/[MITgcm]/MITgcm/model/src/dynamics.F
ViewVC logotype

Annotation of /MITgcm/model/src/dynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.132 - (hide annotations) (download)
Wed May 3 23:34:41 2006 UTC (18 years ago) by heimbach
Branch: MAIN
CVS Tags: checkpoint58e_post
Changes since 1.131: +43 -6 lines
o Now rstar adjoint.

1 heimbach 1.132 C $Header: /u/gcmpack/MITgcm/model/src/dynamics.F,v 1.131 2006/03/29 17:00:39 heimbach Exp $
2 heimbach 1.78 C $Name: $
3 cnh 1.1
4 edhill 1.100 #include "PACKAGES_CONFIG.h"
5 adcroft 1.24 #include "CPP_OPTIONS.h"
6 heimbach 1.131 #ifdef ALLOW_OBCS
7     # include "OBCS_OPTIONS.h"
8     #endif
9    
10 jmc 1.125 #undef DYNAMICS_GUGV_EXCH_CHECK
11 cnh 1.1
12 cnh 1.82 CBOP
13     C !ROUTINE: DYNAMICS
14     C !INTERFACE:
15 cnh 1.8 SUBROUTINE DYNAMICS(myTime, myIter, myThid)
16 cnh 1.82 C !DESCRIPTION: \bv
17     C *==========================================================*
18     C | SUBROUTINE DYNAMICS
19     C | o Controlling routine for the explicit part of the model
20     C | dynamics.
21     C *==========================================================*
22     C | This routine evaluates the "dynamics" terms for each
23     C | block of ocean in turn. Because the blocks of ocean have
24     C | overlap regions they are independent of one another.
25     C | If terms involving lateral integrals are needed in this
26     C | routine care will be needed. Similarly finite-difference
27     C | operations with stencils wider than the overlap region
28     C | require special consideration.
29     C | The algorithm...
30     C |
31     C | "Correction Step"
32     C | =================
33     C | Here we update the horizontal velocities with the surface
34     C | pressure such that the resulting flow is either consistent
35     C | with the free-surface evolution or the rigid-lid:
36     C | U[n] = U* + dt x d/dx P
37     C | V[n] = V* + dt x d/dy P
38 jmc 1.122 C | W[n] = W* + dt x d/dz P (NH mode)
39 cnh 1.82 C |
40     C | "Calculation of Gs"
41     C | ===================
42     C | This is where all the accelerations and tendencies (ie.
43     C | physics, parameterizations etc...) are calculated
44     C | rho = rho ( theta[n], salt[n] )
45     C | b = b(rho, theta)
46     C | K31 = K31 ( rho )
47     C | Gu[n] = Gu( u[n], v[n], wVel, b, ... )
48     C | Gv[n] = Gv( u[n], v[n], wVel, b, ... )
49     C | Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
50     C | Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
51     C |
52     C | "Time-stepping" or "Prediction"
53     C | ================================
54     C | The models variables are stepped forward with the appropriate
55     C | time-stepping scheme (currently we use Adams-Bashforth II)
56     C | - For momentum, the result is always *only* a "prediction"
57     C | in that the flow may be divergent and will be "corrected"
58     C | later with a surface pressure gradient.
59     C | - Normally for tracers the result is the new field at time
60     C | level [n+1} *BUT* in the case of implicit diffusion the result
61     C | is also *only* a prediction.
62     C | - We denote "predictors" with an asterisk (*).
63     C | U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
64     C | V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
65     C | theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
66     C | salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
67     C | With implicit diffusion:
68     C | theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
69     C | salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
70     C | (1 + dt * K * d_zz) theta[n] = theta*
71     C | (1 + dt * K * d_zz) salt[n] = salt*
72     C |
73     C *==========================================================*
74     C \ev
75     C !USES:
76 adcroft 1.40 IMPLICIT NONE
77 cnh 1.1 C == Global variables ===
78     #include "SIZE.h"
79     #include "EEPARAMS.h"
80 adcroft 1.6 #include "PARAMS.h"
81 adcroft 1.3 #include "DYNVARS.h"
82 edhill 1.103 #ifdef ALLOW_CD_CODE
83     #include "CD_CODE_VARS.h"
84     #endif
85 adcroft 1.42 #include "GRID.h"
86 heimbach 1.49 #ifdef ALLOW_AUTODIFF_TAMC
87 heimbach 1.53 # include "tamc.h"
88     # include "tamc_keys.h"
89 heimbach 1.67 # include "FFIELDS.h"
90 heimbach 1.91 # include "EOS.h"
91 heimbach 1.67 # ifdef ALLOW_KPP
92     # include "KPP.h"
93     # endif
94 heimbach 1.131 # ifdef ALLOW_PTRACERS
95     # include "PTRACERS_SIZE.h"
96     # include "PTRACERS.h"
97     # endif
98     # ifdef ALLOW_OBCS
99     # include "OBCS.h"
100     # ifdef ALLOW_PTRACERS
101     # include "OBCS_PTRACERS.h"
102     # endif
103     # endif
104 heimbach 1.132 # include "MOM_FLUXFORM.h"
105 heimbach 1.53 #endif /* ALLOW_AUTODIFF_TAMC */
106 jmc 1.62
107 cnh 1.82 C !CALLING SEQUENCE:
108     C DYNAMICS()
109     C |
110 jmc 1.122 C |-- CALC_EP_FORCING
111     C |
112 cnh 1.82 C |-- CALC_GRAD_PHI_SURF
113     C |
114     C |-- CALC_VISCOSITY
115     C |
116     C |-- CALC_PHI_HYD
117     C |
118     C |-- MOM_FLUXFORM
119     C |
120     C |-- MOM_VECINV
121     C |
122     C |-- TIMESTEP
123     C |
124     C |-- OBCS_APPLY_UV
125     C |
126 jmc 1.122 C |-- MOM_U_IMPLICIT_R
127     C |-- MOM_V_IMPLICIT_R
128     C |
129 cnh 1.82 C |-- IMPLDIFF
130     C |
131     C |-- OBCS_APPLY_UV
132     C |
133 jmc 1.122 C |-- CALC_GW
134     C |
135     C |-- DIAGNOSTICS_FILL
136     C |-- DEBUG_STATS_RL
137 cnh 1.82
138     C !INPUT/OUTPUT PARAMETERS:
139 cnh 1.1 C == Routine arguments ==
140 cnh 1.8 C myTime - Current time in simulation
141     C myIter - Current iteration number in simulation
142 cnh 1.1 C myThid - Thread number for this instance of the routine.
143 cnh 1.8 _RL myTime
144     INTEGER myIter
145 adcroft 1.47 INTEGER myThid
146 cnh 1.1
147 cnh 1.82 C !LOCAL VARIABLES:
148 cnh 1.1 C == Local variables
149 jmc 1.113 C fVer[UV] o fVer: Vertical flux term - note fVer
150     C is "pipelined" in the vertical
151     C so we need an fVer for each
152     C variable.
153 jmc 1.94 C phiHydC :: hydrostatic potential anomaly at cell center
154     C In z coords phiHyd is the hydrostatic potential
155     C (=pressure/rho0) anomaly
156     C In p coords phiHyd is the geopotential height anomaly.
157     C phiHydF :: hydrostatic potential anomaly at middle between 2 centers
158     C dPhiHydX,Y :: Gradient (X & Y directions) of hydrostatic potential anom.
159     C phiSurfX, :: gradient of Surface potential (Pressure/rho, ocean)
160 jmc 1.92 C phiSurfY or geopotential (atmos) in X and Y direction
161 jmc 1.110 C guDissip :: dissipation tendency (all explicit terms), u component
162     C gvDissip :: dissipation tendency (all explicit terms), v component
163 cnh 1.30 C iMin, iMax - Ranges and sub-block indices on which calculations
164     C jMin, jMax are applied.
165 cnh 1.1 C bi, bj
166 heimbach 1.53 C k, kup, - Index for layer above and below. kup and kDown
167     C kDown, km1 are switched with layer to be the appropriate
168 cnh 1.38 C index into fVerTerm.
169 cnh 1.30 _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
170     _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
171 jmc 1.94 _RL phiHydF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
172     _RL phiHydC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
173 jmc 1.92 _RL dPhiHydX(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
174     _RL dPhiHydY(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
175 jmc 1.63 _RL phiSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
176     _RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
177 jmc 1.110 _RL guDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
178     _RL gvDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
179 adcroft 1.42 _RL KappaRU (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
180     _RL KappaRV (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
181 adcroft 1.12
182 cnh 1.1 INTEGER iMin, iMax
183     INTEGER jMin, jMax
184     INTEGER bi, bj
185     INTEGER i, j
186 heimbach 1.77 INTEGER k, km1, kp1, kup, kDown
187 cnh 1.1
188 jmc 1.113 #ifdef ALLOW_DIAGNOSTICS
189 jmc 1.120 _RL tmpFac
190 jmc 1.113 #endif /* ALLOW_DIAGNOSTICS */
191    
192 jmc 1.62
193 adcroft 1.11 C--- The algorithm...
194     C
195     C "Correction Step"
196     C =================
197     C Here we update the horizontal velocities with the surface
198     C pressure such that the resulting flow is either consistent
199     C with the free-surface evolution or the rigid-lid:
200     C U[n] = U* + dt x d/dx P
201     C V[n] = V* + dt x d/dy P
202     C
203     C "Calculation of Gs"
204     C ===================
205     C This is where all the accelerations and tendencies (ie.
206 heimbach 1.53 C physics, parameterizations etc...) are calculated
207 adcroft 1.11 C rho = rho ( theta[n], salt[n] )
208 cnh 1.27 C b = b(rho, theta)
209 adcroft 1.11 C K31 = K31 ( rho )
210 jmc 1.61 C Gu[n] = Gu( u[n], v[n], wVel, b, ... )
211     C Gv[n] = Gv( u[n], v[n], wVel, b, ... )
212     C Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
213     C Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
214 adcroft 1.11 C
215 adcroft 1.12 C "Time-stepping" or "Prediction"
216 adcroft 1.11 C ================================
217     C The models variables are stepped forward with the appropriate
218     C time-stepping scheme (currently we use Adams-Bashforth II)
219     C - For momentum, the result is always *only* a "prediction"
220     C in that the flow may be divergent and will be "corrected"
221     C later with a surface pressure gradient.
222     C - Normally for tracers the result is the new field at time
223     C level [n+1} *BUT* in the case of implicit diffusion the result
224     C is also *only* a prediction.
225     C - We denote "predictors" with an asterisk (*).
226     C U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
227     C V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
228     C theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
229     C salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
230 adcroft 1.12 C With implicit diffusion:
231 adcroft 1.11 C theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
232     C salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
233 adcroft 1.12 C (1 + dt * K * d_zz) theta[n] = theta*
234     C (1 + dt * K * d_zz) salt[n] = salt*
235 adcroft 1.11 C---
236 cnh 1.82 CEOP
237 adcroft 1.11
238 jmc 1.123 #ifdef ALLOW_DEBUG
239     IF ( debugLevel .GE. debLevB )
240     & CALL DEBUG_ENTER( 'DYNAMICS', myThid )
241     #endif
242    
243 heimbach 1.88 C-- Call to routine for calculation of
244     C Eliassen-Palm-flux-forced U-tendency,
245     C if desired:
246     #ifdef INCLUDE_EP_FORCING_CODE
247     CALL CALC_EP_FORCING(myThid)
248     #endif
249    
250 heimbach 1.76 #ifdef ALLOW_AUTODIFF_TAMC
251     C-- HPF directive to help TAMC
252     CHPF$ INDEPENDENT
253     #endif /* ALLOW_AUTODIFF_TAMC */
254    
255 cnh 1.1 DO bj=myByLo(myThid),myByHi(myThid)
256 heimbach 1.76
257     #ifdef ALLOW_AUTODIFF_TAMC
258     C-- HPF directive to help TAMC
259     CHPF$ INDEPENDENT, NEW (fVerU,fVerV
260 jmc 1.94 CHPF$& ,phiHydF
261 heimbach 1.76 CHPF$& ,KappaRU,KappaRV
262     CHPF$& )
263     #endif /* ALLOW_AUTODIFF_TAMC */
264    
265 cnh 1.1 DO bi=myBxLo(myThid),myBxHi(myThid)
266 heimbach 1.76
267     #ifdef ALLOW_AUTODIFF_TAMC
268     act1 = bi - myBxLo(myThid)
269     max1 = myBxHi(myThid) - myBxLo(myThid) + 1
270     act2 = bj - myByLo(myThid)
271     max2 = myByHi(myThid) - myByLo(myThid) + 1
272     act3 = myThid - 1
273     max3 = nTx*nTy
274     act4 = ikey_dynamics - 1
275 heimbach 1.91 idynkey = (act1 + 1) + act2*max1
276 heimbach 1.76 & + act3*max1*max2
277     & + act4*max1*max2*max3
278     #endif /* ALLOW_AUTODIFF_TAMC */
279    
280 heimbach 1.97 C-- Set up work arrays with valid (i.e. not NaN) values
281     C These inital values do not alter the numerical results. They
282     C just ensure that all memory references are to valid floating
283     C point numbers. This prevents spurious hardware signals due to
284     C uninitialised but inert locations.
285    
286 jmc 1.94 DO k=1,Nr
287     DO j=1-OLy,sNy+OLy
288     DO i=1-OLx,sNx+OLx
289 heimbach 1.87 KappaRU(i,j,k) = 0. _d 0
290     KappaRV(i,j,k) = 0. _d 0
291 heimbach 1.97 #ifdef ALLOW_AUTODIFF_TAMC
292     cph(
293     c-- need some re-initialisation here to break dependencies
294     cph)
295 jmc 1.122 gU(i,j,k,bi,bj) = 0. _d 0
296     gV(i,j,k,bi,bj) = 0. _d 0
297 heimbach 1.97 #endif
298 heimbach 1.87 ENDDO
299 jmc 1.94 ENDDO
300     ENDDO
301     DO j=1-OLy,sNy+OLy
302     DO i=1-OLx,sNx+OLx
303 heimbach 1.76 fVerU (i,j,1) = 0. _d 0
304     fVerU (i,j,2) = 0. _d 0
305     fVerV (i,j,1) = 0. _d 0
306     fVerV (i,j,2) = 0. _d 0
307 jmc 1.94 phiHydF (i,j) = 0. _d 0
308     phiHydC (i,j) = 0. _d 0
309 jmc 1.92 dPhiHydX(i,j) = 0. _d 0
310     dPhiHydY(i,j) = 0. _d 0
311 heimbach 1.97 phiSurfX(i,j) = 0. _d 0
312     phiSurfY(i,j) = 0. _d 0
313 jmc 1.110 guDissip(i,j) = 0. _d 0
314     gvDissip(i,j) = 0. _d 0
315 heimbach 1.132 #ifdef ALLOW_AUTODIFF_TAMC
316     cph(
317     c-- need some re-initialisation here to break dependencies
318     cph)
319     # ifdef NONLIN_FRSURF
320     # ifndef DISABLE_RSTAR_CODE
321     dWtransC(i,j,bi,bj) = 0. _d 0
322     dWtransU(i,j,bi,bj) = 0. _d 0
323     dWtransV(i,j,bi,bj) = 0. _d 0
324     # endif
325     # endif /* NONLIN_FRSURF */
326     #endif /* ALLOW_AUTODIFF_TAMC */
327 heimbach 1.76 ENDDO
328     ENDDO
329 heimbach 1.49
330 jmc 1.63 C-- Start computation of dynamics
331 jmc 1.93 iMin = 0
332     iMax = sNx+1
333     jMin = 0
334     jMax = sNy+1
335 jmc 1.63
336 heimbach 1.76 #ifdef ALLOW_AUTODIFF_TAMC
337 heimbach 1.91 CADJ STORE wvel (:,:,:,bi,bj) =
338     CADJ & comlev1_bibj, key = idynkey, byte = isbyte
339 heimbach 1.76 #endif /* ALLOW_AUTODIFF_TAMC */
340    
341 jmc 1.65 C-- Explicit part of the Surface Potentiel Gradient (add in TIMESTEP)
342 jmc 1.63 C (note: this loop will be replaced by CALL CALC_GRAD_ETA)
343     IF (implicSurfPress.NE.1.) THEN
344 jmc 1.65 CALL CALC_GRAD_PHI_SURF(
345     I bi,bj,iMin,iMax,jMin,jMax,
346     I etaN,
347     O phiSurfX,phiSurfY,
348     I myThid )
349 jmc 1.63 ENDIF
350 heimbach 1.83
351     #ifdef ALLOW_AUTODIFF_TAMC
352 heimbach 1.91 CADJ STORE uvel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
353     CADJ STORE vvel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
354 heimbach 1.83 #ifdef ALLOW_KPP
355     CADJ STORE KPPviscAz (:,:,:,bi,bj)
356 heimbach 1.91 CADJ & = comlev1_bibj, key=idynkey, byte=isbyte
357 heimbach 1.83 #endif /* ALLOW_KPP */
358     #endif /* ALLOW_AUTODIFF_TAMC */
359 adcroft 1.58
360 heimbach 1.77 #ifdef INCLUDE_CALC_DIFFUSIVITY_CALL
361     C-- Calculate the total vertical diffusivity
362     DO k=1,Nr
363     CALL CALC_VISCOSITY(
364     I bi,bj,iMin,iMax,jMin,jMax,k,
365     O KappaRU,KappaRV,
366     I myThid)
367     ENDDO
368     #endif
369    
370 heimbach 1.101 #ifdef ALLOW_AUTODIFF_TAMC
371     CADJ STORE KappaRU(:,:,:)
372 heimbach 1.132 CADJ & = comlev1_bibj, key=idynkey, byte=isbyte
373 heimbach 1.101 CADJ STORE KappaRV(:,:,:)
374 heimbach 1.132 CADJ & = comlev1_bibj, key=idynkey, byte=isbyte
375 heimbach 1.101 #endif /* ALLOW_AUTODIFF_TAMC */
376    
377 adcroft 1.58 C-- Start of dynamics loop
378     DO k=1,Nr
379    
380     C-- km1 Points to level above k (=k-1)
381     C-- kup Cycles through 1,2 to point to layer above
382     C-- kDown Cycles through 2,1 to point to current layer
383    
384     km1 = MAX(1,k-1)
385 heimbach 1.77 kp1 = MIN(k+1,Nr)
386 adcroft 1.58 kup = 1+MOD(k+1,2)
387     kDown= 1+MOD(k,2)
388    
389 heimbach 1.76 #ifdef ALLOW_AUTODIFF_TAMC
390 heimbach 1.91 kkey = (idynkey-1)*Nr + k
391 heimbach 1.99 c
392 heimbach 1.95 CADJ STORE totphihyd (:,:,k,bi,bj)
393 heimbach 1.99 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
394     CADJ STORE theta (:,:,k,bi,bj)
395     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
396     CADJ STORE salt (:,:,k,bi,bj)
397 heimbach 1.95 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
398 heimbach 1.129 CADJ STORE gt(:,:,k,bi,bj)
399     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
400     CADJ STORE gs(:,:,k,bi,bj)
401     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
402 heimbach 1.126 # ifdef NONLIN_FRSURF
403     cph-test
404     CADJ STORE phiHydC (:,:)
405     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
406     CADJ STORE phiHydF (:,:)
407     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
408     CADJ STORE gudissip (:,:)
409     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
410     CADJ STORE gvdissip (:,:)
411     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
412     CADJ STORE fVerU (:,:,:)
413     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
414     CADJ STORE fVerV (:,:,:)
415     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
416     CADJ STORE gu(:,:,k,bi,bj)
417     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
418     CADJ STORE gv(:,:,k,bi,bj)
419     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
420     CADJ STORE gunm1(:,:,k,bi,bj)
421     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
422     CADJ STORE gvnm1(:,:,k,bi,bj)
423     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
424 heimbach 1.132 # ifndef DISABLE_RSTAR_CODE
425     CADJ STORE dwtransc(:,:,bi,bj)
426     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
427     CADJ STORE dwtransu(:,:,bi,bj)
428     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
429     CADJ STORE dwtransv(:,:,bi,bj)
430     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
431     # endif
432 heimbach 1.126 # ifdef ALLOW_CD_CODE
433     CADJ STORE unm1(:,:,k,bi,bj)
434     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
435     CADJ STORE vnm1(:,:,k,bi,bj)
436     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
437     CADJ STORE uVelD(:,:,k,bi,bj)
438     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
439     CADJ STORE vVelD(:,:,k,bi,bj)
440     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
441     # endif
442     # endif
443 heimbach 1.76 #endif /* ALLOW_AUTODIFF_TAMC */
444    
445 adcroft 1.58 C-- Integrate hydrostatic balance for phiHyd with BC of
446     C phiHyd(z=0)=0
447 jmc 1.128 IF ( implicitIntGravWave ) THEN
448     CALL CALC_PHI_HYD(
449     I bi,bj,iMin,iMax,jMin,jMax,k,
450     I gT, gS,
451     U phiHydF,
452     O phiHydC, dPhiHydX, dPhiHydY,
453     I myTime, myIter, myThid )
454     ELSE
455     CALL CALC_PHI_HYD(
456 adcroft 1.58 I bi,bj,iMin,iMax,jMin,jMax,k,
457     I theta, salt,
458 jmc 1.94 U phiHydF,
459     O phiHydC, dPhiHydX, dPhiHydY,
460 jmc 1.92 I myTime, myIter, myThid )
461 jmc 1.128 ENDIF
462 mlosch 1.89
463 adcroft 1.58 C-- Calculate accelerations in the momentum equations (gU, gV, ...)
464 jmc 1.96 C and step forward storing the result in gU, gV, etc...
465 adcroft 1.58 IF ( momStepping ) THEN
466 heimbach 1.132 IF (.NOT. vectorInvariantMomentum) THEN
467 edhill 1.105 #ifdef ALLOW_MOM_FLUXFORM
468 heimbach 1.132 C
469     # ifdef ALLOW_AUTODIFF_TAMC
470     # ifdef NONLIN_FRSURF
471     # ifndef DISABLE_RSTAR_CODE
472     CADJ STORE dwtransc(:,:,bi,bj)
473     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
474     CADJ STORE dwtransu(:,:,bi,bj)
475     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
476     CADJ STORE dwtransv(:,:,bi,bj)
477     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
478     # endif
479     # endif
480     # endif /* ALLOW_AUTODIFF_TAMC */
481     C
482     CALL MOM_FLUXFORM(
483 adcroft 1.58 I bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
484 jmc 1.121 I KappaRU, KappaRV,
485 adcroft 1.58 U fVerU, fVerV,
486 jmc 1.121 O guDissip, gvDissip,
487 adcroft 1.80 I myTime, myIter, myThid)
488 adcroft 1.79 #endif
489 heimbach 1.132 ELSE
490 edhill 1.105 #ifdef ALLOW_MOM_VECINV
491 heimbach 1.126 C
492     # ifdef ALLOW_AUTODIFF_TAMC
493     # ifdef NONLIN_FRSURF
494     CADJ STORE fVerU(:,:,:)
495     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
496     CADJ STORE fVerV(:,:,:)
497     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
498     # endif
499     # endif /* ALLOW_AUTODIFF_TAMC */
500     C
501     CALL MOM_VECINV(
502 adcroft 1.79 I bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
503 jmc 1.121 I KappaRU, KappaRV,
504 adcroft 1.79 U fVerU, fVerV,
505 jmc 1.110 O guDissip, gvDissip,
506 adcroft 1.80 I myTime, myIter, myThid)
507 heimbach 1.132 #endif
508 heimbach 1.126 ENDIF
509 heimbach 1.132 C
510 adcroft 1.58 CALL TIMESTEP(
511 jmc 1.63 I bi,bj,iMin,iMax,jMin,jMax,k,
512 jmc 1.94 I dPhiHydX,dPhiHydY, phiSurfX, phiSurfY,
513 jmc 1.110 I guDissip, gvDissip,
514 jmc 1.96 I myTime, myIter, myThid)
515 adcroft 1.58
516     #ifdef ALLOW_OBCS
517     C-- Apply open boundary conditions
518 jmc 1.96 IF (useOBCS) THEN
519     CALL OBCS_APPLY_UV( bi, bj, k, gU, gV, myThid )
520     ENDIF
521 adcroft 1.58 #endif /* ALLOW_OBCS */
522    
523     ENDIF
524    
525    
526     C-- end of dynamics k loop (1:Nr)
527     ENDDO
528    
529 jmc 1.106 C-- Implicit Vertical advection & viscosity
530 jmc 1.130 #if (defined (INCLUDE_IMPLVERTADV_CODE) && defined (ALLOW_MOM_COMMON))
531 jmc 1.106 IF ( momImplVertAdv ) THEN
532     CALL MOM_U_IMPLICIT_R( kappaRU,
533     I bi, bj, myTime, myIter, myThid )
534     CALL MOM_V_IMPLICIT_R( kappaRV,
535     I bi, bj, myTime, myIter, myThid )
536     ELSEIF ( implicitViscosity ) THEN
537     #else /* INCLUDE_IMPLVERTADV_CODE */
538     IF ( implicitViscosity ) THEN
539     #endif /* INCLUDE_IMPLVERTADV_CODE */
540 adcroft 1.58 #ifdef ALLOW_AUTODIFF_TAMC
541 heimbach 1.101 CADJ STORE KappaRU(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
542 jmc 1.96 CADJ STORE gU(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
543 adcroft 1.58 #endif /* ALLOW_AUTODIFF_TAMC */
544 adcroft 1.42 CALL IMPLDIFF(
545     I bi, bj, iMin, iMax, jMin, jMax,
546 jmc 1.124 I -1, KappaRU,recip_HFacW,
547 jmc 1.96 U gU,
548 adcroft 1.42 I myThid )
549 adcroft 1.58 #ifdef ALLOW_AUTODIFF_TAMC
550 heimbach 1.101 CADJ STORE KappaRV(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
551 heimbach 1.97 CADJ STORE gV(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
552 adcroft 1.58 #endif /* ALLOW_AUTODIFF_TAMC */
553 adcroft 1.42 CALL IMPLDIFF(
554     I bi, bj, iMin, iMax, jMin, jMax,
555 jmc 1.124 I -2, KappaRV,recip_HFacS,
556 jmc 1.96 U gV,
557 adcroft 1.42 I myThid )
558 jmc 1.106 ENDIF
559 heimbach 1.49
560 adcroft 1.58 #ifdef ALLOW_OBCS
561     C-- Apply open boundary conditions
562 jmc 1.106 IF ( useOBCS .AND.(implicitViscosity.OR.momImplVertAdv) ) THEN
563 adcroft 1.58 DO K=1,Nr
564 jmc 1.96 CALL OBCS_APPLY_UV( bi, bj, k, gU, gV, myThid )
565 adcroft 1.58 ENDDO
566 jmc 1.106 ENDIF
567 adcroft 1.58 #endif /* ALLOW_OBCS */
568 heimbach 1.49
569 edhill 1.102 #ifdef ALLOW_CD_CODE
570 jmc 1.106 IF (implicitViscosity.AND.useCDscheme) THEN
571 adcroft 1.58 #ifdef ALLOW_AUTODIFF_TAMC
572 heimbach 1.91 CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
573 adcroft 1.58 #endif /* ALLOW_AUTODIFF_TAMC */
574 adcroft 1.42 CALL IMPLDIFF(
575     I bi, bj, iMin, iMax, jMin, jMax,
576 jmc 1.111 I 0, KappaRU,recip_HFacW,
577 adcroft 1.42 U vVelD,
578     I myThid )
579 adcroft 1.58 #ifdef ALLOW_AUTODIFF_TAMC
580 heimbach 1.91 CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
581 adcroft 1.58 #endif /* ALLOW_AUTODIFF_TAMC */
582 adcroft 1.42 CALL IMPLDIFF(
583     I bi, bj, iMin, iMax, jMin, jMax,
584 jmc 1.111 I 0, KappaRV,recip_HFacS,
585 adcroft 1.42 U uVelD,
586     I myThid )
587 jmc 1.106 ENDIF
588 edhill 1.102 #endif /* ALLOW_CD_CODE */
589 jmc 1.106 C-- End implicit Vertical advection & viscosity
590 cnh 1.1
591     ENDDO
592     ENDDO
593 mlosch 1.90
594 heimbach 1.109 #ifdef ALLOW_OBCS
595     IF (useOBCS) THEN
596     CALL OBCS_PRESCRIBE_EXCHANGES(myThid)
597     ENDIF
598     #endif
599    
600 jmc 1.113 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
601    
602 jmc 1.122 #ifdef ALLOW_NONHYDROSTATIC
603     C-- Step forward W field in N-H algorithm
604 jmc 1.128 IF ( nonHydrostatic ) THEN
605 jmc 1.122 #ifdef ALLOW_DEBUG
606 jmc 1.123 IF ( debugLevel .GE. debLevB )
607     & CALL DEBUG_CALL('CALC_GW', myThid )
608 jmc 1.122 #endif
609     CALL TIMER_START('CALC_GW [DYNAMICS]',myThid)
610     CALL CALC_GW( myTime, myIter, myThid )
611     ENDIF
612 jmc 1.128 IF ( nonHydrostatic.OR.implicitIntGravWave )
613     & CALL TIMESTEP_WVEL( myTime, myIter, myThid )
614     IF ( nonHydrostatic )
615     & CALL TIMER_STOP ('CALC_GW [DYNAMICS]',myThid)
616 jmc 1.122 #endif
617    
618     C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
619    
620 mlosch 1.90 Cml(
621     C In order to compare the variance of phiHydLow of a p/z-coordinate
622     C run with etaH of a z/p-coordinate run the drift of phiHydLow
623     C has to be removed by something like the following subroutine:
624     C CALL REMOVE_MEAN_RL( 1, phiHydLow, maskH, maskH, rA, drF,
625     C & 'phiHydLow', myThid )
626     Cml)
627 adcroft 1.69
628 jmc 1.113 #ifdef ALLOW_DIAGNOSTICS
629 jmc 1.130 IF ( useDiagnostics ) THEN
630 jmc 1.113
631     CALL DIAGNOSTICS_FILL(totPhihyd,'PHIHYD ',0,Nr,0,1,1,myThid)
632 jmc 1.120 CALL DIAGNOSTICS_FILL(phiHydLow,'PHIBOT ',0, 1,0,1,1,myThid)
633 molod 1.116
634 jmc 1.120 tmpFac = 1. _d 0
635     CALL DIAGNOSTICS_SCALE_FILL(totPhihyd,tmpFac,2,
636     & 'PHIHYDSQ',0,Nr,0,1,1,myThid)
637 molod 1.116
638 jmc 1.120 CALL DIAGNOSTICS_SCALE_FILL(phiHydLow,tmpFac,2,
639     & 'PHIBOTSQ',0, 1,0,1,1,myThid)
640 jmc 1.113
641     ENDIF
642     #endif /* ALLOW_DIAGNOSTICS */
643    
644 edhill 1.104 #ifdef ALLOW_DEBUG
645 heimbach 1.98 If ( debugLevel .GE. debLevB ) THEN
646 adcroft 1.69 CALL DEBUG_STATS_RL(1,EtaN,'EtaN (DYNAMICS)',myThid)
647 adcroft 1.73 CALL DEBUG_STATS_RL(Nr,uVel,'Uvel (DYNAMICS)',myThid)
648 adcroft 1.69 CALL DEBUG_STATS_RL(Nr,vVel,'Vvel (DYNAMICS)',myThid)
649     CALL DEBUG_STATS_RL(Nr,wVel,'Wvel (DYNAMICS)',myThid)
650     CALL DEBUG_STATS_RL(Nr,theta,'Theta (DYNAMICS)',myThid)
651     CALL DEBUG_STATS_RL(Nr,salt,'Salt (DYNAMICS)',myThid)
652 jmc 1.115 CALL DEBUG_STATS_RL(Nr,gU,'Gu (DYNAMICS)',myThid)
653     CALL DEBUG_STATS_RL(Nr,gV,'Gv (DYNAMICS)',myThid)
654     CALL DEBUG_STATS_RL(Nr,gT,'Gt (DYNAMICS)',myThid)
655     CALL DEBUG_STATS_RL(Nr,gS,'Gs (DYNAMICS)',myThid)
656     #ifndef ALLOW_ADAMSBASHFORTH_3
657     CALL DEBUG_STATS_RL(Nr,guNm1,'GuNm1 (DYNAMICS)',myThid)
658     CALL DEBUG_STATS_RL(Nr,gvNm1,'GvNm1 (DYNAMICS)',myThid)
659     CALL DEBUG_STATS_RL(Nr,gtNm1,'GtNm1 (DYNAMICS)',myThid)
660     CALL DEBUG_STATS_RL(Nr,gsNm1,'GsNm1 (DYNAMICS)',myThid)
661     #endif
662 adcroft 1.70 ENDIF
663 adcroft 1.69 #endif
664 cnh 1.1
665 jmc 1.125 #ifdef DYNAMICS_GUGV_EXCH_CHECK
666     C- jmc: For safety checking only: This Exchange here should not change
667     C the solution. If solution changes, it means something is wrong,
668     C but it does not mean that it is less wrong with this exchange.
669     IF ( debugLevel .GT. debLevB ) THEN
670     CALL EXCH_UV_XYZ_RL(gU,gV,.TRUE.,myThid)
671     ENDIF
672     #endif
673    
674 jmc 1.123 #ifdef ALLOW_DEBUG
675     IF ( debugLevel .GE. debLevB )
676     & CALL DEBUG_LEAVE( 'DYNAMICS', myThid )
677     #endif
678    
679 cnh 1.1 RETURN
680     END

  ViewVC Help
Powered by ViewVC 1.1.22