/[MITgcm]/MITgcm/model/src/dynamics.F
ViewVC logotype

Annotation of /MITgcm/model/src/dynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.133 - (hide annotations) (download)
Wed May 31 19:53:28 2006 UTC (17 years, 11 months ago) by heimbach
Branch: MAIN
CVS Tags: checkpoint58f_post, checkpoint58g_post
Changes since 1.132: +4 -2 lines
Enable variable grid visc. for adjoint, but still exclude
calcLeith and calcSmag

1 heimbach 1.133 C $Header: /u/gcmpack/MITgcm/model/src/dynamics.F,v 1.132 2006/05/03 23:34:41 heimbach Exp $
2 heimbach 1.78 C $Name: $
3 cnh 1.1
4 edhill 1.100 #include "PACKAGES_CONFIG.h"
5 adcroft 1.24 #include "CPP_OPTIONS.h"
6 heimbach 1.131 #ifdef ALLOW_OBCS
7     # include "OBCS_OPTIONS.h"
8     #endif
9    
10 jmc 1.125 #undef DYNAMICS_GUGV_EXCH_CHECK
11 cnh 1.1
12 cnh 1.82 CBOP
13     C !ROUTINE: DYNAMICS
14     C !INTERFACE:
15 cnh 1.8 SUBROUTINE DYNAMICS(myTime, myIter, myThid)
16 cnh 1.82 C !DESCRIPTION: \bv
17     C *==========================================================*
18     C | SUBROUTINE DYNAMICS
19     C | o Controlling routine for the explicit part of the model
20     C | dynamics.
21     C *==========================================================*
22     C | This routine evaluates the "dynamics" terms for each
23     C | block of ocean in turn. Because the blocks of ocean have
24     C | overlap regions they are independent of one another.
25     C | If terms involving lateral integrals are needed in this
26     C | routine care will be needed. Similarly finite-difference
27     C | operations with stencils wider than the overlap region
28     C | require special consideration.
29     C | The algorithm...
30     C |
31     C | "Correction Step"
32     C | =================
33     C | Here we update the horizontal velocities with the surface
34     C | pressure such that the resulting flow is either consistent
35     C | with the free-surface evolution or the rigid-lid:
36     C | U[n] = U* + dt x d/dx P
37     C | V[n] = V* + dt x d/dy P
38 jmc 1.122 C | W[n] = W* + dt x d/dz P (NH mode)
39 cnh 1.82 C |
40     C | "Calculation of Gs"
41     C | ===================
42     C | This is where all the accelerations and tendencies (ie.
43     C | physics, parameterizations etc...) are calculated
44     C | rho = rho ( theta[n], salt[n] )
45     C | b = b(rho, theta)
46     C | K31 = K31 ( rho )
47     C | Gu[n] = Gu( u[n], v[n], wVel, b, ... )
48     C | Gv[n] = Gv( u[n], v[n], wVel, b, ... )
49     C | Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
50     C | Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
51     C |
52     C | "Time-stepping" or "Prediction"
53     C | ================================
54     C | The models variables are stepped forward with the appropriate
55     C | time-stepping scheme (currently we use Adams-Bashforth II)
56     C | - For momentum, the result is always *only* a "prediction"
57     C | in that the flow may be divergent and will be "corrected"
58     C | later with a surface pressure gradient.
59     C | - Normally for tracers the result is the new field at time
60     C | level [n+1} *BUT* in the case of implicit diffusion the result
61     C | is also *only* a prediction.
62     C | - We denote "predictors" with an asterisk (*).
63     C | U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
64     C | V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
65     C | theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
66     C | salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
67     C | With implicit diffusion:
68     C | theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
69     C | salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
70     C | (1 + dt * K * d_zz) theta[n] = theta*
71     C | (1 + dt * K * d_zz) salt[n] = salt*
72     C |
73     C *==========================================================*
74     C \ev
75     C !USES:
76 adcroft 1.40 IMPLICIT NONE
77 cnh 1.1 C == Global variables ===
78     #include "SIZE.h"
79     #include "EEPARAMS.h"
80 adcroft 1.6 #include "PARAMS.h"
81 adcroft 1.3 #include "DYNVARS.h"
82 edhill 1.103 #ifdef ALLOW_CD_CODE
83     #include "CD_CODE_VARS.h"
84     #endif
85 adcroft 1.42 #include "GRID.h"
86 heimbach 1.49 #ifdef ALLOW_AUTODIFF_TAMC
87 heimbach 1.53 # include "tamc.h"
88     # include "tamc_keys.h"
89 heimbach 1.67 # include "FFIELDS.h"
90 heimbach 1.91 # include "EOS.h"
91 heimbach 1.67 # ifdef ALLOW_KPP
92     # include "KPP.h"
93     # endif
94 heimbach 1.131 # ifdef ALLOW_PTRACERS
95     # include "PTRACERS_SIZE.h"
96     # include "PTRACERS.h"
97     # endif
98     # ifdef ALLOW_OBCS
99     # include "OBCS.h"
100     # ifdef ALLOW_PTRACERS
101     # include "OBCS_PTRACERS.h"
102     # endif
103     # endif
104 heimbach 1.133 # ifdef ALLOW_MOM_FLUXFORM
105     # include "MOM_FLUXFORM.h"
106     # endif
107 heimbach 1.53 #endif /* ALLOW_AUTODIFF_TAMC */
108 jmc 1.62
109 cnh 1.82 C !CALLING SEQUENCE:
110     C DYNAMICS()
111     C |
112 jmc 1.122 C |-- CALC_EP_FORCING
113     C |
114 cnh 1.82 C |-- CALC_GRAD_PHI_SURF
115     C |
116     C |-- CALC_VISCOSITY
117     C |
118     C |-- CALC_PHI_HYD
119     C |
120     C |-- MOM_FLUXFORM
121     C |
122     C |-- MOM_VECINV
123     C |
124     C |-- TIMESTEP
125     C |
126     C |-- OBCS_APPLY_UV
127     C |
128 jmc 1.122 C |-- MOM_U_IMPLICIT_R
129     C |-- MOM_V_IMPLICIT_R
130     C |
131 cnh 1.82 C |-- IMPLDIFF
132     C |
133     C |-- OBCS_APPLY_UV
134     C |
135 jmc 1.122 C |-- CALC_GW
136     C |
137     C |-- DIAGNOSTICS_FILL
138     C |-- DEBUG_STATS_RL
139 cnh 1.82
140     C !INPUT/OUTPUT PARAMETERS:
141 cnh 1.1 C == Routine arguments ==
142 cnh 1.8 C myTime - Current time in simulation
143     C myIter - Current iteration number in simulation
144 cnh 1.1 C myThid - Thread number for this instance of the routine.
145 cnh 1.8 _RL myTime
146     INTEGER myIter
147 adcroft 1.47 INTEGER myThid
148 cnh 1.1
149 cnh 1.82 C !LOCAL VARIABLES:
150 cnh 1.1 C == Local variables
151 jmc 1.113 C fVer[UV] o fVer: Vertical flux term - note fVer
152     C is "pipelined" in the vertical
153     C so we need an fVer for each
154     C variable.
155 jmc 1.94 C phiHydC :: hydrostatic potential anomaly at cell center
156     C In z coords phiHyd is the hydrostatic potential
157     C (=pressure/rho0) anomaly
158     C In p coords phiHyd is the geopotential height anomaly.
159     C phiHydF :: hydrostatic potential anomaly at middle between 2 centers
160     C dPhiHydX,Y :: Gradient (X & Y directions) of hydrostatic potential anom.
161     C phiSurfX, :: gradient of Surface potential (Pressure/rho, ocean)
162 jmc 1.92 C phiSurfY or geopotential (atmos) in X and Y direction
163 jmc 1.110 C guDissip :: dissipation tendency (all explicit terms), u component
164     C gvDissip :: dissipation tendency (all explicit terms), v component
165 cnh 1.30 C iMin, iMax - Ranges and sub-block indices on which calculations
166     C jMin, jMax are applied.
167 cnh 1.1 C bi, bj
168 heimbach 1.53 C k, kup, - Index for layer above and below. kup and kDown
169     C kDown, km1 are switched with layer to be the appropriate
170 cnh 1.38 C index into fVerTerm.
171 cnh 1.30 _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
172     _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
173 jmc 1.94 _RL phiHydF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
174     _RL phiHydC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
175 jmc 1.92 _RL dPhiHydX(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
176     _RL dPhiHydY(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
177 jmc 1.63 _RL phiSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
178     _RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
179 jmc 1.110 _RL guDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
180     _RL gvDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
181 adcroft 1.42 _RL KappaRU (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
182     _RL KappaRV (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
183 adcroft 1.12
184 cnh 1.1 INTEGER iMin, iMax
185     INTEGER jMin, jMax
186     INTEGER bi, bj
187     INTEGER i, j
188 heimbach 1.77 INTEGER k, km1, kp1, kup, kDown
189 cnh 1.1
190 jmc 1.113 #ifdef ALLOW_DIAGNOSTICS
191 jmc 1.120 _RL tmpFac
192 jmc 1.113 #endif /* ALLOW_DIAGNOSTICS */
193    
194 jmc 1.62
195 adcroft 1.11 C--- The algorithm...
196     C
197     C "Correction Step"
198     C =================
199     C Here we update the horizontal velocities with the surface
200     C pressure such that the resulting flow is either consistent
201     C with the free-surface evolution or the rigid-lid:
202     C U[n] = U* + dt x d/dx P
203     C V[n] = V* + dt x d/dy P
204     C
205     C "Calculation of Gs"
206     C ===================
207     C This is where all the accelerations and tendencies (ie.
208 heimbach 1.53 C physics, parameterizations etc...) are calculated
209 adcroft 1.11 C rho = rho ( theta[n], salt[n] )
210 cnh 1.27 C b = b(rho, theta)
211 adcroft 1.11 C K31 = K31 ( rho )
212 jmc 1.61 C Gu[n] = Gu( u[n], v[n], wVel, b, ... )
213     C Gv[n] = Gv( u[n], v[n], wVel, b, ... )
214     C Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
215     C Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
216 adcroft 1.11 C
217 adcroft 1.12 C "Time-stepping" or "Prediction"
218 adcroft 1.11 C ================================
219     C The models variables are stepped forward with the appropriate
220     C time-stepping scheme (currently we use Adams-Bashforth II)
221     C - For momentum, the result is always *only* a "prediction"
222     C in that the flow may be divergent and will be "corrected"
223     C later with a surface pressure gradient.
224     C - Normally for tracers the result is the new field at time
225     C level [n+1} *BUT* in the case of implicit diffusion the result
226     C is also *only* a prediction.
227     C - We denote "predictors" with an asterisk (*).
228     C U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
229     C V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
230     C theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
231     C salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
232 adcroft 1.12 C With implicit diffusion:
233 adcroft 1.11 C theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
234     C salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
235 adcroft 1.12 C (1 + dt * K * d_zz) theta[n] = theta*
236     C (1 + dt * K * d_zz) salt[n] = salt*
237 adcroft 1.11 C---
238 cnh 1.82 CEOP
239 adcroft 1.11
240 jmc 1.123 #ifdef ALLOW_DEBUG
241     IF ( debugLevel .GE. debLevB )
242     & CALL DEBUG_ENTER( 'DYNAMICS', myThid )
243     #endif
244    
245 heimbach 1.88 C-- Call to routine for calculation of
246     C Eliassen-Palm-flux-forced U-tendency,
247     C if desired:
248     #ifdef INCLUDE_EP_FORCING_CODE
249     CALL CALC_EP_FORCING(myThid)
250     #endif
251    
252 heimbach 1.76 #ifdef ALLOW_AUTODIFF_TAMC
253     C-- HPF directive to help TAMC
254     CHPF$ INDEPENDENT
255     #endif /* ALLOW_AUTODIFF_TAMC */
256    
257 cnh 1.1 DO bj=myByLo(myThid),myByHi(myThid)
258 heimbach 1.76
259     #ifdef ALLOW_AUTODIFF_TAMC
260     C-- HPF directive to help TAMC
261     CHPF$ INDEPENDENT, NEW (fVerU,fVerV
262 jmc 1.94 CHPF$& ,phiHydF
263 heimbach 1.76 CHPF$& ,KappaRU,KappaRV
264     CHPF$& )
265     #endif /* ALLOW_AUTODIFF_TAMC */
266    
267 cnh 1.1 DO bi=myBxLo(myThid),myBxHi(myThid)
268 heimbach 1.76
269     #ifdef ALLOW_AUTODIFF_TAMC
270     act1 = bi - myBxLo(myThid)
271     max1 = myBxHi(myThid) - myBxLo(myThid) + 1
272     act2 = bj - myByLo(myThid)
273     max2 = myByHi(myThid) - myByLo(myThid) + 1
274     act3 = myThid - 1
275     max3 = nTx*nTy
276     act4 = ikey_dynamics - 1
277 heimbach 1.91 idynkey = (act1 + 1) + act2*max1
278 heimbach 1.76 & + act3*max1*max2
279     & + act4*max1*max2*max3
280     #endif /* ALLOW_AUTODIFF_TAMC */
281    
282 heimbach 1.97 C-- Set up work arrays with valid (i.e. not NaN) values
283     C These inital values do not alter the numerical results. They
284     C just ensure that all memory references are to valid floating
285     C point numbers. This prevents spurious hardware signals due to
286     C uninitialised but inert locations.
287    
288 jmc 1.94 DO k=1,Nr
289     DO j=1-OLy,sNy+OLy
290     DO i=1-OLx,sNx+OLx
291 heimbach 1.87 KappaRU(i,j,k) = 0. _d 0
292     KappaRV(i,j,k) = 0. _d 0
293 heimbach 1.97 #ifdef ALLOW_AUTODIFF_TAMC
294     cph(
295     c-- need some re-initialisation here to break dependencies
296     cph)
297 jmc 1.122 gU(i,j,k,bi,bj) = 0. _d 0
298     gV(i,j,k,bi,bj) = 0. _d 0
299 heimbach 1.97 #endif
300 heimbach 1.87 ENDDO
301 jmc 1.94 ENDDO
302     ENDDO
303     DO j=1-OLy,sNy+OLy
304     DO i=1-OLx,sNx+OLx
305 heimbach 1.76 fVerU (i,j,1) = 0. _d 0
306     fVerU (i,j,2) = 0. _d 0
307     fVerV (i,j,1) = 0. _d 0
308     fVerV (i,j,2) = 0. _d 0
309 jmc 1.94 phiHydF (i,j) = 0. _d 0
310     phiHydC (i,j) = 0. _d 0
311 jmc 1.92 dPhiHydX(i,j) = 0. _d 0
312     dPhiHydY(i,j) = 0. _d 0
313 heimbach 1.97 phiSurfX(i,j) = 0. _d 0
314     phiSurfY(i,j) = 0. _d 0
315 jmc 1.110 guDissip(i,j) = 0. _d 0
316     gvDissip(i,j) = 0. _d 0
317 heimbach 1.132 #ifdef ALLOW_AUTODIFF_TAMC
318     cph(
319     c-- need some re-initialisation here to break dependencies
320     cph)
321     # ifdef NONLIN_FRSURF
322     # ifndef DISABLE_RSTAR_CODE
323     dWtransC(i,j,bi,bj) = 0. _d 0
324     dWtransU(i,j,bi,bj) = 0. _d 0
325     dWtransV(i,j,bi,bj) = 0. _d 0
326     # endif
327     # endif /* NONLIN_FRSURF */
328     #endif /* ALLOW_AUTODIFF_TAMC */
329 heimbach 1.76 ENDDO
330     ENDDO
331 heimbach 1.49
332 jmc 1.63 C-- Start computation of dynamics
333 jmc 1.93 iMin = 0
334     iMax = sNx+1
335     jMin = 0
336     jMax = sNy+1
337 jmc 1.63
338 heimbach 1.76 #ifdef ALLOW_AUTODIFF_TAMC
339 heimbach 1.91 CADJ STORE wvel (:,:,:,bi,bj) =
340     CADJ & comlev1_bibj, key = idynkey, byte = isbyte
341 heimbach 1.76 #endif /* ALLOW_AUTODIFF_TAMC */
342    
343 jmc 1.65 C-- Explicit part of the Surface Potentiel Gradient (add in TIMESTEP)
344 jmc 1.63 C (note: this loop will be replaced by CALL CALC_GRAD_ETA)
345     IF (implicSurfPress.NE.1.) THEN
346 jmc 1.65 CALL CALC_GRAD_PHI_SURF(
347     I bi,bj,iMin,iMax,jMin,jMax,
348     I etaN,
349     O phiSurfX,phiSurfY,
350     I myThid )
351 jmc 1.63 ENDIF
352 heimbach 1.83
353     #ifdef ALLOW_AUTODIFF_TAMC
354 heimbach 1.91 CADJ STORE uvel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
355     CADJ STORE vvel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
356 heimbach 1.83 #ifdef ALLOW_KPP
357     CADJ STORE KPPviscAz (:,:,:,bi,bj)
358 heimbach 1.91 CADJ & = comlev1_bibj, key=idynkey, byte=isbyte
359 heimbach 1.83 #endif /* ALLOW_KPP */
360     #endif /* ALLOW_AUTODIFF_TAMC */
361 adcroft 1.58
362 heimbach 1.77 #ifdef INCLUDE_CALC_DIFFUSIVITY_CALL
363     C-- Calculate the total vertical diffusivity
364     DO k=1,Nr
365     CALL CALC_VISCOSITY(
366     I bi,bj,iMin,iMax,jMin,jMax,k,
367     O KappaRU,KappaRV,
368     I myThid)
369     ENDDO
370     #endif
371    
372 heimbach 1.101 #ifdef ALLOW_AUTODIFF_TAMC
373     CADJ STORE KappaRU(:,:,:)
374 heimbach 1.132 CADJ & = comlev1_bibj, key=idynkey, byte=isbyte
375 heimbach 1.101 CADJ STORE KappaRV(:,:,:)
376 heimbach 1.132 CADJ & = comlev1_bibj, key=idynkey, byte=isbyte
377 heimbach 1.101 #endif /* ALLOW_AUTODIFF_TAMC */
378    
379 adcroft 1.58 C-- Start of dynamics loop
380     DO k=1,Nr
381    
382     C-- km1 Points to level above k (=k-1)
383     C-- kup Cycles through 1,2 to point to layer above
384     C-- kDown Cycles through 2,1 to point to current layer
385    
386     km1 = MAX(1,k-1)
387 heimbach 1.77 kp1 = MIN(k+1,Nr)
388 adcroft 1.58 kup = 1+MOD(k+1,2)
389     kDown= 1+MOD(k,2)
390    
391 heimbach 1.76 #ifdef ALLOW_AUTODIFF_TAMC
392 heimbach 1.91 kkey = (idynkey-1)*Nr + k
393 heimbach 1.99 c
394 heimbach 1.95 CADJ STORE totphihyd (:,:,k,bi,bj)
395 heimbach 1.99 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
396     CADJ STORE theta (:,:,k,bi,bj)
397     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
398     CADJ STORE salt (:,:,k,bi,bj)
399 heimbach 1.95 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
400 heimbach 1.129 CADJ STORE gt(:,:,k,bi,bj)
401     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
402     CADJ STORE gs(:,:,k,bi,bj)
403     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
404 heimbach 1.126 # ifdef NONLIN_FRSURF
405     cph-test
406     CADJ STORE phiHydC (:,:)
407     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
408     CADJ STORE phiHydF (:,:)
409     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
410     CADJ STORE gudissip (:,:)
411     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
412     CADJ STORE gvdissip (:,:)
413     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
414     CADJ STORE fVerU (:,:,:)
415     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
416     CADJ STORE fVerV (:,:,:)
417     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
418     CADJ STORE gu(:,:,k,bi,bj)
419     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
420     CADJ STORE gv(:,:,k,bi,bj)
421     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
422     CADJ STORE gunm1(:,:,k,bi,bj)
423     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
424     CADJ STORE gvnm1(:,:,k,bi,bj)
425     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
426 heimbach 1.132 # ifndef DISABLE_RSTAR_CODE
427     CADJ STORE dwtransc(:,:,bi,bj)
428     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
429     CADJ STORE dwtransu(:,:,bi,bj)
430     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
431     CADJ STORE dwtransv(:,:,bi,bj)
432     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
433     # endif
434 heimbach 1.126 # ifdef ALLOW_CD_CODE
435     CADJ STORE unm1(:,:,k,bi,bj)
436     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
437     CADJ STORE vnm1(:,:,k,bi,bj)
438     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
439     CADJ STORE uVelD(:,:,k,bi,bj)
440     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
441     CADJ STORE vVelD(:,:,k,bi,bj)
442     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
443     # endif
444     # endif
445 heimbach 1.76 #endif /* ALLOW_AUTODIFF_TAMC */
446    
447 adcroft 1.58 C-- Integrate hydrostatic balance for phiHyd with BC of
448     C phiHyd(z=0)=0
449 jmc 1.128 IF ( implicitIntGravWave ) THEN
450     CALL CALC_PHI_HYD(
451     I bi,bj,iMin,iMax,jMin,jMax,k,
452     I gT, gS,
453     U phiHydF,
454     O phiHydC, dPhiHydX, dPhiHydY,
455     I myTime, myIter, myThid )
456     ELSE
457     CALL CALC_PHI_HYD(
458 adcroft 1.58 I bi,bj,iMin,iMax,jMin,jMax,k,
459     I theta, salt,
460 jmc 1.94 U phiHydF,
461     O phiHydC, dPhiHydX, dPhiHydY,
462 jmc 1.92 I myTime, myIter, myThid )
463 jmc 1.128 ENDIF
464 mlosch 1.89
465 adcroft 1.58 C-- Calculate accelerations in the momentum equations (gU, gV, ...)
466 jmc 1.96 C and step forward storing the result in gU, gV, etc...
467 adcroft 1.58 IF ( momStepping ) THEN
468 heimbach 1.132 IF (.NOT. vectorInvariantMomentum) THEN
469 edhill 1.105 #ifdef ALLOW_MOM_FLUXFORM
470 heimbach 1.132 C
471     # ifdef ALLOW_AUTODIFF_TAMC
472     # ifdef NONLIN_FRSURF
473     # ifndef DISABLE_RSTAR_CODE
474     CADJ STORE dwtransc(:,:,bi,bj)
475     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
476     CADJ STORE dwtransu(:,:,bi,bj)
477     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
478     CADJ STORE dwtransv(:,:,bi,bj)
479     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
480     # endif
481     # endif
482     # endif /* ALLOW_AUTODIFF_TAMC */
483     C
484     CALL MOM_FLUXFORM(
485 adcroft 1.58 I bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
486 jmc 1.121 I KappaRU, KappaRV,
487 adcroft 1.58 U fVerU, fVerV,
488 jmc 1.121 O guDissip, gvDissip,
489 adcroft 1.80 I myTime, myIter, myThid)
490 adcroft 1.79 #endif
491 heimbach 1.132 ELSE
492 edhill 1.105 #ifdef ALLOW_MOM_VECINV
493 heimbach 1.126 C
494     # ifdef ALLOW_AUTODIFF_TAMC
495     # ifdef NONLIN_FRSURF
496     CADJ STORE fVerU(:,:,:)
497     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
498     CADJ STORE fVerV(:,:,:)
499     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
500     # endif
501     # endif /* ALLOW_AUTODIFF_TAMC */
502     C
503     CALL MOM_VECINV(
504 adcroft 1.79 I bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
505 jmc 1.121 I KappaRU, KappaRV,
506 adcroft 1.79 U fVerU, fVerV,
507 jmc 1.110 O guDissip, gvDissip,
508 adcroft 1.80 I myTime, myIter, myThid)
509 heimbach 1.132 #endif
510 heimbach 1.126 ENDIF
511 heimbach 1.132 C
512 adcroft 1.58 CALL TIMESTEP(
513 jmc 1.63 I bi,bj,iMin,iMax,jMin,jMax,k,
514 jmc 1.94 I dPhiHydX,dPhiHydY, phiSurfX, phiSurfY,
515 jmc 1.110 I guDissip, gvDissip,
516 jmc 1.96 I myTime, myIter, myThid)
517 adcroft 1.58
518     #ifdef ALLOW_OBCS
519     C-- Apply open boundary conditions
520 jmc 1.96 IF (useOBCS) THEN
521     CALL OBCS_APPLY_UV( bi, bj, k, gU, gV, myThid )
522     ENDIF
523 adcroft 1.58 #endif /* ALLOW_OBCS */
524    
525     ENDIF
526    
527    
528     C-- end of dynamics k loop (1:Nr)
529     ENDDO
530    
531 jmc 1.106 C-- Implicit Vertical advection & viscosity
532 jmc 1.130 #if (defined (INCLUDE_IMPLVERTADV_CODE) && defined (ALLOW_MOM_COMMON))
533 jmc 1.106 IF ( momImplVertAdv ) THEN
534     CALL MOM_U_IMPLICIT_R( kappaRU,
535     I bi, bj, myTime, myIter, myThid )
536     CALL MOM_V_IMPLICIT_R( kappaRV,
537     I bi, bj, myTime, myIter, myThid )
538     ELSEIF ( implicitViscosity ) THEN
539     #else /* INCLUDE_IMPLVERTADV_CODE */
540     IF ( implicitViscosity ) THEN
541     #endif /* INCLUDE_IMPLVERTADV_CODE */
542 adcroft 1.58 #ifdef ALLOW_AUTODIFF_TAMC
543 heimbach 1.101 CADJ STORE KappaRU(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
544 jmc 1.96 CADJ STORE gU(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
545 adcroft 1.58 #endif /* ALLOW_AUTODIFF_TAMC */
546 adcroft 1.42 CALL IMPLDIFF(
547     I bi, bj, iMin, iMax, jMin, jMax,
548 jmc 1.124 I -1, KappaRU,recip_HFacW,
549 jmc 1.96 U gU,
550 adcroft 1.42 I myThid )
551 adcroft 1.58 #ifdef ALLOW_AUTODIFF_TAMC
552 heimbach 1.101 CADJ STORE KappaRV(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
553 heimbach 1.97 CADJ STORE gV(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
554 adcroft 1.58 #endif /* ALLOW_AUTODIFF_TAMC */
555 adcroft 1.42 CALL IMPLDIFF(
556     I bi, bj, iMin, iMax, jMin, jMax,
557 jmc 1.124 I -2, KappaRV,recip_HFacS,
558 jmc 1.96 U gV,
559 adcroft 1.42 I myThid )
560 jmc 1.106 ENDIF
561 heimbach 1.49
562 adcroft 1.58 #ifdef ALLOW_OBCS
563     C-- Apply open boundary conditions
564 jmc 1.106 IF ( useOBCS .AND.(implicitViscosity.OR.momImplVertAdv) ) THEN
565 adcroft 1.58 DO K=1,Nr
566 jmc 1.96 CALL OBCS_APPLY_UV( bi, bj, k, gU, gV, myThid )
567 adcroft 1.58 ENDDO
568 jmc 1.106 ENDIF
569 adcroft 1.58 #endif /* ALLOW_OBCS */
570 heimbach 1.49
571 edhill 1.102 #ifdef ALLOW_CD_CODE
572 jmc 1.106 IF (implicitViscosity.AND.useCDscheme) THEN
573 adcroft 1.58 #ifdef ALLOW_AUTODIFF_TAMC
574 heimbach 1.91 CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
575 adcroft 1.58 #endif /* ALLOW_AUTODIFF_TAMC */
576 adcroft 1.42 CALL IMPLDIFF(
577     I bi, bj, iMin, iMax, jMin, jMax,
578 jmc 1.111 I 0, KappaRU,recip_HFacW,
579 adcroft 1.42 U vVelD,
580     I myThid )
581 adcroft 1.58 #ifdef ALLOW_AUTODIFF_TAMC
582 heimbach 1.91 CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
583 adcroft 1.58 #endif /* ALLOW_AUTODIFF_TAMC */
584 adcroft 1.42 CALL IMPLDIFF(
585     I bi, bj, iMin, iMax, jMin, jMax,
586 jmc 1.111 I 0, KappaRV,recip_HFacS,
587 adcroft 1.42 U uVelD,
588     I myThid )
589 jmc 1.106 ENDIF
590 edhill 1.102 #endif /* ALLOW_CD_CODE */
591 jmc 1.106 C-- End implicit Vertical advection & viscosity
592 cnh 1.1
593     ENDDO
594     ENDDO
595 mlosch 1.90
596 heimbach 1.109 #ifdef ALLOW_OBCS
597     IF (useOBCS) THEN
598     CALL OBCS_PRESCRIBE_EXCHANGES(myThid)
599     ENDIF
600     #endif
601    
602 jmc 1.113 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
603    
604 jmc 1.122 #ifdef ALLOW_NONHYDROSTATIC
605     C-- Step forward W field in N-H algorithm
606 jmc 1.128 IF ( nonHydrostatic ) THEN
607 jmc 1.122 #ifdef ALLOW_DEBUG
608 jmc 1.123 IF ( debugLevel .GE. debLevB )
609     & CALL DEBUG_CALL('CALC_GW', myThid )
610 jmc 1.122 #endif
611     CALL TIMER_START('CALC_GW [DYNAMICS]',myThid)
612     CALL CALC_GW( myTime, myIter, myThid )
613     ENDIF
614 jmc 1.128 IF ( nonHydrostatic.OR.implicitIntGravWave )
615     & CALL TIMESTEP_WVEL( myTime, myIter, myThid )
616     IF ( nonHydrostatic )
617     & CALL TIMER_STOP ('CALC_GW [DYNAMICS]',myThid)
618 jmc 1.122 #endif
619    
620     C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
621    
622 mlosch 1.90 Cml(
623     C In order to compare the variance of phiHydLow of a p/z-coordinate
624     C run with etaH of a z/p-coordinate run the drift of phiHydLow
625     C has to be removed by something like the following subroutine:
626     C CALL REMOVE_MEAN_RL( 1, phiHydLow, maskH, maskH, rA, drF,
627     C & 'phiHydLow', myThid )
628     Cml)
629 adcroft 1.69
630 jmc 1.113 #ifdef ALLOW_DIAGNOSTICS
631 jmc 1.130 IF ( useDiagnostics ) THEN
632 jmc 1.113
633     CALL DIAGNOSTICS_FILL(totPhihyd,'PHIHYD ',0,Nr,0,1,1,myThid)
634 jmc 1.120 CALL DIAGNOSTICS_FILL(phiHydLow,'PHIBOT ',0, 1,0,1,1,myThid)
635 molod 1.116
636 jmc 1.120 tmpFac = 1. _d 0
637     CALL DIAGNOSTICS_SCALE_FILL(totPhihyd,tmpFac,2,
638     & 'PHIHYDSQ',0,Nr,0,1,1,myThid)
639 molod 1.116
640 jmc 1.120 CALL DIAGNOSTICS_SCALE_FILL(phiHydLow,tmpFac,2,
641     & 'PHIBOTSQ',0, 1,0,1,1,myThid)
642 jmc 1.113
643     ENDIF
644     #endif /* ALLOW_DIAGNOSTICS */
645    
646 edhill 1.104 #ifdef ALLOW_DEBUG
647 heimbach 1.98 If ( debugLevel .GE. debLevB ) THEN
648 adcroft 1.69 CALL DEBUG_STATS_RL(1,EtaN,'EtaN (DYNAMICS)',myThid)
649 adcroft 1.73 CALL DEBUG_STATS_RL(Nr,uVel,'Uvel (DYNAMICS)',myThid)
650 adcroft 1.69 CALL DEBUG_STATS_RL(Nr,vVel,'Vvel (DYNAMICS)',myThid)
651     CALL DEBUG_STATS_RL(Nr,wVel,'Wvel (DYNAMICS)',myThid)
652     CALL DEBUG_STATS_RL(Nr,theta,'Theta (DYNAMICS)',myThid)
653     CALL DEBUG_STATS_RL(Nr,salt,'Salt (DYNAMICS)',myThid)
654 jmc 1.115 CALL DEBUG_STATS_RL(Nr,gU,'Gu (DYNAMICS)',myThid)
655     CALL DEBUG_STATS_RL(Nr,gV,'Gv (DYNAMICS)',myThid)
656     CALL DEBUG_STATS_RL(Nr,gT,'Gt (DYNAMICS)',myThid)
657     CALL DEBUG_STATS_RL(Nr,gS,'Gs (DYNAMICS)',myThid)
658     #ifndef ALLOW_ADAMSBASHFORTH_3
659     CALL DEBUG_STATS_RL(Nr,guNm1,'GuNm1 (DYNAMICS)',myThid)
660     CALL DEBUG_STATS_RL(Nr,gvNm1,'GvNm1 (DYNAMICS)',myThid)
661     CALL DEBUG_STATS_RL(Nr,gtNm1,'GtNm1 (DYNAMICS)',myThid)
662     CALL DEBUG_STATS_RL(Nr,gsNm1,'GsNm1 (DYNAMICS)',myThid)
663     #endif
664 adcroft 1.70 ENDIF
665 adcroft 1.69 #endif
666 cnh 1.1
667 jmc 1.125 #ifdef DYNAMICS_GUGV_EXCH_CHECK
668     C- jmc: For safety checking only: This Exchange here should not change
669     C the solution. If solution changes, it means something is wrong,
670     C but it does not mean that it is less wrong with this exchange.
671     IF ( debugLevel .GT. debLevB ) THEN
672     CALL EXCH_UV_XYZ_RL(gU,gV,.TRUE.,myThid)
673     ENDIF
674     #endif
675    
676 jmc 1.123 #ifdef ALLOW_DEBUG
677     IF ( debugLevel .GE. debLevB )
678     & CALL DEBUG_LEAVE( 'DYNAMICS', myThid )
679     #endif
680    
681 cnh 1.1 RETURN
682     END

  ViewVC Help
Powered by ViewVC 1.1.22