/[MITgcm]/MITgcm/model/src/dynamics.F
ViewVC logotype

Annotation of /MITgcm/model/src/dynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.131 - (hide annotations) (download)
Wed Mar 29 17:00:39 2006 UTC (18 years, 2 months ago) by heimbach
Branch: MAIN
CVS Tags: checkpoint58d_post
Changes since 1.130: +15 -1 lines
Adding relevant headers for obcs+ptracers adjoint.

1 heimbach 1.131 C $Header: /u/gcmpack/MITgcm/model/src/dynamics.F,v 1.130 2006/03/16 16:29:40 jmc Exp $
2 heimbach 1.78 C $Name: $
3 cnh 1.1
4 edhill 1.100 #include "PACKAGES_CONFIG.h"
5 adcroft 1.24 #include "CPP_OPTIONS.h"
6 heimbach 1.131 #ifdef ALLOW_OBCS
7     # include "OBCS_OPTIONS.h"
8     #endif
9    
10 jmc 1.125 #undef DYNAMICS_GUGV_EXCH_CHECK
11 cnh 1.1
12 cnh 1.82 CBOP
13     C !ROUTINE: DYNAMICS
14     C !INTERFACE:
15 cnh 1.8 SUBROUTINE DYNAMICS(myTime, myIter, myThid)
16 cnh 1.82 C !DESCRIPTION: \bv
17     C *==========================================================*
18     C | SUBROUTINE DYNAMICS
19     C | o Controlling routine for the explicit part of the model
20     C | dynamics.
21     C *==========================================================*
22     C | This routine evaluates the "dynamics" terms for each
23     C | block of ocean in turn. Because the blocks of ocean have
24     C | overlap regions they are independent of one another.
25     C | If terms involving lateral integrals are needed in this
26     C | routine care will be needed. Similarly finite-difference
27     C | operations with stencils wider than the overlap region
28     C | require special consideration.
29     C | The algorithm...
30     C |
31     C | "Correction Step"
32     C | =================
33     C | Here we update the horizontal velocities with the surface
34     C | pressure such that the resulting flow is either consistent
35     C | with the free-surface evolution or the rigid-lid:
36     C | U[n] = U* + dt x d/dx P
37     C | V[n] = V* + dt x d/dy P
38 jmc 1.122 C | W[n] = W* + dt x d/dz P (NH mode)
39 cnh 1.82 C |
40     C | "Calculation of Gs"
41     C | ===================
42     C | This is where all the accelerations and tendencies (ie.
43     C | physics, parameterizations etc...) are calculated
44     C | rho = rho ( theta[n], salt[n] )
45     C | b = b(rho, theta)
46     C | K31 = K31 ( rho )
47     C | Gu[n] = Gu( u[n], v[n], wVel, b, ... )
48     C | Gv[n] = Gv( u[n], v[n], wVel, b, ... )
49     C | Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
50     C | Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
51     C |
52     C | "Time-stepping" or "Prediction"
53     C | ================================
54     C | The models variables are stepped forward with the appropriate
55     C | time-stepping scheme (currently we use Adams-Bashforth II)
56     C | - For momentum, the result is always *only* a "prediction"
57     C | in that the flow may be divergent and will be "corrected"
58     C | later with a surface pressure gradient.
59     C | - Normally for tracers the result is the new field at time
60     C | level [n+1} *BUT* in the case of implicit diffusion the result
61     C | is also *only* a prediction.
62     C | - We denote "predictors" with an asterisk (*).
63     C | U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
64     C | V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
65     C | theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
66     C | salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
67     C | With implicit diffusion:
68     C | theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
69     C | salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
70     C | (1 + dt * K * d_zz) theta[n] = theta*
71     C | (1 + dt * K * d_zz) salt[n] = salt*
72     C |
73     C *==========================================================*
74     C \ev
75     C !USES:
76 adcroft 1.40 IMPLICIT NONE
77 cnh 1.1 C == Global variables ===
78     #include "SIZE.h"
79     #include "EEPARAMS.h"
80 adcroft 1.6 #include "PARAMS.h"
81 adcroft 1.3 #include "DYNVARS.h"
82 edhill 1.103 #ifdef ALLOW_CD_CODE
83     #include "CD_CODE_VARS.h"
84     #endif
85 adcroft 1.42 #include "GRID.h"
86 heimbach 1.49 #ifdef ALLOW_AUTODIFF_TAMC
87 heimbach 1.53 # include "tamc.h"
88     # include "tamc_keys.h"
89 heimbach 1.67 # include "FFIELDS.h"
90 heimbach 1.91 # include "EOS.h"
91 heimbach 1.67 # ifdef ALLOW_KPP
92     # include "KPP.h"
93     # endif
94 heimbach 1.131 # ifdef ALLOW_PTRACERS
95     # include "PTRACERS_SIZE.h"
96     # include "PTRACERS.h"
97     # endif
98     # ifdef ALLOW_OBCS
99     # include "OBCS.h"
100     # ifdef ALLOW_PTRACERS
101     # include "OBCS_PTRACERS.h"
102     # endif
103     # endif
104 heimbach 1.53 #endif /* ALLOW_AUTODIFF_TAMC */
105 jmc 1.62
106 cnh 1.82 C !CALLING SEQUENCE:
107     C DYNAMICS()
108     C |
109 jmc 1.122 C |-- CALC_EP_FORCING
110     C |
111 cnh 1.82 C |-- CALC_GRAD_PHI_SURF
112     C |
113     C |-- CALC_VISCOSITY
114     C |
115     C |-- CALC_PHI_HYD
116     C |
117     C |-- MOM_FLUXFORM
118     C |
119     C |-- MOM_VECINV
120     C |
121     C |-- TIMESTEP
122     C |
123     C |-- OBCS_APPLY_UV
124     C |
125 jmc 1.122 C |-- MOM_U_IMPLICIT_R
126     C |-- MOM_V_IMPLICIT_R
127     C |
128 cnh 1.82 C |-- IMPLDIFF
129     C |
130     C |-- OBCS_APPLY_UV
131     C |
132 jmc 1.122 C |-- CALC_GW
133     C |
134     C |-- DIAGNOSTICS_FILL
135     C |-- DEBUG_STATS_RL
136 cnh 1.82
137     C !INPUT/OUTPUT PARAMETERS:
138 cnh 1.1 C == Routine arguments ==
139 cnh 1.8 C myTime - Current time in simulation
140     C myIter - Current iteration number in simulation
141 cnh 1.1 C myThid - Thread number for this instance of the routine.
142 cnh 1.8 _RL myTime
143     INTEGER myIter
144 adcroft 1.47 INTEGER myThid
145 cnh 1.1
146 cnh 1.82 C !LOCAL VARIABLES:
147 cnh 1.1 C == Local variables
148 jmc 1.113 C fVer[UV] o fVer: Vertical flux term - note fVer
149     C is "pipelined" in the vertical
150     C so we need an fVer for each
151     C variable.
152 jmc 1.94 C phiHydC :: hydrostatic potential anomaly at cell center
153     C In z coords phiHyd is the hydrostatic potential
154     C (=pressure/rho0) anomaly
155     C In p coords phiHyd is the geopotential height anomaly.
156     C phiHydF :: hydrostatic potential anomaly at middle between 2 centers
157     C dPhiHydX,Y :: Gradient (X & Y directions) of hydrostatic potential anom.
158     C phiSurfX, :: gradient of Surface potential (Pressure/rho, ocean)
159 jmc 1.92 C phiSurfY or geopotential (atmos) in X and Y direction
160 jmc 1.110 C guDissip :: dissipation tendency (all explicit terms), u component
161     C gvDissip :: dissipation tendency (all explicit terms), v component
162 cnh 1.30 C iMin, iMax - Ranges and sub-block indices on which calculations
163     C jMin, jMax are applied.
164 cnh 1.1 C bi, bj
165 heimbach 1.53 C k, kup, - Index for layer above and below. kup and kDown
166     C kDown, km1 are switched with layer to be the appropriate
167 cnh 1.38 C index into fVerTerm.
168 cnh 1.30 _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
169     _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
170 jmc 1.94 _RL phiHydF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
171     _RL phiHydC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
172 jmc 1.92 _RL dPhiHydX(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
173     _RL dPhiHydY(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
174 jmc 1.63 _RL phiSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
175     _RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
176 jmc 1.110 _RL guDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
177     _RL gvDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
178 adcroft 1.42 _RL KappaRU (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
179     _RL KappaRV (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
180 adcroft 1.12
181 cnh 1.1 INTEGER iMin, iMax
182     INTEGER jMin, jMax
183     INTEGER bi, bj
184     INTEGER i, j
185 heimbach 1.77 INTEGER k, km1, kp1, kup, kDown
186 cnh 1.1
187 jmc 1.113 #ifdef ALLOW_DIAGNOSTICS
188 jmc 1.120 _RL tmpFac
189 jmc 1.113 #endif /* ALLOW_DIAGNOSTICS */
190    
191 jmc 1.62
192 adcroft 1.11 C--- The algorithm...
193     C
194     C "Correction Step"
195     C =================
196     C Here we update the horizontal velocities with the surface
197     C pressure such that the resulting flow is either consistent
198     C with the free-surface evolution or the rigid-lid:
199     C U[n] = U* + dt x d/dx P
200     C V[n] = V* + dt x d/dy P
201     C
202     C "Calculation of Gs"
203     C ===================
204     C This is where all the accelerations and tendencies (ie.
205 heimbach 1.53 C physics, parameterizations etc...) are calculated
206 adcroft 1.11 C rho = rho ( theta[n], salt[n] )
207 cnh 1.27 C b = b(rho, theta)
208 adcroft 1.11 C K31 = K31 ( rho )
209 jmc 1.61 C Gu[n] = Gu( u[n], v[n], wVel, b, ... )
210     C Gv[n] = Gv( u[n], v[n], wVel, b, ... )
211     C Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
212     C Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
213 adcroft 1.11 C
214 adcroft 1.12 C "Time-stepping" or "Prediction"
215 adcroft 1.11 C ================================
216     C The models variables are stepped forward with the appropriate
217     C time-stepping scheme (currently we use Adams-Bashforth II)
218     C - For momentum, the result is always *only* a "prediction"
219     C in that the flow may be divergent and will be "corrected"
220     C later with a surface pressure gradient.
221     C - Normally for tracers the result is the new field at time
222     C level [n+1} *BUT* in the case of implicit diffusion the result
223     C is also *only* a prediction.
224     C - We denote "predictors" with an asterisk (*).
225     C U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
226     C V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
227     C theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
228     C salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
229 adcroft 1.12 C With implicit diffusion:
230 adcroft 1.11 C theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
231     C salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
232 adcroft 1.12 C (1 + dt * K * d_zz) theta[n] = theta*
233     C (1 + dt * K * d_zz) salt[n] = salt*
234 adcroft 1.11 C---
235 cnh 1.82 CEOP
236 adcroft 1.11
237 jmc 1.123 #ifdef ALLOW_DEBUG
238     IF ( debugLevel .GE. debLevB )
239     & CALL DEBUG_ENTER( 'DYNAMICS', myThid )
240     #endif
241    
242 heimbach 1.88 C-- Call to routine for calculation of
243     C Eliassen-Palm-flux-forced U-tendency,
244     C if desired:
245     #ifdef INCLUDE_EP_FORCING_CODE
246     CALL CALC_EP_FORCING(myThid)
247     #endif
248    
249 heimbach 1.76 #ifdef ALLOW_AUTODIFF_TAMC
250     C-- HPF directive to help TAMC
251     CHPF$ INDEPENDENT
252     #endif /* ALLOW_AUTODIFF_TAMC */
253    
254 cnh 1.1 DO bj=myByLo(myThid),myByHi(myThid)
255 heimbach 1.76
256     #ifdef ALLOW_AUTODIFF_TAMC
257     C-- HPF directive to help TAMC
258     CHPF$ INDEPENDENT, NEW (fVerU,fVerV
259 jmc 1.94 CHPF$& ,phiHydF
260 heimbach 1.76 CHPF$& ,KappaRU,KappaRV
261     CHPF$& )
262     #endif /* ALLOW_AUTODIFF_TAMC */
263    
264 cnh 1.1 DO bi=myBxLo(myThid),myBxHi(myThid)
265 heimbach 1.76
266     #ifdef ALLOW_AUTODIFF_TAMC
267     act1 = bi - myBxLo(myThid)
268     max1 = myBxHi(myThid) - myBxLo(myThid) + 1
269     act2 = bj - myByLo(myThid)
270     max2 = myByHi(myThid) - myByLo(myThid) + 1
271     act3 = myThid - 1
272     max3 = nTx*nTy
273     act4 = ikey_dynamics - 1
274 heimbach 1.91 idynkey = (act1 + 1) + act2*max1
275 heimbach 1.76 & + act3*max1*max2
276     & + act4*max1*max2*max3
277     #endif /* ALLOW_AUTODIFF_TAMC */
278    
279 heimbach 1.97 C-- Set up work arrays with valid (i.e. not NaN) values
280     C These inital values do not alter the numerical results. They
281     C just ensure that all memory references are to valid floating
282     C point numbers. This prevents spurious hardware signals due to
283     C uninitialised but inert locations.
284    
285 jmc 1.94 DO k=1,Nr
286     DO j=1-OLy,sNy+OLy
287     DO i=1-OLx,sNx+OLx
288 heimbach 1.87 KappaRU(i,j,k) = 0. _d 0
289     KappaRV(i,j,k) = 0. _d 0
290 heimbach 1.97 #ifdef ALLOW_AUTODIFF_TAMC
291     cph(
292     c-- need some re-initialisation here to break dependencies
293     cph)
294 jmc 1.122 gU(i,j,k,bi,bj) = 0. _d 0
295     gV(i,j,k,bi,bj) = 0. _d 0
296 heimbach 1.97 #endif
297 heimbach 1.87 ENDDO
298 jmc 1.94 ENDDO
299     ENDDO
300     DO j=1-OLy,sNy+OLy
301     DO i=1-OLx,sNx+OLx
302 heimbach 1.76 fVerU (i,j,1) = 0. _d 0
303     fVerU (i,j,2) = 0. _d 0
304     fVerV (i,j,1) = 0. _d 0
305     fVerV (i,j,2) = 0. _d 0
306 jmc 1.94 phiHydF (i,j) = 0. _d 0
307     phiHydC (i,j) = 0. _d 0
308 jmc 1.92 dPhiHydX(i,j) = 0. _d 0
309     dPhiHydY(i,j) = 0. _d 0
310 heimbach 1.97 phiSurfX(i,j) = 0. _d 0
311     phiSurfY(i,j) = 0. _d 0
312 jmc 1.110 guDissip(i,j) = 0. _d 0
313     gvDissip(i,j) = 0. _d 0
314 heimbach 1.76 ENDDO
315     ENDDO
316 heimbach 1.49
317 jmc 1.63 C-- Start computation of dynamics
318 jmc 1.93 iMin = 0
319     iMax = sNx+1
320     jMin = 0
321     jMax = sNy+1
322 jmc 1.63
323 heimbach 1.76 #ifdef ALLOW_AUTODIFF_TAMC
324 heimbach 1.91 CADJ STORE wvel (:,:,:,bi,bj) =
325     CADJ & comlev1_bibj, key = idynkey, byte = isbyte
326 heimbach 1.76 #endif /* ALLOW_AUTODIFF_TAMC */
327    
328 jmc 1.65 C-- Explicit part of the Surface Potentiel Gradient (add in TIMESTEP)
329 jmc 1.63 C (note: this loop will be replaced by CALL CALC_GRAD_ETA)
330     IF (implicSurfPress.NE.1.) THEN
331 jmc 1.65 CALL CALC_GRAD_PHI_SURF(
332     I bi,bj,iMin,iMax,jMin,jMax,
333     I etaN,
334     O phiSurfX,phiSurfY,
335     I myThid )
336 jmc 1.63 ENDIF
337 heimbach 1.83
338     #ifdef ALLOW_AUTODIFF_TAMC
339 heimbach 1.91 CADJ STORE uvel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
340     CADJ STORE vvel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
341 heimbach 1.83 #ifdef ALLOW_KPP
342     CADJ STORE KPPviscAz (:,:,:,bi,bj)
343 heimbach 1.91 CADJ & = comlev1_bibj, key=idynkey, byte=isbyte
344 heimbach 1.83 #endif /* ALLOW_KPP */
345     #endif /* ALLOW_AUTODIFF_TAMC */
346 adcroft 1.58
347 heimbach 1.77 #ifdef INCLUDE_CALC_DIFFUSIVITY_CALL
348     C-- Calculate the total vertical diffusivity
349     DO k=1,Nr
350     CALL CALC_VISCOSITY(
351     I bi,bj,iMin,iMax,jMin,jMax,k,
352     O KappaRU,KappaRV,
353     I myThid)
354     ENDDO
355     #endif
356    
357 heimbach 1.101 #ifdef ALLOW_AUTODIFF_TAMC
358     CADJ STORE KappaRU(:,:,:)
359     CADJ & = comlev1_bibj, key=idynkey, byte=isbyte
360     CADJ STORE KappaRV(:,:,:)
361     CADJ & = comlev1_bibj, key=idynkey, byte=isbyte
362     #endif /* ALLOW_AUTODIFF_TAMC */
363    
364 adcroft 1.58 C-- Start of dynamics loop
365     DO k=1,Nr
366    
367     C-- km1 Points to level above k (=k-1)
368     C-- kup Cycles through 1,2 to point to layer above
369     C-- kDown Cycles through 2,1 to point to current layer
370    
371     km1 = MAX(1,k-1)
372 heimbach 1.77 kp1 = MIN(k+1,Nr)
373 adcroft 1.58 kup = 1+MOD(k+1,2)
374     kDown= 1+MOD(k,2)
375    
376 heimbach 1.76 #ifdef ALLOW_AUTODIFF_TAMC
377 heimbach 1.91 kkey = (idynkey-1)*Nr + k
378 heimbach 1.99 c
379 heimbach 1.95 CADJ STORE totphihyd (:,:,k,bi,bj)
380 heimbach 1.99 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
381     CADJ STORE theta (:,:,k,bi,bj)
382     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
383     CADJ STORE salt (:,:,k,bi,bj)
384 heimbach 1.95 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
385 heimbach 1.129 CADJ STORE gt(:,:,k,bi,bj)
386     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
387     CADJ STORE gs(:,:,k,bi,bj)
388     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
389 heimbach 1.126 # ifdef NONLIN_FRSURF
390     cph-test
391     CADJ STORE phiHydC (:,:)
392     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
393     CADJ STORE phiHydF (:,:)
394     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
395     CADJ STORE gudissip (:,:)
396     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
397     CADJ STORE gvdissip (:,:)
398     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
399     CADJ STORE fVerU (:,:,:)
400     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
401     CADJ STORE fVerV (:,:,:)
402     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
403     CADJ STORE gu(:,:,k,bi,bj)
404     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
405     CADJ STORE gv(:,:,k,bi,bj)
406     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
407     CADJ STORE gunm1(:,:,k,bi,bj)
408     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
409     CADJ STORE gvnm1(:,:,k,bi,bj)
410     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
411     # ifdef ALLOW_CD_CODE
412     CADJ STORE unm1(:,:,k,bi,bj)
413     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
414     CADJ STORE vnm1(:,:,k,bi,bj)
415     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
416     CADJ STORE uVelD(:,:,k,bi,bj)
417     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
418     CADJ STORE vVelD(:,:,k,bi,bj)
419     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
420     # endif
421     # endif
422 heimbach 1.76 #endif /* ALLOW_AUTODIFF_TAMC */
423    
424 adcroft 1.58 C-- Integrate hydrostatic balance for phiHyd with BC of
425     C phiHyd(z=0)=0
426 jmc 1.128 IF ( implicitIntGravWave ) THEN
427     CALL CALC_PHI_HYD(
428     I bi,bj,iMin,iMax,jMin,jMax,k,
429     I gT, gS,
430     U phiHydF,
431     O phiHydC, dPhiHydX, dPhiHydY,
432     I myTime, myIter, myThid )
433     ELSE
434     CALL CALC_PHI_HYD(
435 adcroft 1.58 I bi,bj,iMin,iMax,jMin,jMax,k,
436     I theta, salt,
437 jmc 1.94 U phiHydF,
438     O phiHydC, dPhiHydX, dPhiHydY,
439 jmc 1.92 I myTime, myIter, myThid )
440 jmc 1.128 ENDIF
441 mlosch 1.89
442 adcroft 1.58 C-- Calculate accelerations in the momentum equations (gU, gV, ...)
443 jmc 1.96 C and step forward storing the result in gU, gV, etc...
444 adcroft 1.58 IF ( momStepping ) THEN
445 edhill 1.105 #ifdef ALLOW_MOM_FLUXFORM
446 adcroft 1.79 IF (.NOT. vectorInvariantMomentum) CALL MOM_FLUXFORM(
447 adcroft 1.58 I bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
448 jmc 1.121 I KappaRU, KappaRV,
449 adcroft 1.58 U fVerU, fVerV,
450 jmc 1.121 O guDissip, gvDissip,
451 adcroft 1.80 I myTime, myIter, myThid)
452 adcroft 1.79 #endif
453 edhill 1.105 #ifdef ALLOW_MOM_VECINV
454 heimbach 1.126 IF (vectorInvariantMomentum) THEN
455     C
456     # ifdef ALLOW_AUTODIFF_TAMC
457     # ifdef NONLIN_FRSURF
458     CADJ STORE fVerU(:,:,:)
459     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
460     CADJ STORE fVerV(:,:,:)
461     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
462     # endif
463     # endif /* ALLOW_AUTODIFF_TAMC */
464     C
465     CALL MOM_VECINV(
466 adcroft 1.79 I bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
467 jmc 1.121 I KappaRU, KappaRV,
468 adcroft 1.79 U fVerU, fVerV,
469 jmc 1.110 O guDissip, gvDissip,
470 adcroft 1.80 I myTime, myIter, myThid)
471 heimbach 1.126 ENDIF
472 adcroft 1.79 #endif
473 adcroft 1.58 CALL TIMESTEP(
474 jmc 1.63 I bi,bj,iMin,iMax,jMin,jMax,k,
475 jmc 1.94 I dPhiHydX,dPhiHydY, phiSurfX, phiSurfY,
476 jmc 1.110 I guDissip, gvDissip,
477 jmc 1.96 I myTime, myIter, myThid)
478 adcroft 1.58
479     #ifdef ALLOW_OBCS
480     C-- Apply open boundary conditions
481 jmc 1.96 IF (useOBCS) THEN
482     CALL OBCS_APPLY_UV( bi, bj, k, gU, gV, myThid )
483     ENDIF
484 adcroft 1.58 #endif /* ALLOW_OBCS */
485    
486     ENDIF
487    
488    
489     C-- end of dynamics k loop (1:Nr)
490     ENDDO
491    
492 jmc 1.106 C-- Implicit Vertical advection & viscosity
493 jmc 1.130 #if (defined (INCLUDE_IMPLVERTADV_CODE) && defined (ALLOW_MOM_COMMON))
494 jmc 1.106 IF ( momImplVertAdv ) THEN
495     CALL MOM_U_IMPLICIT_R( kappaRU,
496     I bi, bj, myTime, myIter, myThid )
497     CALL MOM_V_IMPLICIT_R( kappaRV,
498     I bi, bj, myTime, myIter, myThid )
499     ELSEIF ( implicitViscosity ) THEN
500     #else /* INCLUDE_IMPLVERTADV_CODE */
501     IF ( implicitViscosity ) THEN
502     #endif /* INCLUDE_IMPLVERTADV_CODE */
503 adcroft 1.58 #ifdef ALLOW_AUTODIFF_TAMC
504 heimbach 1.101 CADJ STORE KappaRU(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
505 jmc 1.96 CADJ STORE gU(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
506 adcroft 1.58 #endif /* ALLOW_AUTODIFF_TAMC */
507 adcroft 1.42 CALL IMPLDIFF(
508     I bi, bj, iMin, iMax, jMin, jMax,
509 jmc 1.124 I -1, KappaRU,recip_HFacW,
510 jmc 1.96 U gU,
511 adcroft 1.42 I myThid )
512 adcroft 1.58 #ifdef ALLOW_AUTODIFF_TAMC
513 heimbach 1.101 CADJ STORE KappaRV(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
514 heimbach 1.97 CADJ STORE gV(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
515 adcroft 1.58 #endif /* ALLOW_AUTODIFF_TAMC */
516 adcroft 1.42 CALL IMPLDIFF(
517     I bi, bj, iMin, iMax, jMin, jMax,
518 jmc 1.124 I -2, KappaRV,recip_HFacS,
519 jmc 1.96 U gV,
520 adcroft 1.42 I myThid )
521 jmc 1.106 ENDIF
522 heimbach 1.49
523 adcroft 1.58 #ifdef ALLOW_OBCS
524     C-- Apply open boundary conditions
525 jmc 1.106 IF ( useOBCS .AND.(implicitViscosity.OR.momImplVertAdv) ) THEN
526 adcroft 1.58 DO K=1,Nr
527 jmc 1.96 CALL OBCS_APPLY_UV( bi, bj, k, gU, gV, myThid )
528 adcroft 1.58 ENDDO
529 jmc 1.106 ENDIF
530 adcroft 1.58 #endif /* ALLOW_OBCS */
531 heimbach 1.49
532 edhill 1.102 #ifdef ALLOW_CD_CODE
533 jmc 1.106 IF (implicitViscosity.AND.useCDscheme) THEN
534 adcroft 1.58 #ifdef ALLOW_AUTODIFF_TAMC
535 heimbach 1.91 CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
536 adcroft 1.58 #endif /* ALLOW_AUTODIFF_TAMC */
537 adcroft 1.42 CALL IMPLDIFF(
538     I bi, bj, iMin, iMax, jMin, jMax,
539 jmc 1.111 I 0, KappaRU,recip_HFacW,
540 adcroft 1.42 U vVelD,
541     I myThid )
542 adcroft 1.58 #ifdef ALLOW_AUTODIFF_TAMC
543 heimbach 1.91 CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
544 adcroft 1.58 #endif /* ALLOW_AUTODIFF_TAMC */
545 adcroft 1.42 CALL IMPLDIFF(
546     I bi, bj, iMin, iMax, jMin, jMax,
547 jmc 1.111 I 0, KappaRV,recip_HFacS,
548 adcroft 1.42 U uVelD,
549     I myThid )
550 jmc 1.106 ENDIF
551 edhill 1.102 #endif /* ALLOW_CD_CODE */
552 jmc 1.106 C-- End implicit Vertical advection & viscosity
553 cnh 1.1
554     ENDDO
555     ENDDO
556 mlosch 1.90
557 heimbach 1.109 #ifdef ALLOW_OBCS
558     IF (useOBCS) THEN
559     CALL OBCS_PRESCRIBE_EXCHANGES(myThid)
560     ENDIF
561     #endif
562    
563 jmc 1.113 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
564    
565 jmc 1.122 #ifdef ALLOW_NONHYDROSTATIC
566     C-- Step forward W field in N-H algorithm
567 jmc 1.128 IF ( nonHydrostatic ) THEN
568 jmc 1.122 #ifdef ALLOW_DEBUG
569 jmc 1.123 IF ( debugLevel .GE. debLevB )
570     & CALL DEBUG_CALL('CALC_GW', myThid )
571 jmc 1.122 #endif
572     CALL TIMER_START('CALC_GW [DYNAMICS]',myThid)
573     CALL CALC_GW( myTime, myIter, myThid )
574     ENDIF
575 jmc 1.128 IF ( nonHydrostatic.OR.implicitIntGravWave )
576     & CALL TIMESTEP_WVEL( myTime, myIter, myThid )
577     IF ( nonHydrostatic )
578     & CALL TIMER_STOP ('CALC_GW [DYNAMICS]',myThid)
579 jmc 1.122 #endif
580    
581     C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
582    
583 mlosch 1.90 Cml(
584     C In order to compare the variance of phiHydLow of a p/z-coordinate
585     C run with etaH of a z/p-coordinate run the drift of phiHydLow
586     C has to be removed by something like the following subroutine:
587     C CALL REMOVE_MEAN_RL( 1, phiHydLow, maskH, maskH, rA, drF,
588     C & 'phiHydLow', myThid )
589     Cml)
590 adcroft 1.69
591 jmc 1.113 #ifdef ALLOW_DIAGNOSTICS
592 jmc 1.130 IF ( useDiagnostics ) THEN
593 jmc 1.113
594     CALL DIAGNOSTICS_FILL(totPhihyd,'PHIHYD ',0,Nr,0,1,1,myThid)
595 jmc 1.120 CALL DIAGNOSTICS_FILL(phiHydLow,'PHIBOT ',0, 1,0,1,1,myThid)
596 molod 1.116
597 jmc 1.120 tmpFac = 1. _d 0
598     CALL DIAGNOSTICS_SCALE_FILL(totPhihyd,tmpFac,2,
599     & 'PHIHYDSQ',0,Nr,0,1,1,myThid)
600 molod 1.116
601 jmc 1.120 CALL DIAGNOSTICS_SCALE_FILL(phiHydLow,tmpFac,2,
602     & 'PHIBOTSQ',0, 1,0,1,1,myThid)
603 jmc 1.113
604     ENDIF
605     #endif /* ALLOW_DIAGNOSTICS */
606    
607 edhill 1.104 #ifdef ALLOW_DEBUG
608 heimbach 1.98 If ( debugLevel .GE. debLevB ) THEN
609 adcroft 1.69 CALL DEBUG_STATS_RL(1,EtaN,'EtaN (DYNAMICS)',myThid)
610 adcroft 1.73 CALL DEBUG_STATS_RL(Nr,uVel,'Uvel (DYNAMICS)',myThid)
611 adcroft 1.69 CALL DEBUG_STATS_RL(Nr,vVel,'Vvel (DYNAMICS)',myThid)
612     CALL DEBUG_STATS_RL(Nr,wVel,'Wvel (DYNAMICS)',myThid)
613     CALL DEBUG_STATS_RL(Nr,theta,'Theta (DYNAMICS)',myThid)
614     CALL DEBUG_STATS_RL(Nr,salt,'Salt (DYNAMICS)',myThid)
615 jmc 1.115 CALL DEBUG_STATS_RL(Nr,gU,'Gu (DYNAMICS)',myThid)
616     CALL DEBUG_STATS_RL(Nr,gV,'Gv (DYNAMICS)',myThid)
617     CALL DEBUG_STATS_RL(Nr,gT,'Gt (DYNAMICS)',myThid)
618     CALL DEBUG_STATS_RL(Nr,gS,'Gs (DYNAMICS)',myThid)
619     #ifndef ALLOW_ADAMSBASHFORTH_3
620     CALL DEBUG_STATS_RL(Nr,guNm1,'GuNm1 (DYNAMICS)',myThid)
621     CALL DEBUG_STATS_RL(Nr,gvNm1,'GvNm1 (DYNAMICS)',myThid)
622     CALL DEBUG_STATS_RL(Nr,gtNm1,'GtNm1 (DYNAMICS)',myThid)
623     CALL DEBUG_STATS_RL(Nr,gsNm1,'GsNm1 (DYNAMICS)',myThid)
624     #endif
625 adcroft 1.70 ENDIF
626 adcroft 1.69 #endif
627 cnh 1.1
628 jmc 1.125 #ifdef DYNAMICS_GUGV_EXCH_CHECK
629     C- jmc: For safety checking only: This Exchange here should not change
630     C the solution. If solution changes, it means something is wrong,
631     C but it does not mean that it is less wrong with this exchange.
632     IF ( debugLevel .GT. debLevB ) THEN
633     CALL EXCH_UV_XYZ_RL(gU,gV,.TRUE.,myThid)
634     ENDIF
635     #endif
636    
637 jmc 1.123 #ifdef ALLOW_DEBUG
638     IF ( debugLevel .GE. debLevB )
639     & CALL DEBUG_LEAVE( 'DYNAMICS', myThid )
640     #endif
641    
642 cnh 1.1 RETURN
643     END

  ViewVC Help
Powered by ViewVC 1.1.22