/[MITgcm]/MITgcm/model/src/dynamics.F
ViewVC logotype

Annotation of /MITgcm/model/src/dynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.165 - (hide annotations) (download)
Sat Aug 3 01:38:17 2013 UTC (10 years, 9 months ago) by jmc
Branch: MAIN
CVS Tags: checkpoint64m, checkpoint64l, checkpoint64n
Changes since 1.164: +32 -29 lines
skip the call to CALC_VISCOSITY if momViscosity=F

1 jmc 1.165 C $Header: /u/gcmpack/MITgcm/model/src/dynamics.F,v 1.164 2013/03/21 18:15:44 jahn Exp $
2 heimbach 1.78 C $Name: $
3 cnh 1.1
4 edhill 1.100 #include "PACKAGES_CONFIG.h"
5 adcroft 1.24 #include "CPP_OPTIONS.h"
6 heimbach 1.131 #ifdef ALLOW_OBCS
7     # include "OBCS_OPTIONS.h"
8     #endif
9    
10 jmc 1.125 #undef DYNAMICS_GUGV_EXCH_CHECK
11 cnh 1.1
12 cnh 1.82 CBOP
13     C !ROUTINE: DYNAMICS
14     C !INTERFACE:
15 cnh 1.8 SUBROUTINE DYNAMICS(myTime, myIter, myThid)
16 cnh 1.82 C !DESCRIPTION: \bv
17     C *==========================================================*
18 jmc 1.144 C | SUBROUTINE DYNAMICS
19     C | o Controlling routine for the explicit part of the model
20     C | dynamics.
21 cnh 1.82 C *==========================================================*
22 jmc 1.144 C | This routine evaluates the "dynamics" terms for each
23     C | block of ocean in turn. Because the blocks of ocean have
24     C | overlap regions they are independent of one another.
25     C | If terms involving lateral integrals are needed in this
26     C | routine care will be needed. Similarly finite-difference
27     C | operations with stencils wider than the overlap region
28     C | require special consideration.
29 cnh 1.82 C | The algorithm...
30     C |
31     C | "Correction Step"
32     C | =================
33     C | Here we update the horizontal velocities with the surface
34     C | pressure such that the resulting flow is either consistent
35     C | with the free-surface evolution or the rigid-lid:
36     C | U[n] = U* + dt x d/dx P
37     C | V[n] = V* + dt x d/dy P
38 jmc 1.122 C | W[n] = W* + dt x d/dz P (NH mode)
39 cnh 1.82 C |
40     C | "Calculation of Gs"
41     C | ===================
42     C | This is where all the accelerations and tendencies (ie.
43     C | physics, parameterizations etc...) are calculated
44     C | rho = rho ( theta[n], salt[n] )
45     C | b = b(rho, theta)
46     C | K31 = K31 ( rho )
47     C | Gu[n] = Gu( u[n], v[n], wVel, b, ... )
48     C | Gv[n] = Gv( u[n], v[n], wVel, b, ... )
49     C | Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
50     C | Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
51     C |
52     C | "Time-stepping" or "Prediction"
53     C | ================================
54     C | The models variables are stepped forward with the appropriate
55     C | time-stepping scheme (currently we use Adams-Bashforth II)
56     C | - For momentum, the result is always *only* a "prediction"
57     C | in that the flow may be divergent and will be "corrected"
58     C | later with a surface pressure gradient.
59     C | - Normally for tracers the result is the new field at time
60     C | level [n+1} *BUT* in the case of implicit diffusion the result
61     C | is also *only* a prediction.
62     C | - We denote "predictors" with an asterisk (*).
63     C | U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
64     C | V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
65     C | theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
66     C | salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
67     C | With implicit diffusion:
68     C | theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
69     C | salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
70     C | (1 + dt * K * d_zz) theta[n] = theta*
71     C | (1 + dt * K * d_zz) salt[n] = salt*
72     C |
73     C *==========================================================*
74     C \ev
75     C !USES:
76 adcroft 1.40 IMPLICIT NONE
77 cnh 1.1 C == Global variables ===
78     #include "SIZE.h"
79     #include "EEPARAMS.h"
80 adcroft 1.6 #include "PARAMS.h"
81 jmc 1.165 #include "GRID.h"
82 adcroft 1.3 #include "DYNVARS.h"
83 edhill 1.103 #ifdef ALLOW_CD_CODE
84 jmc 1.165 # include "CD_CODE_VARS.h"
85 edhill 1.103 #endif
86 heimbach 1.49 #ifdef ALLOW_AUTODIFF_TAMC
87 heimbach 1.53 # include "tamc.h"
88     # include "tamc_keys.h"
89 heimbach 1.67 # include "FFIELDS.h"
90 heimbach 1.91 # include "EOS.h"
91 heimbach 1.67 # ifdef ALLOW_KPP
92     # include "KPP.h"
93     # endif
94 heimbach 1.131 # ifdef ALLOW_PTRACERS
95     # include "PTRACERS_SIZE.h"
96 jmc 1.139 # include "PTRACERS_FIELDS.h"
97 heimbach 1.131 # endif
98     # ifdef ALLOW_OBCS
99 jmc 1.165 # include "OBCS_PARAMS.h"
100 jmc 1.157 # include "OBCS_FIELDS.h"
101 heimbach 1.131 # ifdef ALLOW_PTRACERS
102     # include "OBCS_PTRACERS.h"
103     # endif
104     # endif
105 heimbach 1.133 # ifdef ALLOW_MOM_FLUXFORM
106     # include "MOM_FLUXFORM.h"
107     # endif
108 heimbach 1.53 #endif /* ALLOW_AUTODIFF_TAMC */
109 jmc 1.62
110 cnh 1.82 C !CALLING SEQUENCE:
111     C DYNAMICS()
112     C |
113 jmc 1.122 C |-- CALC_EP_FORCING
114     C |
115 cnh 1.82 C |-- CALC_GRAD_PHI_SURF
116     C |
117     C |-- CALC_VISCOSITY
118     C |
119 jmc 1.136 C |-- CALC_PHI_HYD
120 cnh 1.82 C |
121 jmc 1.136 C |-- MOM_FLUXFORM
122 cnh 1.82 C |
123 jmc 1.136 C |-- MOM_VECINV
124 cnh 1.82 C |
125 jmc 1.136 C |-- TIMESTEP
126 cnh 1.82 C |
127 jmc 1.136 C |-- MOM_U_IMPLICIT_R
128     C |-- MOM_V_IMPLICIT_R
129 jmc 1.122 C |
130 jmc 1.136 C |-- IMPLDIFF
131 cnh 1.82 C |
132     C |-- OBCS_APPLY_UV
133     C |
134 jmc 1.122 C |-- CALC_GW
135     C |
136     C |-- DIAGNOSTICS_FILL
137     C |-- DEBUG_STATS_RL
138 cnh 1.82
139     C !INPUT/OUTPUT PARAMETERS:
140 cnh 1.1 C == Routine arguments ==
141 jmc 1.140 C myTime :: Current time in simulation
142     C myIter :: Current iteration number in simulation
143     C myThid :: Thread number for this instance of the routine.
144 cnh 1.8 _RL myTime
145     INTEGER myIter
146 adcroft 1.47 INTEGER myThid
147 cnh 1.1
148 jmc 1.145 C !FUNCTIONS:
149     #ifdef ALLOW_DIAGNOSTICS
150     LOGICAL DIAGNOSTICS_IS_ON
151     EXTERNAL DIAGNOSTICS_IS_ON
152     #endif
153    
154 cnh 1.82 C !LOCAL VARIABLES:
155 cnh 1.1 C == Local variables
156 jmc 1.113 C fVer[UV] o fVer: Vertical flux term - note fVer
157     C is "pipelined" in the vertical
158     C so we need an fVer for each
159     C variable.
160 jmc 1.94 C phiHydC :: hydrostatic potential anomaly at cell center
161     C In z coords phiHyd is the hydrostatic potential
162     C (=pressure/rho0) anomaly
163     C In p coords phiHyd is the geopotential height anomaly.
164     C phiHydF :: hydrostatic potential anomaly at middle between 2 centers
165     C dPhiHydX,Y :: Gradient (X & Y directions) of hydrostatic potential anom.
166     C phiSurfX, :: gradient of Surface potential (Pressure/rho, ocean)
167 jmc 1.92 C phiSurfY or geopotential (atmos) in X and Y direction
168 jmc 1.110 C guDissip :: dissipation tendency (all explicit terms), u component
169     C gvDissip :: dissipation tendency (all explicit terms), v component
170 jmc 1.165 C KappaRU :: vertical viscosity for velocity U-component
171     C KappaRV :: vertical viscosity for velocity V-component
172 jmc 1.162 C iMin, iMax :: Ranges and sub-block indices on which calculations
173     C jMin, jMax are applied.
174     C bi, bj :: tile indices
175     C k :: current level index
176     C km1, kp1 :: index of level above (k-1) and below (k+1)
177     C kUp, kDown :: Index for interface above and below. kUp and kDown are
178     C are switched with k to be the appropriate index into fVerU,V
179 cnh 1.30 _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
180     _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
181 jmc 1.94 _RL phiHydF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
182     _RL phiHydC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
183 jmc 1.161 _RL dPhiHydX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
184     _RL dPhiHydY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
185 jmc 1.63 _RL phiSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
186     _RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
187 jmc 1.110 _RL guDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
188     _RL gvDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
189 jmc 1.161 _RL KappaRU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
190     _RL KappaRV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
191 adcroft 1.12
192 cnh 1.1 INTEGER iMin, iMax
193     INTEGER jMin, jMax
194     INTEGER bi, bj
195     INTEGER i, j
196 jmc 1.162 INTEGER k, km1, kp1, kUp, kDown
197 cnh 1.1
198 jmc 1.113 #ifdef ALLOW_DIAGNOSTICS
199 jmc 1.145 LOGICAL dPhiHydDiagIsOn
200 jmc 1.120 _RL tmpFac
201 jmc 1.113 #endif /* ALLOW_DIAGNOSTICS */
202    
203 adcroft 1.11 C--- The algorithm...
204     C
205     C "Correction Step"
206     C =================
207     C Here we update the horizontal velocities with the surface
208     C pressure such that the resulting flow is either consistent
209     C with the free-surface evolution or the rigid-lid:
210     C U[n] = U* + dt x d/dx P
211     C V[n] = V* + dt x d/dy P
212     C
213     C "Calculation of Gs"
214     C ===================
215     C This is where all the accelerations and tendencies (ie.
216 heimbach 1.53 C physics, parameterizations etc...) are calculated
217 adcroft 1.11 C rho = rho ( theta[n], salt[n] )
218 cnh 1.27 C b = b(rho, theta)
219 adcroft 1.11 C K31 = K31 ( rho )
220 jmc 1.61 C Gu[n] = Gu( u[n], v[n], wVel, b, ... )
221     C Gv[n] = Gv( u[n], v[n], wVel, b, ... )
222     C Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
223     C Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
224 adcroft 1.11 C
225 adcroft 1.12 C "Time-stepping" or "Prediction"
226 adcroft 1.11 C ================================
227     C The models variables are stepped forward with the appropriate
228     C time-stepping scheme (currently we use Adams-Bashforth II)
229     C - For momentum, the result is always *only* a "prediction"
230     C in that the flow may be divergent and will be "corrected"
231     C later with a surface pressure gradient.
232     C - Normally for tracers the result is the new field at time
233     C level [n+1} *BUT* in the case of implicit diffusion the result
234     C is also *only* a prediction.
235     C - We denote "predictors" with an asterisk (*).
236     C U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
237     C V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
238     C theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
239     C salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
240 adcroft 1.12 C With implicit diffusion:
241 adcroft 1.11 C theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
242     C salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
243 adcroft 1.12 C (1 + dt * K * d_zz) theta[n] = theta*
244     C (1 + dt * K * d_zz) salt[n] = salt*
245 adcroft 1.11 C---
246 cnh 1.82 CEOP
247 adcroft 1.11
248 jmc 1.123 #ifdef ALLOW_DEBUG
249 jmc 1.153 IF (debugMode) CALL DEBUG_ENTER( 'DYNAMICS', myThid )
250 jmc 1.123 #endif
251    
252 jmc 1.145 #ifdef ALLOW_DIAGNOSTICS
253     dPhiHydDiagIsOn = .FALSE.
254     IF ( useDiagnostics )
255     & dPhiHydDiagIsOn = DIAGNOSTICS_IS_ON( 'Um_dPHdx', myThid )
256     & .OR. DIAGNOSTICS_IS_ON( 'Vm_dPHdy', myThid )
257     #endif
258    
259 jmc 1.165 C-- Call to routine for calculation of Eliassen-Palm-flux-forced
260     C U-tendency, if desired:
261 heimbach 1.88 #ifdef INCLUDE_EP_FORCING_CODE
262     CALL CALC_EP_FORCING(myThid)
263     #endif
264    
265 heimbach 1.154 #ifdef ALLOW_AUTODIFF_MONITOR_DIAG
266 jmc 1.161 CALL DUMMY_IN_DYNAMICS( myTime, myIter, myThid )
267 heimbach 1.154 #endif
268    
269 heimbach 1.76 #ifdef ALLOW_AUTODIFF_TAMC
270     C-- HPF directive to help TAMC
271     CHPF$ INDEPENDENT
272     #endif /* ALLOW_AUTODIFF_TAMC */
273    
274 cnh 1.1 DO bj=myByLo(myThid),myByHi(myThid)
275 heimbach 1.76
276     #ifdef ALLOW_AUTODIFF_TAMC
277     C-- HPF directive to help TAMC
278     CHPF$ INDEPENDENT, NEW (fVerU,fVerV
279 jmc 1.94 CHPF$& ,phiHydF
280 heimbach 1.76 CHPF$& ,KappaRU,KappaRV
281     CHPF$& )
282     #endif /* ALLOW_AUTODIFF_TAMC */
283    
284 cnh 1.1 DO bi=myBxLo(myThid),myBxHi(myThid)
285 heimbach 1.76
286     #ifdef ALLOW_AUTODIFF_TAMC
287     act1 = bi - myBxLo(myThid)
288     max1 = myBxHi(myThid) - myBxLo(myThid) + 1
289     act2 = bj - myByLo(myThid)
290     max2 = myByHi(myThid) - myByLo(myThid) + 1
291     act3 = myThid - 1
292     max3 = nTx*nTy
293     act4 = ikey_dynamics - 1
294 heimbach 1.91 idynkey = (act1 + 1) + act2*max1
295 heimbach 1.76 & + act3*max1*max2
296     & + act4*max1*max2*max3
297     #endif /* ALLOW_AUTODIFF_TAMC */
298    
299 heimbach 1.97 C-- Set up work arrays with valid (i.e. not NaN) values
300 jmc 1.161 C These initial values do not alter the numerical results. They
301 heimbach 1.97 C just ensure that all memory references are to valid floating
302     C point numbers. This prevents spurious hardware signals due to
303     C uninitialised but inert locations.
304    
305 jmc 1.140 #ifdef ALLOW_AUTODIFF_TAMC
306 jmc 1.94 DO k=1,Nr
307     DO j=1-OLy,sNy+OLy
308     DO i=1-OLx,sNx+OLx
309 heimbach 1.97 cph(
310     c-- need some re-initialisation here to break dependencies
311     cph)
312 jmc 1.122 gU(i,j,k,bi,bj) = 0. _d 0
313     gV(i,j,k,bi,bj) = 0. _d 0
314 heimbach 1.87 ENDDO
315 jmc 1.94 ENDDO
316     ENDDO
317 jmc 1.140 #endif /* ALLOW_AUTODIFF_TAMC */
318 jmc 1.94 DO j=1-OLy,sNy+OLy
319     DO i=1-OLx,sNx+OLx
320 heimbach 1.76 fVerU (i,j,1) = 0. _d 0
321     fVerU (i,j,2) = 0. _d 0
322     fVerV (i,j,1) = 0. _d 0
323     fVerV (i,j,2) = 0. _d 0
324 jmc 1.136 phiHydF (i,j) = 0. _d 0
325     phiHydC (i,j) = 0. _d 0
326 jmc 1.146 #ifndef INCLUDE_PHIHYD_CALCULATION_CODE
327 jmc 1.92 dPhiHydX(i,j) = 0. _d 0
328 jmc 1.136 dPhiHydY(i,j) = 0. _d 0
329 jmc 1.146 #endif
330 heimbach 1.97 phiSurfX(i,j) = 0. _d 0
331     phiSurfY(i,j) = 0. _d 0
332 jmc 1.110 guDissip(i,j) = 0. _d 0
333     gvDissip(i,j) = 0. _d 0
334 heimbach 1.138 #ifdef ALLOW_AUTODIFF_TAMC
335 gforget 1.143 phiHydLow(i,j,bi,bj) = 0. _d 0
336 jmc 1.150 # if (defined NONLIN_FRSURF) && (defined ALLOW_MOM_FLUXFORM)
337 heimbach 1.138 # ifndef DISABLE_RSTAR_CODE
338 jahn 1.164 # ifndef ALLOW_AUTODIFF_OPENAD
339 heimbach 1.138 dWtransC(i,j,bi,bj) = 0. _d 0
340     dWtransU(i,j,bi,bj) = 0. _d 0
341     dWtransV(i,j,bi,bj) = 0. _d 0
342 jahn 1.164 # endif
343 heimbach 1.138 # endif
344     # endif
345     #endif
346 heimbach 1.76 ENDDO
347     ENDDO
348 heimbach 1.49
349 jmc 1.63 C-- Start computation of dynamics
350 jmc 1.93 iMin = 0
351     iMax = sNx+1
352     jMin = 0
353     jMax = sNy+1
354 jmc 1.63
355 heimbach 1.76 #ifdef ALLOW_AUTODIFF_TAMC
356 jmc 1.161 CADJ STORE wVel (:,:,:,bi,bj) =
357 heimbach 1.141 CADJ & comlev1_bibj, key=idynkey, byte=isbyte
358 heimbach 1.76 #endif /* ALLOW_AUTODIFF_TAMC */
359    
360 jmc 1.161 C-- Explicit part of the Surface Potential Gradient (add in TIMESTEP)
361 jmc 1.63 C (note: this loop will be replaced by CALL CALC_GRAD_ETA)
362     IF (implicSurfPress.NE.1.) THEN
363 jmc 1.65 CALL CALC_GRAD_PHI_SURF(
364     I bi,bj,iMin,iMax,jMin,jMax,
365     I etaN,
366     O phiSurfX,phiSurfY,
367 jmc 1.136 I myThid )
368 jmc 1.63 ENDIF
369 heimbach 1.83
370     #ifdef ALLOW_AUTODIFF_TAMC
371 jmc 1.161 CADJ STORE uVel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
372     CADJ STORE vVel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
373 heimbach 1.83 #ifdef ALLOW_KPP
374 jmc 1.150 CADJ STORE KPPviscAz (:,:,:,bi,bj)
375 heimbach 1.91 CADJ & = comlev1_bibj, key=idynkey, byte=isbyte
376 heimbach 1.83 #endif /* ALLOW_KPP */
377     #endif /* ALLOW_AUTODIFF_TAMC */
378 adcroft 1.58
379 jmc 1.165 #if (defined INCLUDE_CALC_DIFFUSIVITY_CALL) && !(defined ALLOW_AUTODIFF)
380     IF ( .NOT.momViscosity ) THEN
381     #endif /* INCLUDE_CALC_DIFFUSIVITY_CALL and not ALLOW_AUTODIFF */
382     DO k=1,Nr
383     DO j=1-OLy,sNy+OLy
384     DO i=1-OLx,sNx+OLx
385     KappaRU(i,j,k) = 0. _d 0
386     KappaRV(i,j,k) = 0. _d 0
387     ENDDO
388     ENDDO
389     ENDDO
390     #ifdef INCLUDE_CALC_DIFFUSIVITY_CALL
391 jmc 1.140 C-- Calculate the total vertical viscosity
392 jmc 1.165 #ifdef ALLOW_AUTODIFF
393     IF ( momViscosity ) THEN
394     #else
395     ELSE
396     #endif
397     CALL CALC_VISCOSITY(
398 jmc 1.140 I bi,bj, iMin,iMax,jMin,jMax,
399     O KappaRU, KappaRV,
400     I myThid )
401 jmc 1.165 ENDIF
402     #endif /* INCLUDE_CALC_DIFFUSIVITY_CALL */
403 heimbach 1.77
404 heimbach 1.101 #ifdef ALLOW_AUTODIFF_TAMC
405 jmc 1.150 CADJ STORE KappaRU(:,:,:)
406 heimbach 1.132 CADJ & = comlev1_bibj, key=idynkey, byte=isbyte
407 jmc 1.150 CADJ STORE KappaRV(:,:,:)
408 heimbach 1.132 CADJ & = comlev1_bibj, key=idynkey, byte=isbyte
409 heimbach 1.101 #endif /* ALLOW_AUTODIFF_TAMC */
410    
411 mlosch 1.159 #ifdef ALLOW_OBCS
412     C-- For Stevens boundary conditions velocities need to be extrapolated
413     C (copied) to a narrow strip outside the domain
414 jmc 1.165 IF ( useOBCS ) THEN
415 jmc 1.160 CALL OBCS_COPY_UV_N(
416 jmc 1.161 U uVel(1-OLx,1-OLy,1,bi,bj),
417     U vVel(1-OLx,1-OLy,1,bi,bj),
418 mlosch 1.159 I Nr, bi, bj, myThid )
419 jmc 1.165 ENDIF
420 mlosch 1.159 #endif /* ALLOW_OBCS */
421    
422 adcroft 1.58 C-- Start of dynamics loop
423     DO k=1,Nr
424    
425     C-- km1 Points to level above k (=k-1)
426     C-- kup Cycles through 1,2 to point to layer above
427     C-- kDown Cycles through 2,1 to point to current layer
428    
429     km1 = MAX(1,k-1)
430 heimbach 1.77 kp1 = MIN(k+1,Nr)
431 adcroft 1.58 kup = 1+MOD(k+1,2)
432     kDown= 1+MOD(k,2)
433    
434 jmc 1.144 #ifdef ALLOW_AUTODIFF_TAMC
435 heimbach 1.91 kkey = (idynkey-1)*Nr + k
436 heimbach 1.99 c
437 jmc 1.161 CADJ STORE totPhiHyd (:,:,k,bi,bj)
438 heimbach 1.99 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
439 jmc 1.161 CADJ STORE phiHydLow (:,:,bi,bj)
440 gforget 1.143 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
441 jmc 1.150 CADJ STORE theta (:,:,k,bi,bj)
442 heimbach 1.99 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
443 jmc 1.150 CADJ STORE salt (:,:,k,bi,bj)
444 heimbach 1.95 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
445 jmc 1.161 CADJ STORE gT(:,:,k,bi,bj)
446 heimbach 1.129 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
447 jmc 1.161 CADJ STORE gS(:,:,k,bi,bj)
448 heimbach 1.129 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
449 heimbach 1.126 # ifdef NONLIN_FRSURF
450     cph-test
451 jmc 1.150 CADJ STORE phiHydC (:,:)
452 heimbach 1.126 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
453 jmc 1.150 CADJ STORE phiHydF (:,:)
454 heimbach 1.126 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
455 jmc 1.161 CADJ STORE guDissip (:,:)
456 heimbach 1.126 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
457 jmc 1.161 CADJ STORE gvDissip (:,:)
458 heimbach 1.126 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
459 jmc 1.150 CADJ STORE fVerU (:,:,:)
460 heimbach 1.126 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
461 jmc 1.150 CADJ STORE fVerV (:,:,:)
462 heimbach 1.126 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
463 jmc 1.161 CADJ STORE gU(:,:,k,bi,bj)
464 heimbach 1.126 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
465 jmc 1.161 CADJ STORE gV(:,:,k,bi,bj)
466 heimbach 1.126 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
467 heimbach 1.148 # ifndef ALLOW_ADAMSBASHFORTH_3
468 jmc 1.161 CADJ STORE guNm1(:,:,k,bi,bj)
469 heimbach 1.126 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
470 jmc 1.161 CADJ STORE gvNm1(:,:,k,bi,bj)
471 heimbach 1.126 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
472 heimbach 1.148 # else
473 jmc 1.161 CADJ STORE guNm(:,:,k,bi,bj,1)
474 heimbach 1.148 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
475 jmc 1.161 CADJ STORE guNm(:,:,k,bi,bj,2)
476 heimbach 1.148 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
477 jmc 1.161 CADJ STORE gvNm(:,:,k,bi,bj,1)
478 heimbach 1.148 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
479 jmc 1.161 CADJ STORE gvNm(:,:,k,bi,bj,2)
480 heimbach 1.148 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
481     # endif
482 heimbach 1.126 # ifdef ALLOW_CD_CODE
483 jmc 1.161 CADJ STORE uNM1(:,:,k,bi,bj)
484 heimbach 1.126 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
485 jmc 1.161 CADJ STORE vNM1(:,:,k,bi,bj)
486 heimbach 1.126 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
487 jmc 1.150 CADJ STORE uVelD(:,:,k,bi,bj)
488 heimbach 1.126 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
489 jmc 1.150 CADJ STORE vVelD(:,:,k,bi,bj)
490 heimbach 1.126 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
491     # endif
492     # endif
493 heimbach 1.134 # ifdef ALLOW_DEPTH_CONTROL
494 jmc 1.150 CADJ STORE fVerU (:,:,:)
495 heimbach 1.134 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
496 jmc 1.150 CADJ STORE fVerV (:,:,:)
497 heimbach 1.134 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
498     # endif
499 heimbach 1.76 #endif /* ALLOW_AUTODIFF_TAMC */
500    
501 jmc 1.165 C-- Integrate hydrostatic balance for phiHyd with BC of phiHyd(z=0)=0
502 jmc 1.128 IF ( implicitIntGravWave ) THEN
503     CALL CALC_PHI_HYD(
504     I bi,bj,iMin,iMax,jMin,jMax,k,
505     I gT, gS,
506     U phiHydF,
507     O phiHydC, dPhiHydX, dPhiHydY,
508     I myTime, myIter, myThid )
509     ELSE
510     CALL CALC_PHI_HYD(
511 adcroft 1.58 I bi,bj,iMin,iMax,jMin,jMax,k,
512     I theta, salt,
513 jmc 1.94 U phiHydF,
514     O phiHydC, dPhiHydX, dPhiHydY,
515 jmc 1.92 I myTime, myIter, myThid )
516 jmc 1.128 ENDIF
517 jmc 1.145 #ifdef ALLOW_DIAGNOSTICS
518     IF ( dPhiHydDiagIsOn ) THEN
519     tmpFac = -1. _d 0
520     CALL DIAGNOSTICS_SCALE_FILL( dPhiHydX, tmpFac, 1,
521     & 'Um_dPHdx', k, 1, 2, bi, bj, myThid )
522     CALL DIAGNOSTICS_SCALE_FILL( dPhiHydY, tmpFac, 1,
523     & 'Vm_dPHdy', k, 1, 2, bi, bj, myThid )
524     ENDIF
525     #endif /* ALLOW_DIAGNOSTICS */
526 mlosch 1.89
527 adcroft 1.58 C-- Calculate accelerations in the momentum equations (gU, gV, ...)
528 jmc 1.96 C and step forward storing the result in gU, gV, etc...
529 adcroft 1.58 IF ( momStepping ) THEN
530 heimbach 1.138 #ifdef ALLOW_AUTODIFF_TAMC
531 jmc 1.162 # ifdef NONLIN_FRSURF
532     # if (defined ALLOW_MOM_FLUXFORM) && !(defined DISABLE_RSTAR_CODE)
533 jmc 1.150 CADJ STORE dWtransC(:,:,bi,bj)
534 heimbach 1.138 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
535 jmc 1.150 CADJ STORE dWtransU(:,:,bi,bj)
536 heimbach 1.138 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
537 jmc 1.150 CADJ STORE dWtransV(:,:,bi,bj)
538 heimbach 1.138 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
539     # endif
540 jmc 1.162 CADJ STORE fVerU(:,:,:)
541     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
542     CADJ STORE fVerV(:,:,:)
543     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
544     # endif /* NONLIN_FRSURF */
545     #endif /* ALLOW_AUTODIFF_TAMC */
546 heimbach 1.132 IF (.NOT. vectorInvariantMomentum) THEN
547 edhill 1.105 #ifdef ALLOW_MOM_FLUXFORM
548 heimbach 1.132 CALL MOM_FLUXFORM(
549 jmc 1.162 I bi,bj,k,iMin,iMax,jMin,jMax,
550 jmc 1.121 I KappaRU, KappaRV,
551 jmc 1.162 U fVerU(1-OLx,1-OLy,kUp), fVerV(1-OLx,1-OLy,kUp),
552     O fVerU(1-OLx,1-OLy,kDown), fVerV(1-OLx,1-OLy,kDown),
553 jmc 1.121 O guDissip, gvDissip,
554 adcroft 1.80 I myTime, myIter, myThid)
555 adcroft 1.79 #endif
556 heimbach 1.132 ELSE
557 edhill 1.105 #ifdef ALLOW_MOM_VECINV
558 heimbach 1.126 CALL MOM_VECINV(
559 jmc 1.162 I bi,bj,k,iMin,iMax,jMin,jMax,
560 jmc 1.121 I KappaRU, KappaRV,
561 jmc 1.162 I fVerU(1-OLx,1-OLy,kUp), fVerV(1-OLx,1-OLy,kUp),
562     O fVerU(1-OLx,1-OLy,kDown), fVerV(1-OLx,1-OLy,kDown),
563 jmc 1.110 O guDissip, gvDissip,
564 adcroft 1.80 I myTime, myIter, myThid)
565 heimbach 1.132 #endif
566 heimbach 1.126 ENDIF
567 jmc 1.165
568 adcroft 1.58 CALL TIMESTEP(
569 jmc 1.63 I bi,bj,iMin,iMax,jMin,jMax,k,
570 jmc 1.94 I dPhiHydX,dPhiHydY, phiSurfX, phiSurfY,
571 jmc 1.110 I guDissip, gvDissip,
572 jmc 1.96 I myTime, myIter, myThid)
573 adcroft 1.58
574     ENDIF
575    
576     C-- end of dynamics k loop (1:Nr)
577     ENDDO
578    
579 jmc 1.106 C-- Implicit Vertical advection & viscosity
580 gforget 1.147 #if (defined (INCLUDE_IMPLVERTADV_CODE) && \
581     defined (ALLOW_MOM_COMMON) && !(defined ALLOW_AUTODIFF_TAMC))
582 jmc 1.106 IF ( momImplVertAdv ) THEN
583 jmc 1.136 CALL MOM_U_IMPLICIT_R( kappaRU,
584 jmc 1.106 I bi, bj, myTime, myIter, myThid )
585     CALL MOM_V_IMPLICIT_R( kappaRV,
586     I bi, bj, myTime, myIter, myThid )
587     ELSEIF ( implicitViscosity ) THEN
588     #else /* INCLUDE_IMPLVERTADV_CODE */
589     IF ( implicitViscosity ) THEN
590     #endif /* INCLUDE_IMPLVERTADV_CODE */
591 adcroft 1.58 #ifdef ALLOW_AUTODIFF_TAMC
592 heimbach 1.101 CADJ STORE KappaRU(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
593 jmc 1.96 CADJ STORE gU(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
594 adcroft 1.58 #endif /* ALLOW_AUTODIFF_TAMC */
595 adcroft 1.42 CALL IMPLDIFF(
596     I bi, bj, iMin, iMax, jMin, jMax,
597 jmc 1.160 I -1, KappaRU, recip_hFacW(1-OLx,1-OLy,1,bi,bj),
598 jmc 1.96 U gU,
599 adcroft 1.42 I myThid )
600 adcroft 1.58 #ifdef ALLOW_AUTODIFF_TAMC
601 heimbach 1.101 CADJ STORE KappaRV(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
602 heimbach 1.97 CADJ STORE gV(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
603 adcroft 1.58 #endif /* ALLOW_AUTODIFF_TAMC */
604 adcroft 1.42 CALL IMPLDIFF(
605     I bi, bj, iMin, iMax, jMin, jMax,
606 jmc 1.160 I -2, KappaRV, recip_hFacS(1-OLx,1-OLy,1,bi,bj),
607 jmc 1.96 U gV,
608 adcroft 1.42 I myThid )
609 jmc 1.106 ENDIF
610 heimbach 1.49
611 mlosch 1.159 #ifdef ALLOW_OBCS
612 adcroft 1.58 C-- Apply open boundary conditions
613 jmc 1.151 IF ( useOBCS ) THEN
614 jmc 1.160 C-- but first save intermediate velocities to be used in the
615 mlosch 1.159 C next time step for the Stevens boundary conditions
616 jmc 1.160 CALL OBCS_SAVE_UV_N(
617     I bi, bj, iMin, iMax, jMin, jMax, 0,
618 mlosch 1.159 I gU, gV, myThid )
619 jmc 1.151 CALL OBCS_APPLY_UV( bi, bj, 0, gU, gV, myThid )
620 jmc 1.106 ENDIF
621 mlosch 1.159 #endif /* ALLOW_OBCS */
622 heimbach 1.49
623 edhill 1.102 #ifdef ALLOW_CD_CODE
624 jmc 1.106 IF (implicitViscosity.AND.useCDscheme) THEN
625 adcroft 1.58 #ifdef ALLOW_AUTODIFF_TAMC
626 heimbach 1.91 CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
627 adcroft 1.58 #endif /* ALLOW_AUTODIFF_TAMC */
628 adcroft 1.42 CALL IMPLDIFF(
629     I bi, bj, iMin, iMax, jMin, jMax,
630 jmc 1.160 I 0, KappaRU, recip_hFacW(1-OLx,1-OLy,1,bi,bj),
631 adcroft 1.42 U vVelD,
632     I myThid )
633 adcroft 1.58 #ifdef ALLOW_AUTODIFF_TAMC
634 heimbach 1.91 CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
635 adcroft 1.58 #endif /* ALLOW_AUTODIFF_TAMC */
636 adcroft 1.42 CALL IMPLDIFF(
637     I bi, bj, iMin, iMax, jMin, jMax,
638 jmc 1.160 I 0, KappaRV, recip_hFacS(1-OLx,1-OLy,1,bi,bj),
639 adcroft 1.42 U uVelD,
640     I myThid )
641 jmc 1.106 ENDIF
642 edhill 1.102 #endif /* ALLOW_CD_CODE */
643 jmc 1.106 C-- End implicit Vertical advection & viscosity
644 heimbach 1.109
645 jmc 1.113 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
646    
647 jmc 1.122 #ifdef ALLOW_NONHYDROSTATIC
648     C-- Step forward W field in N-H algorithm
649 jmc 1.136 IF ( nonHydrostatic ) THEN
650 jmc 1.122 #ifdef ALLOW_DEBUG
651 jmc 1.153 IF (debugMode) CALL DEBUG_CALL('CALC_GW', myThid )
652 jmc 1.122 #endif
653     CALL TIMER_START('CALC_GW [DYNAMICS]',myThid)
654 baylor 1.135 CALL CALC_GW(
655 jmc 1.136 I bi,bj, KappaRU, KappaRV,
656     I myTime, myIter, myThid )
657     ENDIF
658     IF ( nonHydrostatic.OR.implicitIntGravWave )
659     & CALL TIMESTEP_WVEL( bi,bj, myTime, myIter, myThid )
660     IF ( nonHydrostatic )
661 jmc 1.128 & CALL TIMER_STOP ('CALC_GW [DYNAMICS]',myThid)
662 jmc 1.122 #endif
663    
664     C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
665    
666 jmc 1.136 C- end of bi,bj loops
667     ENDDO
668     ENDDO
669    
670     #ifdef ALLOW_OBCS
671 jmc 1.152 IF (useOBCS) THEN
672 jmc 1.155 CALL OBCS_EXCHANGES( myThid )
673 jmc 1.152 ENDIF
674 jmc 1.136 #endif
675    
676 mlosch 1.90 Cml(
677     C In order to compare the variance of phiHydLow of a p/z-coordinate
678     C run with etaH of a z/p-coordinate run the drift of phiHydLow
679     C has to be removed by something like the following subroutine:
680 jmc 1.144 C CALL REMOVE_MEAN_RL( 1, phiHydLow, maskInC, maskInC, rA, drF,
681     C & 'phiHydLow', myTime, myThid )
682 mlosch 1.90 Cml)
683 adcroft 1.69
684 jmc 1.113 #ifdef ALLOW_DIAGNOSTICS
685 jmc 1.130 IF ( useDiagnostics ) THEN
686 jmc 1.113
687     CALL DIAGNOSTICS_FILL(totPhihyd,'PHIHYD ',0,Nr,0,1,1,myThid)
688 jmc 1.120 CALL DIAGNOSTICS_FILL(phiHydLow,'PHIBOT ',0, 1,0,1,1,myThid)
689 molod 1.116
690 jmc 1.120 tmpFac = 1. _d 0
691     CALL DIAGNOSTICS_SCALE_FILL(totPhihyd,tmpFac,2,
692     & 'PHIHYDSQ',0,Nr,0,1,1,myThid)
693 molod 1.116
694 jmc 1.120 CALL DIAGNOSTICS_SCALE_FILL(phiHydLow,tmpFac,2,
695     & 'PHIBOTSQ',0, 1,0,1,1,myThid)
696 jmc 1.113
697     ENDIF
698     #endif /* ALLOW_DIAGNOSTICS */
699 jmc 1.136
700 edhill 1.104 #ifdef ALLOW_DEBUG
701 jmc 1.158 IF ( debugLevel .GE. debLevD ) THEN
702 adcroft 1.69 CALL DEBUG_STATS_RL(1,EtaN,'EtaN (DYNAMICS)',myThid)
703 adcroft 1.73 CALL DEBUG_STATS_RL(Nr,uVel,'Uvel (DYNAMICS)',myThid)
704 adcroft 1.69 CALL DEBUG_STATS_RL(Nr,vVel,'Vvel (DYNAMICS)',myThid)
705     CALL DEBUG_STATS_RL(Nr,wVel,'Wvel (DYNAMICS)',myThid)
706     CALL DEBUG_STATS_RL(Nr,theta,'Theta (DYNAMICS)',myThid)
707     CALL DEBUG_STATS_RL(Nr,salt,'Salt (DYNAMICS)',myThid)
708 jmc 1.115 CALL DEBUG_STATS_RL(Nr,gU,'Gu (DYNAMICS)',myThid)
709     CALL DEBUG_STATS_RL(Nr,gV,'Gv (DYNAMICS)',myThid)
710     CALL DEBUG_STATS_RL(Nr,gT,'Gt (DYNAMICS)',myThid)
711     CALL DEBUG_STATS_RL(Nr,gS,'Gs (DYNAMICS)',myThid)
712     #ifndef ALLOW_ADAMSBASHFORTH_3
713     CALL DEBUG_STATS_RL(Nr,guNm1,'GuNm1 (DYNAMICS)',myThid)
714     CALL DEBUG_STATS_RL(Nr,gvNm1,'GvNm1 (DYNAMICS)',myThid)
715     CALL DEBUG_STATS_RL(Nr,gtNm1,'GtNm1 (DYNAMICS)',myThid)
716     CALL DEBUG_STATS_RL(Nr,gsNm1,'GsNm1 (DYNAMICS)',myThid)
717     #endif
718 adcroft 1.70 ENDIF
719 adcroft 1.69 #endif
720 cnh 1.1
721 jmc 1.125 #ifdef DYNAMICS_GUGV_EXCH_CHECK
722 jmc 1.144 C- jmc: For safety checking only: This Exchange here should not change
723     C the solution. If solution changes, it means something is wrong,
724 jmc 1.125 C but it does not mean that it is less wrong with this exchange.
725 jmc 1.158 IF ( debugLevel .GE. debLevE ) THEN
726 jmc 1.125 CALL EXCH_UV_XYZ_RL(gU,gV,.TRUE.,myThid)
727     ENDIF
728     #endif
729    
730 jmc 1.123 #ifdef ALLOW_DEBUG
731 jmc 1.153 IF (debugMode) CALL DEBUG_LEAVE( 'DYNAMICS', myThid )
732 jmc 1.123 #endif
733    
734 cnh 1.1 RETURN
735     END

  ViewVC Help
Powered by ViewVC 1.1.22