183 jmc 1.92 C phiSurfY or geopotential (atmos) in X and Y direction
184 jmc 1.110 C guDissip :: dissipation tendency (all explicit terms), u component
185     C gvDissip :: dissipation tendency (all explicit terms), v component
186 jmc 1.165 C KappaRU :: vertical viscosity for velocity U-component
187     C KappaRV :: vertical viscosity for velocity V-component
188 jmc 1.162 C iMin, iMax :: Ranges and sub-block indices on which calculations
189     C jMin, jMax are applied.
190     C bi, bj :: tile indices
191     C k :: current level index
192     C km1, kp1 :: index of level above (k-1) and below (k+1)
193     C kUp, kDown :: Index for interface above and below. kUp and kDown are
194     C are switched with k to be the appropriate index into fVerU,V
195 cnh 1.30 _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
196     _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
197 jmc 1.94 _RL phiHydF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
198     _RL phiHydC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
199 jmc 1.161 _RL dPhiHydX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
200     _RL dPhiHydY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
201 jmc 1.63 _RL phiSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
202     _RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
203 jmc 1.110 _RL guDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
204     _RL gvDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
205 jmc 1.161 _RL KappaRU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
206     _RL KappaRV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
207 jmc 1.167 #ifdef ALLOW_SMAG_3D
208     C str11 :: strain component Vxx @ grid-cell center
209     C str22 :: strain component Vyy @ grid-cell center
210     C str33 :: strain component Vzz @ grid-cell center
211     C str12 :: strain component Vxy @ grid-cell corner
212     C str13 :: strain component Vxz @ above uVel
213     C str23 :: strain component Vyz @ above vVel
214     C viscAh3d_00 :: Smagorinsky viscosity @ grid-cell center
215     C viscAh3d_12 :: Smagorinsky viscosity @ grid-cell corner
216     C viscAh3d_13 :: Smagorinsky viscosity @ above uVel
217     C viscAh3d_23 :: Smagorinsky viscosity @ above vVel
218     C addDissU :: zonal momentum tendency from 3-D Smag. viscosity
219     C addDissV :: merid momentum tendency from 3-D Smag. viscosity
220     _RL str11(1-OLx:sNx+OLx,1-OLy:sNy+OLy, Nr )
221     _RL str22(1-OLx:sNx+OLx,1-OLy:sNy+OLy, Nr )
222     _RL str33(1-OLx:sNx+OLx,1-OLy:sNy+OLy, Nr )
223     _RL str12(1-OLx:sNx+OLx,1-OLy:sNy+OLy, Nr )
224     _RL str13(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr+1)
225     _RL str23(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr+1)
226     _RL viscAh3d_00(1-OLx:sNx+OLx,1-OLy:sNy+OLy, Nr )
227     _RL viscAh3d_12(1-OLx:sNx+OLx,1-OLy:sNy+OLy, Nr )
228     _RL viscAh3d_13(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr+1)
229     _RL viscAh3d_23(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr+1)
230     _RL addDissU(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
231     _RL addDissV(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
232     #elif ( defined ALLOW_NONHYDROSTATIC )
233     _RL str13(1), str23(1), str33(1)
234     _RL viscAh3d_00(1), viscAh3d_13(1), viscAh3d_23(1)
235     #endif
236 adcroft 1.12
237 cnh 1.1 INTEGER bi, bj
238     INTEGER i, j
239 jmc 1.162 INTEGER k, km1, kp1, kUp, kDown
240 jmc 1.167 INTEGER iMin, iMax
241     INTEGER jMin, jMax
242     PARAMETER( iMin = 0 , iMax = sNx+1 )
243     PARAMETER( jMin = 0 , jMax = sNy+1 )
244 cnh 1.1
245 jmc 1.113 #ifdef ALLOW_DIAGNOSTICS
246 jmc 1.145 LOGICAL dPhiHydDiagIsOn
247 jmc 1.120 _RL tmpFac
248 jmc 1.113 #endif /* ALLOW_DIAGNOSTICS */
249    
250 adcroft 1.11 C--- The algorithm...
251     C
252     C "Correction Step"
253     C =================
254     C Here we update the horizontal velocities with the surface
255     C pressure such that the resulting flow is either consistent
256     C with the free-surface evolution or the rigid-lid:
257     C U[n] = U* + dt x d/dx P
258     C V[n] = V* + dt x d/dy P
259     C
260     C "Calculation of Gs"
261     C ===================
262     C This is where all the accelerations and tendencies (ie.
263 heimbach 1.53 C physics, parameterizations etc...) are calculated
264 adcroft 1.11 C rho = rho ( theta[n], salt[n] )
265 cnh 1.27 C b = b(rho, theta)
266 adcroft 1.11 C K31 = K31 ( rho )
267 jmc 1.61 C Gu[n] = Gu( u[n], v[n], wVel, b, ... )
268     C Gv[n] = Gv( u[n], v[n], wVel, b, ... )
269     C Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
270     C Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
271 adcroft 1.11 C
272 adcroft 1.12 C "Time-stepping" or "Prediction"
273 adcroft 1.11 C ================================
274     C The models variables are stepped forward with the appropriate
275     C time-stepping scheme (currently we use Adams-Bashforth II)
276     C - For momentum, the result is always *only* a "prediction"
277     C in that the flow may be divergent and will be "corrected"
278     C later with a surface pressure gradient.
279     C - Normally for tracers the result is the new field at time
280     C level [n+1} *BUT* in the case of implicit diffusion the result
281     C is also *only* a prediction.
282     C - We denote "predictors" with an asterisk (*).
283     C U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
284     C V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
285     C theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
286     C salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
287 adcroft 1.12 C With implicit diffusion:
288 adcroft 1.11 C theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
289     C salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
290 adcroft 1.12 C (1 + dt * K * d_zz) theta[n] = theta*
291     C (1 + dt * K * d_zz) salt[n] = salt*
292 adcroft 1.11 C---
293 cnh 1.82 CEOP
294 adcroft 1.11
295 jmc 1.123 #ifdef ALLOW_DEBUG
296 jmc 1.153 IF (debugMode) CALL DEBUG_ENTER( 'DYNAMICS', myThid )
297 jmc 1.123 #endif
298    
299 jmc 1.145 #ifdef ALLOW_DIAGNOSTICS
300     dPhiHydDiagIsOn = .FALSE.
301     IF ( useDiagnostics )
302     & dPhiHydDiagIsOn = DIAGNOSTICS_IS_ON( 'Um_dPHdx', myThid )
303     & .OR. DIAGNOSTICS_IS_ON( 'Vm_dPHdy', myThid )
304     #endif
305    
306 jmc 1.165 C-- Call to routine for calculation of Eliassen-Palm-flux-forced
307     C U-tendency, if desired:
308 heimbach 1.88 #ifdef INCLUDE_EP_FORCING_CODE
309     CALL CALC_EP_FORCING(myThid)
310     #endif
311    
312 heimbach 1.154 #ifdef ALLOW_AUTODIFF_MONITOR_DIAG
313 jmc 1.161 CALL DUMMY_IN_DYNAMICS( myTime, myIter, myThid )
314 heimbach 1.154 #endif
315    
316 heimbach 1.76 #ifdef ALLOW_AUTODIFF_TAMC
317     C-- HPF directive to help TAMC
318     CHPF$ INDEPENDENT
319     #endif /* ALLOW_AUTODIFF_TAMC */
320    
321 cnh 1.1 DO bj=myByLo(myThid),myByHi(myThid)
322 heimbach 1.76
323     #ifdef ALLOW_AUTODIFF_TAMC
324     C-- HPF directive to help TAMC
325     CHPF$ INDEPENDENT, NEW (fVerU,fVerV
326 jmc 1.94 CHPF$& ,phiHydF
327 heimbach 1.76 CHPF$& ,KappaRU,KappaRV
328     CHPF$& )
329     #endif /* ALLOW_AUTODIFF_TAMC */
330    
331 cnh 1.1 DO bi=myBxLo(myThid),myBxHi(myThid)
332 heimbach 1.76
333     #ifdef ALLOW_AUTODIFF_TAMC
334     act1 = bi - myBxLo(myThid)
335     max1 = myBxHi(myThid) - myBxLo(myThid) + 1
336     act2 = bj - myByLo(myThid)
337     max2 = myByHi(myThid) - myByLo(myThid) + 1
338     act3 = myThid - 1
339     max3 = nTx*nTy
340     act4 = ikey_dynamics - 1
341 heimbach 1.91 idynkey = (act1 + 1) + act2*max1
342 heimbach 1.76 & + act3*max1*max2
343     & + act4*max1*max2*max3
344     #endif /* ALLOW_AUTODIFF_TAMC */
345    
346 heimbach 1.97 C-- Set up work arrays with valid (i.e. not NaN) values
347 jmc 1.161 C These initial values do not alter the numerical results. They
348 heimbach 1.97 C just ensure that all memory references are to valid floating
349     C point numbers. This prevents spurious hardware signals due to
350     C uninitialised but inert locations.
351    
352 jmc 1.168 #ifdef ALLOW_AUTODIFF
353 jmc 1.94 DO k=1,Nr
354     DO j=1-OLy,sNy+OLy
355     DO i=1-OLx,sNx+OLx
356 heimbach 1.97 c-- need some re-initialisation here to break dependencies
357 jmc 1.122 gU(i,j,k,bi,bj) = 0. _d 0
358     gV(i,j,k,bi,bj) = 0. _d 0
359 heimbach 1.87 ENDDO
360 jmc 1.94 ENDDO
361     ENDDO
362 jmc 1.168 #endif /* ALLOW_AUTODIFF */
363 jmc 1.94 DO j=1-OLy,sNy+OLy
364     DO i=1-OLx,sNx+OLx
365 heimbach 1.76 fVerU (i,j,1) = 0. _d 0
366     fVerU (i,j,2) = 0. _d 0
367     fVerV (i,j,1) = 0. _d 0
368     fVerV (i,j,2) = 0. _d 0
369 jmc 1.136 phiHydF (i,j) = 0. _d 0
370     phiHydC (i,j) = 0. _d 0
371 jmc 1.146 #ifndef INCLUDE_PHIHYD_CALCULATION_CODE
372 jmc 1.92 dPhiHydX(i,j) = 0. _d 0
373 jmc 1.136 dPhiHydY(i,j) = 0. _d 0
374 jmc 1.146 #endif
375 heimbach 1.97 phiSurfX(i,j) = 0. _d 0
376     phiSurfY(i,j) = 0. _d 0
377 jmc 1.110 guDissip(i,j) = 0. _d 0
378     gvDissip(i,j) = 0. _d 0
379 jmc 1.168 #ifdef ALLOW_AUTODIFF
380 gforget 1.143 phiHydLow(i,j,bi,bj) = 0. _d 0
381 jmc 1.150 # if (defined NONLIN_FRSURF) && (defined ALLOW_MOM_FLUXFORM)
382 heimbach 1.138 # ifndef DISABLE_RSTAR_CODE
383     dWtransC(i,j,bi,bj) = 0. _d 0
384     dWtransU(i,j,bi,bj) = 0. _d 0
385     dWtransV(i,j,bi,bj) = 0. _d 0
386     # endif
387     # endif
388 jmc 1.168 #endif /* ALLOW_AUTODIFF */
389 heimbach 1.76 ENDDO
390     ENDDO
391 heimbach 1.49
392 jmc 1.63 C-- Start computation of dynamics
393    
394 heimbach 1.76 #ifdef ALLOW_AUTODIFF_TAMC
395 jmc 1.161 CADJ STORE wVel (:,:,:,bi,bj) =
396 heimbach 1.141 CADJ & comlev1_bibj, key=idynkey, byte=isbyte
397 heimbach 1.76 #endif /* ALLOW_AUTODIFF_TAMC */
398    
399 jmc 1.161 C-- Explicit part of the Surface Potential Gradient (add in TIMESTEP)
400 jmc 1.63 C (note: this loop will be replaced by CALL CALC_GRAD_ETA)
401     IF (implicSurfPress.NE.1.) THEN
402 jmc 1.65 CALL CALC_GRAD_PHI_SURF(
403     I bi,bj,iMin,iMax,jMin,jMax,
404     I etaN,
405     O phiSurfX,phiSurfY,
406 jmc 1.136 I myThid )
407 jmc 1.63 ENDIF
408 heimbach 1.83
409     #ifdef ALLOW_AUTODIFF_TAMC
410 jmc 1.161 CADJ STORE uVel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
411     CADJ STORE vVel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
412 heimbach 1.83 #ifdef ALLOW_KPP
413 jmc 1.150 CADJ STORE KPPviscAz (:,:,:,bi,bj)
414 heimbach 1.91 CADJ & = comlev1_bibj, key=idynkey, byte=isbyte
415 heimbach 1.83 #endif /* ALLOW_KPP */
416     #endif /* ALLOW_AUTODIFF_TAMC */
417 adcroft 1.58
418 jmc 1.168 #ifndef ALLOW_AUTODIFF
419 jmc 1.165 IF ( .NOT.momViscosity ) THEN
420 jmc 1.168 #endif
421 jmc 1.165 DO k=1,Nr
422     DO j=1-OLy,sNy+OLy
423     DO i=1-OLx,sNx+OLx
424     KappaRU(i,j,k) = 0. _d 0
425     KappaRV(i,j,k) = 0. _d 0
426     ENDDO
427     ENDDO
428     ENDDO
429 jmc 1.168 #ifndef ALLOW_AUTODIFF
430     ENDIF
431     #endif
432 jmc 1.165 #ifdef INCLUDE_CALC_DIFFUSIVITY_CALL
433 jmc 1.140 C-- Calculate the total vertical viscosity
434 jmc 1.165 IF ( momViscosity ) THEN
435     CALL CALC_VISCOSITY(
436 jmc 1.140 I bi,bj, iMin,iMax,jMin,jMax,
437     O KappaRU, KappaRV,
438     I myThid )
439 jmc 1.165 ENDIF
440     #endif /* INCLUDE_CALC_DIFFUSIVITY_CALL */
441 heimbach 1.77
442 jmc 1.167 #ifdef ALLOW_SMAG_3D
443     IF ( useSmag3D ) THEN
444     CALL MOM_CALC_3D_STRAIN(
445     O str11, str22, str33, str12, str13, str23,
446     I bi, bj, myThid )
447     ENDIF
448     #endif /* ALLOW_SMAG_3D */
449    
450 heimbach 1.101 #ifdef ALLOW_AUTODIFF_TAMC
451 jmc 1.150 CADJ STORE KappaRU(:,:,:)
452 heimbach 1.132 CADJ & = comlev1_bibj, key=idynkey, byte=isbyte
453 jmc 1.150 CADJ STORE KappaRV(:,:,:)
454 heimbach 1.132 CADJ & = comlev1_bibj, key=idynkey, byte=isbyte
455 heimbach 1.101 #endif /* ALLOW_AUTODIFF_TAMC */
456    
457 mlosch 1.159 #ifdef ALLOW_OBCS
458     C-- For Stevens boundary conditions velocities need to be extrapolated
459     C (copied) to a narrow strip outside the domain
460 jmc 1.165 IF ( useOBCS ) THEN
461 jmc 1.160 CALL OBCS_COPY_UV_N(
462 jmc 1.161 U uVel(1-OLx,1-OLy,1,bi,bj),
463     U vVel(1-OLx,1-OLy,1,bi,bj),
464 mlosch 1.159 I Nr, bi, bj, myThid )
465 jmc 1.165 ENDIF
466 mlosch 1.159 #endif /* ALLOW_OBCS */
467    
468 m_bates 1.166 #ifdef ALLOW_EDDYPSI
469     CALL CALC_EDDY_STRESS(bi,bj,myThid)
470     #endif
471    
472 adcroft 1.58 C-- Start of dynamics loop
473     DO k=1,Nr
474    
475     C-- km1 Points to level above k (=k-1)
476     C-- kup Cycles through 1,2 to point to layer above
477     C-- kDown Cycles through 2,1 to point to current layer
478    
479     km1 = MAX(1,k-1)
480 heimbach 1.77 kp1 = MIN(k+1,Nr)
481 adcroft 1.58 kup = 1+MOD(k+1,2)
482     kDown= 1+MOD(k,2)
483    
484 jmc 1.144 #ifdef ALLOW_AUTODIFF_TAMC
485 heimbach 1.91 kkey = (idynkey-1)*Nr + k
486 jmc 1.161 CADJ STORE totPhiHyd (:,:,k,bi,bj)
487 heimbach 1.99 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
488 gforget 1.169 CADJ STORE phiHydLow (:,:,bi,bj)
489 jmc 1.170 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
490 jmc 1.150 CADJ STORE theta (:,:,k,bi,bj)
491 heimbach 1.99 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
492 jmc 1.150 CADJ STORE salt (:,:,k,bi,bj)
493 heimbach 1.95 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
494 heimbach 1.126 # ifdef NONLIN_FRSURF
495     cph-test
496 jmc 1.150 CADJ STORE phiHydC (:,:)
497 heimbach 1.126 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
498 jmc 1.150 CADJ STORE phiHydF (:,:)
499 heimbach 1.126 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
500 jmc 1.161 CADJ STORE gU(:,:,k,bi,bj)
501 heimbach 1.126 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
502 jmc 1.161 CADJ STORE gV(:,:,k,bi,bj)
503 heimbach 1.126 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
504 heimbach 1.148 # ifndef ALLOW_ADAMSBASHFORTH_3
505 jmc 1.161 CADJ STORE guNm1(:,:,k,bi,bj)
506 heimbach 1.126 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
507 jmc 1.161 CADJ STORE gvNm1(:,:,k,bi,bj)
508 heimbach 1.126 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
509 heimbach 1.148 # else
510 jmc 1.161 CADJ STORE guNm(:,:,k,bi,bj,1)
511 heimbach 1.148 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
512 jmc 1.161 CADJ STORE guNm(:,:,k,bi,bj,2)
513 heimbach 1.148 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
514 jmc 1.161 CADJ STORE gvNm(:,:,k,bi,bj,1)
515 heimbach 1.148 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
516 jmc 1.161 CADJ STORE gvNm(:,:,k,bi,bj,2)
517 heimbach 1.148 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
518     # endif
519 heimbach 1.126 # ifdef ALLOW_CD_CODE
520 jmc 1.161 CADJ STORE uNM1(:,:,k,bi,bj)
521 heimbach 1.126 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
522 jmc 1.161 CADJ STORE vNM1(:,:,k,bi,bj)
523 heimbach 1.126 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
524 jmc 1.150 CADJ STORE uVelD(:,:,k,bi,bj)
525 heimbach 1.126 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
526 jmc 1.150 CADJ STORE vVelD(:,:,k,bi,bj)
527 heimbach 1.126 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
528     # endif
529 jmc 1.168 # endif /* NONLIN_FRSURF */
530 heimbach 1.76 #endif /* ALLOW_AUTODIFF_TAMC */
531    
532 jmc 1.165 C-- Integrate hydrostatic balance for phiHyd with BC of phiHyd(z=0)=0
533 jmc 1.171 CALL CALC_PHI_HYD(
534 adcroft 1.58 I bi,bj,iMin,iMax,jMin,jMax,k,
535     I theta, salt,
536 jmc 1.94 U phiHydF,
537     O phiHydC, dPhiHydX, dPhiHydY,
538 jmc 1.92 I myTime, myIter, myThid )
539 jmc 1.145 #ifdef ALLOW_DIAGNOSTICS
540     IF ( dPhiHydDiagIsOn ) THEN
541     tmpFac = -1. _d 0
542     CALL DIAGNOSTICS_SCALE_FILL( dPhiHydX, tmpFac, 1,
543     & 'Um_dPHdx', k, 1, 2, bi, bj, myThid )
544     CALL DIAGNOSTICS_SCALE_FILL( dPhiHydY, tmpFac, 1,
545     & 'Vm_dPHdy', k, 1, 2, bi, bj, myThid )
546     ENDIF
547     #endif /* ALLOW_DIAGNOSTICS */
548 mlosch 1.89
549 adcroft 1.58 C-- Calculate accelerations in the momentum equations (gU, gV, ...)
550 jmc 1.96 C and step forward storing the result in gU, gV, etc...
551 adcroft 1.58 IF ( momStepping ) THEN
552 jmc 1.168 #ifdef ALLOW_AUTODIFF
553     DO j=1-OLy,sNy+OLy
554     DO i=1-OLx,sNx+OLx
555     guDissip(i,j) = 0. _d 0
556     gvDissip(i,j) = 0. _d 0
557     ENDDO
558     ENDDO
559     #endif /* ALLOW_AUTODIFF */
560 heimbach 1.138 #ifdef ALLOW_AUTODIFF_TAMC
561 jmc 1.168 # if (defined NONLIN_FRSURF) && (defined ALLOW_MOM_FLUXFORM)
562     # ifndef DISABLE_RSTAR_CODE
563 jmc 1.150 CADJ STORE dWtransC(:,:,bi,bj)
564 heimbach 1.138 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
565 jmc 1.150 CADJ STORE dWtransU(:,:,bi,bj)
566 heimbach 1.138 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
567 jmc 1.150 CADJ STORE dWtransV(:,:,bi,bj)
568 heimbach 1.138 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
569     # endif
570 jmc 1.168 # endif /* NONLIN_FRSURF and ALLOW_MOM_FLUXFORM */
571     # if (defined NONLIN_FRSURF) || (defined ALLOW_DEPTH_CONTROL)
572     CADJ STORE fVerU(:,:,:) = comlev1_bibj_k, key=kkey, byte=isbyte
573     CADJ STORE fVerV(:,:,:) = comlev1_bibj_k, key=kkey, byte=isbyte
574     # endif
575 jmc 1.162 #endif /* ALLOW_AUTODIFF_TAMC */
576 heimbach 1.132 IF (.NOT. vectorInvariantMomentum) THEN
577 edhill 1.105 #ifdef ALLOW_MOM_FLUXFORM
578 heimbach 1.132 CALL MOM_FLUXFORM(
579 jmc 1.162 I bi,bj,k,iMin,iMax,jMin,jMax,
580 jmc 1.121 I KappaRU, KappaRV,
581 jmc 1.162 U fVerU(1-OLx,1-OLy,kUp), fVerV(1-OLx,1-OLy,kUp),
582     O fVerU(1-OLx,1-OLy,kDown), fVerV(1-OLx,1-OLy,kDown),
583 jmc 1.121 O guDissip, gvDissip,
584 adcroft 1.80 I myTime, myIter, myThid)
585 adcroft 1.79 #endif
586 heimbach 1.132 ELSE
587 edhill 1.105 #ifdef ALLOW_MOM_VECINV
588 heimbach 1.126 CALL MOM_VECINV(
589 jmc 1.162 I bi,bj,k,iMin,iMax,jMin,jMax,
590 jmc 1.121 I KappaRU, KappaRV,
591 jmc 1.162 I fVerU(1-OLx,1-OLy,kUp), fVerV(1-OLx,1-OLy,kUp),
592     O fVerU(1-OLx,1-OLy,kDown), fVerV(1-OLx,1-OLy,kDown),
593 jmc 1.110 O guDissip, gvDissip,
594 adcroft 1.80 I myTime, myIter, myThid)
595 heimbach 1.132 #endif
596 heimbach 1.126 ENDIF
597 jmc 1.165
598 jmc 1.167 #ifdef ALLOW_SMAG_3D
599     IF ( useSmag3D ) THEN
600     CALL MOM_CALC_SMAG_3D(
601     I str11, str22, str33, str12, str13, str23,
602     O viscAh3d_00, viscAh3d_12, viscAh3d_13, viscAh3d_23,
603     I smag3D_hLsC, smag3D_hLsW, smag3D_hLsS, smag3D_hLsZ,
604     I k, bi, bj, myThid )
605     CALL MOM_UV_SMAG_3D(
606     I str11, str22, str12, str13, str23,
607     I viscAh3d_00, viscAh3d_12, viscAh3d_13, viscAh3d_23,
608     O addDissU, addDissV,
609     I iMin,iMax,jMin,jMax, k, bi, bj, myThid )
610     DO j= jMin,jMax
611     DO i= iMin,iMax
612     guDissip(i,j) = guDissip(i,j) + addDissU(i,j)
613     gvDissip(i,j) = gvDissip(i,j) + addDissV(i,j)
614     ENDDO
615     ENDDO
616     ENDIF
617     #endif /* ALLOW_SMAG_3D */
618    
619 adcroft 1.58 CALL TIMESTEP(
620 jmc 1.63 I bi,bj,iMin,iMax,jMin,jMax,k,
621 jmc 1.94 I dPhiHydX,dPhiHydY, phiSurfX, phiSurfY,
622 jmc 1.110 I guDissip, gvDissip,
623 jmc 1.96 I myTime, myIter, myThid)
624 adcroft 1.58
625     ENDIF
626    
627     C-- end of dynamics k loop (1:Nr)
628     ENDDO
629    
630 jmc 1.106 C-- Implicit Vertical advection & viscosity
631 gforget 1.147 #if (defined (INCLUDE_IMPLVERTADV_CODE) && \
632     defined (ALLOW_MOM_COMMON) && !(defined ALLOW_AUTODIFF_TAMC))
633 jmc 1.106 IF ( momImplVertAdv ) THEN
634 jmc 1.136 CALL MOM_U_IMPLICIT_R( kappaRU,
635 jmc 1.106 I bi, bj, myTime, myIter, myThid )
636     CALL MOM_V_IMPLICIT_R( kappaRV,
637     I bi, bj, myTime, myIter, myThid )
638     ELSEIF ( implicitViscosity ) THEN
639     #else /* INCLUDE_IMPLVERTADV_CODE */
640     IF ( implicitViscosity ) THEN
641     #endif /* INCLUDE_IMPLVERTADV_CODE */
642 adcroft 1.58 #ifdef ALLOW_AUTODIFF_TAMC
643 jmc 1.96 CADJ STORE gU(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
644 adcroft 1.58 #endif /* ALLOW_AUTODIFF_TAMC */
645 adcroft 1.42 CALL IMPLDIFF(
646     I bi, bj, iMin, iMax, jMin, jMax,
647 jmc 1.160 I -1, KappaRU, recip_hFacW(1-OLx,1-OLy,1,bi,bj),
648 jmc 1.172 U gU(1-OLx,1-OLy,1,bi,bj),
649 adcroft 1.42 I myThid )
650 adcroft 1.58 #ifdef ALLOW_AUTODIFF_TAMC
651 heimbach 1.97 CADJ STORE gV(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
652 adcroft 1.58 #endif /* ALLOW_AUTODIFF_TAMC */
653 adcroft 1.42 CALL IMPLDIFF(
654     I bi, bj, iMin, iMax, jMin, jMax,
655 jmc 1.160 I -2, KappaRV, recip_hFacS(1-OLx,1-OLy,1,bi,bj),
656 jmc 1.172 U gV(1-OLx,1-OLy,1,bi,bj),
657 adcroft 1.42 I myThid )
658 jmc 1.106 ENDIF
659 heimbach 1.49
660 mlosch 1.159 #ifdef ALLOW_OBCS
661 adcroft 1.58 C-- Apply open boundary conditions
662 jmc 1.151 IF ( useOBCS ) THEN
663 jmc 1.160 C-- but first save intermediate velocities to be used in the
664 mlosch 1.159 C next time step for the Stevens boundary conditions
665 jmc 1.160 CALL OBCS_SAVE_UV_N(
666     I bi, bj, iMin, iMax, jMin, jMax, 0,
667 mlosch 1.159 I gU, gV, myThid )
668 jmc 1.151 CALL OBCS_APPLY_UV( bi, bj, 0, gU, gV, myThid )
669 jmc 1.106 ENDIF
670 mlosch 1.159 #endif /* ALLOW_OBCS */
671 heimbach 1.49
672 edhill 1.102 #ifdef ALLOW_CD_CODE
673 jmc 1.106 IF (implicitViscosity.AND.useCDscheme) THEN
674 adcroft 1.58 #ifdef ALLOW_AUTODIFF_TAMC
675 heimbach 1.91 CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
676 adcroft 1.58 #endif /* ALLOW_AUTODIFF_TAMC */
677 adcroft 1.42 CALL IMPLDIFF(
678     I bi, bj, iMin, iMax, jMin, jMax,
679 jmc 1.160 I 0, KappaRU, recip_hFacW(1-OLx,1-OLy,1,bi,bj),
680 jmc 1.172 U vVelD(1-OLx,1-OLy,1,bi,bj),
681 adcroft 1.42 I myThid )
682 adcroft 1.58 #ifdef ALLOW_AUTODIFF_TAMC
683 heimbach 1.91 CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
684 adcroft 1.58 #endif /* ALLOW_AUTODIFF_TAMC */
685 adcroft 1.42 CALL IMPLDIFF(
686     I bi, bj, iMin, iMax, jMin, jMax,
687 jmc 1.160 I 0, KappaRV, recip_hFacS(1-OLx,1-OLy,1,bi,bj),
688 jmc 1.172 U uVelD(1-OLx,1-OLy,1,bi,bj),
689 adcroft 1.42 I myThid )
690 jmc 1.106 ENDIF
691 edhill 1.102 #endif /* ALLOW_CD_CODE */
692 jmc 1.106 C-- End implicit Vertical advection & viscosity
693 heimbach 1.109
694 jmc 1.113 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
695    
696 jmc 1.122 #ifdef ALLOW_NONHYDROSTATIC
697     C-- Step forward W field in N-H algorithm
698 jmc 1.136 IF ( nonHydrostatic ) THEN
699 jmc 1.122 #ifdef ALLOW_DEBUG
700 jmc 1.153 IF (debugMode) CALL DEBUG_CALL('CALC_GW', myThid )
701 jmc 1.122 #endif
702     CALL TIMER_START('CALC_GW [DYNAMICS]',myThid)
703 baylor 1.135 CALL CALC_GW(
704 jmc 1.136 I bi,bj, KappaRU, KappaRV,
705 jmc 1.167 I str13, str23, str33,
706     I viscAh3d_00, viscAh3d_13, viscAh3d_23,
707 jmc 1.136 I myTime, myIter, myThid )
708     ENDIF
709     IF ( nonHydrostatic.OR.implicitIntGravWave )
710     & CALL TIMESTEP_WVEL( bi,bj, myTime, myIter, myThid )
711     IF ( nonHydrostatic )
712 jmc 1.128 & CALL TIMER_STOP ('CALC_GW [DYNAMICS]',myThid)
713 jmc 1.122 #endif
714    
715     C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
716    
717 jmc 1.136 C- end of bi,bj loops
718     ENDDO
719     ENDDO
720    
721     #ifdef ALLOW_OBCS
722 jmc 1.152 IF (useOBCS) THEN
723 jmc 1.155 CALL OBCS_EXCHANGES( myThid )
724 jmc 1.152 ENDIF
725 jmc 1.136 #endif
726    
727 mlosch 1.90 Cml(
728     C In order to compare the variance of phiHydLow of a p/z-coordinate
729     C run with etaH of a z/p-coordinate run the drift of phiHydLow
730     C has to be removed by something like the following subroutine:
731 jmc 1.144 C CALL REMOVE_MEAN_RL( 1, phiHydLow, maskInC, maskInC, rA, drF,
732     C & 'phiHydLow', myTime, myThid )
733 mlosch 1.90 Cml)
734 adcroft 1.69
735 jmc 1.113 #ifdef ALLOW_DIAGNOSTICS
736 jmc 1.130 IF ( useDiagnostics ) THEN
737 jmc 1.113
738     CALL DIAGNOSTICS_FILL(totPhihyd,'PHIHYD ',0,Nr,0,1,1,myThid)
739 jmc 1.120 CALL DIAGNOSTICS_FILL(phiHydLow,'PHIBOT ',0, 1,0,1,1,myThid)
740 molod 1.116
741 jmc 1.120 tmpFac = 1. _d 0
742     CALL DIAGNOSTICS_SCALE_FILL(totPhihyd,tmpFac,2,
743     & 'PHIHYDSQ',0,Nr,0,1,1,myThid)
744 molod 1.116
745 jmc 1.120 CALL DIAGNOSTICS_SCALE_FILL(phiHydLow,tmpFac,2,
746     & 'PHIBOTSQ',0, 1,0,1,1,myThid)
747 jmc 1.113
748     ENDIF
749     #endif /* ALLOW_DIAGNOSTICS */
750 jmc 1.136
751 edhill 1.104 #ifdef ALLOW_DEBUG
752 jmc 1.158 IF ( debugLevel .GE. debLevD ) THEN
753 adcroft 1.69 CALL DEBUG_STATS_RL(1,EtaN,'EtaN (DYNAMICS)',myThid)
754 adcroft 1.73 CALL DEBUG_STATS_RL(Nr,uVel,'Uvel (DYNAMICS)',myThid)
755 adcroft 1.69 CALL DEBUG_STATS_RL(Nr,vVel,'Vvel (DYNAMICS)',myThid)
756     CALL DEBUG_STATS_RL(Nr,wVel,'Wvel (DYNAMICS)',myThid)
757     CALL DEBUG_STATS_RL(Nr,theta,'Theta (DYNAMICS)',myThid)
758     CALL DEBUG_STATS_RL(Nr,salt,'Salt (DYNAMICS)',myThid)
759 jmc 1.115 CALL DEBUG_STATS_RL(Nr,gU,'Gu (DYNAMICS)',myThid)
760     CALL DEBUG_STATS_RL(Nr,gV,'Gv (DYNAMICS)',myThid)
761     #ifndef ALLOW_ADAMSBASHFORTH_3
762     CALL DEBUG_STATS_RL(Nr,guNm1,'GuNm1 (DYNAMICS)',myThid)
763     CALL DEBUG_STATS_RL(Nr,gvNm1,'GvNm1 (DYNAMICS)',myThid)
764     CALL DEBUG_STATS_RL(Nr,gtNm1,'GtNm1 (DYNAMICS)',myThid)
765     CALL DEBUG_STATS_RL(Nr,gsNm1,'GsNm1 (DYNAMICS)',myThid)
766     #endif
767 adcroft 1.70 ENDIF
768 adcroft 1.69 #endif
769 cnh 1.1
770 jmc 1.125 #ifdef DYNAMICS_GUGV_EXCH_CHECK
771 jmc 1.144 C- jmc: For safety checking only: This Exchange here should not change
772     C the solution. If solution changes, it means something is wrong,
773 jmc 1.125 C but it does not mean that it is less wrong with this exchange.
774 jmc 1.158 IF ( debugLevel .GE. debLevE ) THEN
775 jmc 1.125 CALL EXCH_UV_XYZ_RL(gU,gV,.TRUE.,myThid)
776     ENDIF
777     #endif
778    
779 jmc 1.123 #ifdef ALLOW_DEBUG
780 jmc 1.153 IF (debugMode) CALL DEBUG_LEAVE( 'DYNAMICS', myThid )
781 jmc 1.123 #endif
782    
783 cnh 1.1 RETURN
784     END

  ViewVC Help
Powered by ViewVC 1.1.22