/[MITgcm]/MITgcm/model/src/dynamics.F
ViewVC logotype

Annotation of /MITgcm/model/src/dynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.16 - (hide annotations) (download)
Tue Jun 9 16:34:03 1998 UTC (25 years, 11 months ago) by cnh
Branch: MAIN
Changes since 1.15: +2 -1 lines
Initialised maskC edge values to 0 to prevent
NaN errors

1 cnh 1.16 C $Header: /u/gcmpack/models/MITgcmUV/model/src/dynamics.F,v 1.15 1998/06/09 15:58:36 adcroft Exp $
2 cnh 1.1
3     #include "CPP_EEOPTIONS.h"
4    
5 cnh 1.8 SUBROUTINE DYNAMICS(myTime, myIter, myThid)
6 cnh 1.1 C /==========================================================\
7     C | SUBROUTINE DYNAMICS |
8     C | o Controlling routine for the explicit part of the model |
9     C | dynamics. |
10     C |==========================================================|
11     C | This routine evaluates the "dynamics" terms for each |
12     C | block of ocean in turn. Because the blocks of ocean have |
13     C | overlap regions they are independent of one another. |
14     C | If terms involving lateral integrals are needed in this |
15     C | routine care will be needed. Similarly finite-difference |
16     C | operations with stencils wider than the overlap region |
17     C | require special consideration. |
18     C | Notes |
19     C | ===== |
20     C | C*P* comments indicating place holders for which code is |
21     C | presently being developed. |
22     C \==========================================================/
23    
24     C == Global variables ===
25     #include "SIZE.h"
26     #include "EEPARAMS.h"
27     #include "CG2D.h"
28 adcroft 1.6 #include "PARAMS.h"
29 adcroft 1.3 #include "DYNVARS.h"
30 cnh 1.1
31     C == Routine arguments ==
32 cnh 1.8 C myTime - Current time in simulation
33     C myIter - Current iteration number in simulation
34 cnh 1.1 C myThid - Thread number for this instance of the routine.
35     INTEGER myThid
36 cnh 1.8 _RL myTime
37     INTEGER myIter
38 cnh 1.1
39     C == Local variables
40     C xA, yA - Per block temporaries holding face areas
41     C uTrans, vTrans, wTrans - Per block temporaries holding flow transport
42 cnh 1.14 C wVel o uTrans: Zonal transport
43 cnh 1.1 C o vTrans: Meridional transport
44     C o wTrans: Vertical transport
45 cnh 1.14 C o wVel: Vertical velocity at upper and lower
46     C cell faces.
47 cnh 1.1 C maskC,maskUp o maskC: land/water mask for tracer cells
48     C o maskUp: land/water mask for W points
49     C aTerm, xTerm, cTerm - Work arrays for holding separate terms in
50     C mTerm, pTerm, tendency equations.
51     C fZon, fMer, fVer[STUV] o aTerm: Advection term
52     C o xTerm: Mixing term
53     C o cTerm: Coriolis term
54     C o mTerm: Metric term
55     C o pTerm: Pressure term
56     C o fZon: Zonal flux term
57     C o fMer: Meridional flux term
58     C o fVer: Vertical flux term - note fVer
59     C is "pipelined" in the vertical
60     C so we need an fVer for each
61     C variable.
62     C iMin, iMax - Ranges and sub-block indices on which calculations
63     C jMin, jMax are applied.
64     C bi, bj
65     C k, kUp, kDown, kM1 - Index for layer above and below. kUp and kDown
66     C are switched with layer to be the appropriate index
67     C into fVerTerm
68     _RS xA (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
69     _RS yA (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
70     _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
71     _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
72     _RL wTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
73 cnh 1.14 _RL wVel (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
74 cnh 1.1 _RS maskC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
75     _RS maskUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
76     _RL aTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
77     _RL xTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
78     _RL cTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
79     _RL mTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
80     _RL pTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
81     _RL fZon (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
82     _RL fMer (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
83     _RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
84     _RL fVerS (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
85     _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
86     _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
87     _RL pH (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)
88 adcroft 1.3 _RL rhokm1(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
89     _RL rhokp1(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
90 adcroft 1.10 _RL rhotmp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
91 adcroft 1.4 _RL pSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
92     _RL pSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
93 adcroft 1.6 _RL K13 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)
94     _RL K23 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)
95     _RL K33 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)
96     _RL KapGM (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
97 adcroft 1.12 _RL KappaZT(1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nz)
98    
99 cnh 1.1 INTEGER iMin, iMax
100     INTEGER jMin, jMax
101     INTEGER bi, bj
102     INTEGER i, j
103     INTEGER k, kM1, kUp, kDown
104    
105 adcroft 1.11 C--- The algorithm...
106     C
107     C "Correction Step"
108     C =================
109     C Here we update the horizontal velocities with the surface
110     C pressure such that the resulting flow is either consistent
111     C with the free-surface evolution or the rigid-lid:
112     C U[n] = U* + dt x d/dx P
113     C V[n] = V* + dt x d/dy P
114     C
115     C "Calculation of Gs"
116     C ===================
117     C This is where all the accelerations and tendencies (ie.
118     C physics, parameterizations etc...) are calculated
119     C w = sum_z ( div. u[n] )
120     C rho = rho ( theta[n], salt[n] )
121     C K31 = K31 ( rho )
122     C Gu[n] = Gu( u[n], v[n], w, rho, Ph, ... )
123     C Gv[n] = Gv( u[n], v[n], w, rho, Ph, ... )
124     C Gt[n] = Gt( theta[n], u[n], v[n], w, K31, ... )
125     C Gs[n] = Gs( salt[n], u[n], v[n], w, K31, ... )
126     C
127 adcroft 1.12 C "Time-stepping" or "Prediction"
128 adcroft 1.11 C ================================
129     C The models variables are stepped forward with the appropriate
130     C time-stepping scheme (currently we use Adams-Bashforth II)
131     C - For momentum, the result is always *only* a "prediction"
132     C in that the flow may be divergent and will be "corrected"
133     C later with a surface pressure gradient.
134     C - Normally for tracers the result is the new field at time
135     C level [n+1} *BUT* in the case of implicit diffusion the result
136     C is also *only* a prediction.
137     C - We denote "predictors" with an asterisk (*).
138     C U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
139     C V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
140     C theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
141     C salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
142 adcroft 1.12 C With implicit diffusion:
143 adcroft 1.11 C theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
144     C salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
145 adcroft 1.12 C (1 + dt * K * d_zz) theta[n] = theta*
146     C (1 + dt * K * d_zz) salt[n] = salt*
147 adcroft 1.11 C---
148    
149 cnh 1.1 C-- Set up work arrays with valid (i.e. not NaN) values
150     C These inital values do not alter the numerical results. They
151     C just ensure that all memory references are to valid floating
152     C point numbers. This prevents spurious hardware signals due to
153     C uninitialised but inert locations.
154     DO j=1-OLy,sNy+OLy
155     DO i=1-OLx,sNx+OLx
156 adcroft 1.5 xA(i,j) = 0. _d 0
157     yA(i,j) = 0. _d 0
158     uTrans(i,j) = 0. _d 0
159     vTrans(i,j) = 0. _d 0
160     aTerm(i,j) = 0. _d 0
161     xTerm(i,j) = 0. _d 0
162     cTerm(i,j) = 0. _d 0
163     mTerm(i,j) = 0. _d 0
164     pTerm(i,j) = 0. _d 0
165     fZon(i,j) = 0. _d 0
166     fMer(i,j) = 0. _d 0
167 cnh 1.1 DO K=1,nZ
168 adcroft 1.5 pH (i,j,k) = 0. _d 0
169 adcroft 1.6 K13(i,j,k) = 0. _d 0
170     K23(i,j,k) = 0. _d 0
171     K33(i,j,k) = 0. _d 0
172 adcroft 1.12 KappaZT(i,j,k) = 0. _d 0
173 cnh 1.1 ENDDO
174 adcroft 1.5 rhokm1(i,j) = 0. _d 0
175     rhokp1(i,j) = 0. _d 0
176 adcroft 1.10 rhotmp(i,j) = 0. _d 0
177 cnh 1.16 maskC (i,j) = 0. _d 0
178 cnh 1.1 ENDDO
179     ENDDO
180    
181     DO bj=myByLo(myThid),myByHi(myThid)
182     DO bi=myBxLo(myThid),myBxHi(myThid)
183    
184 cnh 1.7 C-- Set up work arrays that need valid initial values
185     DO j=1-OLy,sNy+OLy
186     DO i=1-OLx,sNx+OLx
187     wTrans(i,j) = 0. _d 0
188 cnh 1.14 wVel (i,j,1) = 0. _d 0
189     wVel (i,j,2) = 0. _d 0
190 cnh 1.7 fVerT(i,j,1) = 0. _d 0
191     fVerT(i,j,2) = 0. _d 0
192     fVerS(i,j,1) = 0. _d 0
193     fVerS(i,j,2) = 0. _d 0
194     fVerU(i,j,1) = 0. _d 0
195     fVerU(i,j,2) = 0. _d 0
196     fVerV(i,j,1) = 0. _d 0
197     fVerV(i,j,2) = 0. _d 0
198 adcroft 1.11 pH(i,j,1) = 0. _d 0
199     K13(i,j,1) = 0. _d 0
200     K23(i,j,1) = 0. _d 0
201     K33(i,j,1) = 0. _d 0
202     KapGM(i,j) = 0. _d 0
203 cnh 1.7 ENDDO
204     ENDDO
205    
206 cnh 1.1 iMin = 1-OLx+1
207     iMax = sNx+OLx
208     jMin = 1-OLy+1
209     jMax = sNy+OLy
210    
211 adcroft 1.4 C-- Calculate gradient of surface pressure
212     CALL GRAD_PSURF(
213     I bi,bj,iMin,iMax,jMin,jMax,
214     O pSurfX,pSurfY,
215     I myThid)
216    
217     C-- Update fields in top level according to tendency terms
218 adcroft 1.11 CALL CORRECTION_STEP(
219 adcroft 1.4 I bi,bj,iMin,iMax,jMin,jMax,1,pSurfX,pSurfY,myThid)
220 cnh 1.1
221 cnh 1.7 C-- Density of 1st level (below W(1)) reference to level 1
222     CALL FIND_RHO(
223 adcroft 1.10 I bi, bj, iMin, iMax, jMin, jMax, 1, 1, eosType,
224 cnh 1.7 O rhoKm1,
225     I myThid )
226     C-- Integrate hydrostatic balance for pH with BC of pH(z=0)=0
227     CALL CALC_PH(
228     I bi,bj,iMin,iMax,jMin,jMax,1,rhoKm1,rhoKm1,
229     U pH,
230 adcroft 1.5 I myThid )
231 adcroft 1.15 DO J=jMin,jMax
232     DO I=iMin,iMax
233 adcroft 1.10 rhoKp1(I,J)=rhoKm1(I,J)
234     ENDDO
235     ENDDO
236 adcroft 1.5
237 adcroft 1.3 DO K=2,Nz
238 adcroft 1.4 C-- Update fields in Kth level according to tendency terms
239 adcroft 1.11 CALL CORRECTION_STEP(
240 adcroft 1.4 I bi,bj,iMin,iMax,jMin,jMax,K,pSurfX,pSurfY,myThid)
241 adcroft 1.10 C-- Density of K-1 level (above W(K)) reference to K-1 level
242     copt CALL FIND_RHO(
243     copt I bi, bj, iMin, iMax, jMin, jMax, K-1, K-1, eosType,
244     copt O rhoKm1,
245     copt I myThid )
246     C rhoKm1=rhoKp1
247 adcroft 1.15 DO J=jMin,jMax
248     DO I=iMin,iMax
249 adcroft 1.10 rhoKm1(I,J)=rhoKp1(I,J)
250     ENDDO
251     ENDDO
252     C-- Density of K level (below W(K)) reference to K level
253 cnh 1.7 CALL FIND_RHO(
254 adcroft 1.10 I bi, bj, iMin, iMax, jMin, jMax, K, K, eosType,
255     O rhoKp1,
256 cnh 1.7 I myThid )
257 adcroft 1.10 C-- Density of K-1 level (above W(K)) reference to K level
258 cnh 1.7 CALL FIND_RHO(
259 adcroft 1.10 I bi, bj, iMin, iMax, jMin, jMax, K-1, K, eosType,
260     O rhotmp,
261 cnh 1.7 I myThid )
262 adcroft 1.6 C-- Calculate iso-neutral slopes for the GM/Redi parameterisation
263 cnh 1.7 CALL CALC_ISOSLOPES(
264     I bi, bj, iMin, iMax, jMin, jMax, K,
265 adcroft 1.10 I rhoKm1, rhoKp1, rhotmp,
266 cnh 1.7 O K13, K23, K33, KapGM,
267     I myThid )
268 cnh 1.1 C-- Calculate static stability and mix where convectively unstable
269 cnh 1.7 CALL CONVECT(
270 adcroft 1.13 I bi,bj,iMin,iMax,jMin,jMax,K,rhotmp,rhoKp1,
271 cnh 1.8 I myTime,myIter,myThid)
272 cnh 1.7 C-- Density of K-1 level (above W(K)) reference to K-1 level
273     CALL FIND_RHO(
274 adcroft 1.10 I bi, bj, iMin, iMax, jMin, jMax, K-1, K-1, eosType,
275 cnh 1.7 O rhoKm1,
276     I myThid )
277     C-- Density of K level (below W(K)) referenced to K level
278     CALL FIND_RHO(
279 adcroft 1.10 I bi, bj, iMin, iMax, jMin, jMax, K, K, eosType,
280 cnh 1.7 O rhoKp1,
281     I myThid )
282     C-- Integrate hydrostatic balance for pH with BC of pH(z=0)=0
283     CALL CALC_PH(
284     I bi,bj,iMin,iMax,jMin,jMax,K,rhoKm1,rhoKp1,
285     U pH,
286 adcroft 1.3 I myThid )
287 cnh 1.1
288 adcroft 1.11 ENDDO ! K
289    
290     C-- Initial boundary condition on barotropic divergence integral
291     DO j=1-OLy,sNy+OLy
292     DO i=1-OLx,sNx+OLx
293     cg2d_b(i,j,bi,bj) = 0. _d 0
294     ENDDO
295 cnh 1.7 ENDDO
296 adcroft 1.5
297 cnh 1.1 DO K = Nz, 1, -1
298     kM1 =max(1,k-1) ! Points to level above k (=k-1)
299     kUp =1+MOD(k+1,2) ! Cycles through 1,2 to point to layer above
300     kDown=1+MOD(k,2) ! Cycles through 2,1 to point to current layer
301     iMin = 1-OLx+2
302     iMax = sNx+OLx-1
303     jMin = 1-OLy+2
304     jMax = sNy+OLy-1
305    
306     C-- Get temporary terms used by tendency routines
307     CALL CALC_COMMON_FACTORS (
308     I bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,
309 cnh 1.14 O xA,yA,uTrans,vTrans,wTrans,wVel,maskC,maskUp,
310 cnh 1.1 I myThid)
311    
312 adcroft 1.12 C-- Calculate the total vertical diffusivity
313     CALL CALC_DIFFUSIVITY(
314     I bi,bj,iMin,iMax,jMin,jMax,K,
315     I maskC,maskUp,KapGM,K33,
316     O KappaZT,
317     I myThid)
318    
319 cnh 1.1 C-- Calculate accelerations in the momentum equations
320 cnh 1.9 IF ( momStepping ) THEN
321     CALL CALC_MOM_RHS(
322     I bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,
323 cnh 1.14 I xA,yA,uTrans,vTrans,wTrans,wVel,maskC,
324 cnh 1.9 I pH,
325     U aTerm,xTerm,cTerm,mTerm,pTerm,
326     U fZon, fMer, fVerU, fVerV,
327     I myThid)
328     ENDIF
329 cnh 1.1
330     C-- Calculate active tracer tendencies
331 cnh 1.9 IF ( tempStepping ) THEN
332     CALL CALC_GT(
333     I bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,
334     I xA,yA,uTrans,vTrans,wTrans,maskUp,
335 adcroft 1.12 I K13,K23,KappaZT,KapGM,
336 cnh 1.9 U aTerm,xTerm,fZon,fMer,fVerT,
337     I myThid)
338     ENDIF
339 cnh 1.1 Cdbg CALL CALC_GS(
340     Cdbg I bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,
341     Cdbg I xA,yA,uTrans,vTrans,wTrans,maskUp,
342 adcroft 1.6 Cdbg I K13,K23,K33,KapGM,
343 cnh 1.1 Cdbg U aTerm,xTerm,fZon,fMer,fVerS,
344     Cdbg I myThid)
345    
346 adcroft 1.11 C-- Prediction step (step forward all model variables)
347     CALL TIMESTEP(
348     I bi,bj,iMin,iMax,jMin,jMax,K,
349     I myThid)
350    
351     C-- Diagnose barotropic divergence of predicted fields
352     CALL DIV_G(
353     I bi,bj,iMin,iMax,jMin,jMax,K,
354     I xA,yA,
355     I myThid)
356    
357     ENDDO ! K
358 adcroft 1.12
359     C-- Implicit diffusion
360     IF (implicitDiffusion) THEN
361     CALL IMPLDIFF( bi, bj, iMin, iMax, jMin, jMax,
362     I KappaZT,
363     I myThid )
364     ENDIF
365 cnh 1.1
366     ENDDO
367     ENDDO
368 adcroft 1.6
369 adcroft 1.15 write(0,*) 'dynamics: pS ',minval(cg2d_x(1:sNx,1:sNy,:,:)),
370     & maxval(cg2d_x(1:sNx,1:sNy,:,:))
371     write(0,*) 'dynamics: U ',minval(uVel(1:sNx,1:sNy,:,:,:)),
372     & maxval(uVel(1:sNx,1:sNy,:,:,:))
373     write(0,*) 'dynamics: V ',minval(vVel(1:sNx,1:sNy,:,:,:)),
374     & maxval(vVel(1:sNx,1:sNy,:,:,:))
375     cblk write(0,*) 'dynamics: K13',minval(K13(1:sNx,1:sNy,:)),
376     cblk & maxval(K13(1:sNx,1:sNy,:))
377     cblk write(0,*) 'dynamics: K23',minval(K23(1:sNx,1:sNy,:)),
378     cblk & maxval(K23(1:sNx,1:sNy,:))
379     cblk write(0,*) 'dynamics: K33',minval(K33(1:sNx,1:sNy,:)),
380     cblk & maxval(K33(1:sNx,1:sNy,:))
381     write(0,*) 'dynamics: gT ',minval(gT(1:sNx,1:sNy,:,:,:)),
382     & maxval(gT(1:sNx,1:sNy,:,:,:))
383     write(0,*) 'dynamics: T ',minval(Theta(1:sNx,1:sNy,:,:,:)),
384     & maxval(Theta(1:sNx,1:sNy,:,:,:))
385     cblk write(0,*) 'dynamics: pH ',minval(pH/(Gravity*Rhonil)),
386     cblk & maxval(pH/(Gravity*Rhonil))
387 cnh 1.1
388     RETURN
389     END

  ViewVC Help
Powered by ViewVC 1.1.22