/[MITgcm]/MITgcm/model/src/dynamics.F
ViewVC logotype

Annotation of /MITgcm/model/src/dynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.128 - (hide annotations) (download)
Thu Feb 23 20:55:48 2006 UTC (18 years, 3 months ago) by jmc
Branch: MAIN
Changes since 1.127: +16 -5 lines
1rst implementation of  Implicit IGW using the 3-D solver (use3Dsolver=T)
 and based on the reference stratification

1 jmc 1.128 C $Header: /u/gcmpack/MITgcm/model/src/dynamics.F,v 1.127 2005/12/15 21:09:00 jmc Exp $
2 heimbach 1.78 C $Name: $
3 cnh 1.1
4 edhill 1.100 #include "PACKAGES_CONFIG.h"
5 adcroft 1.24 #include "CPP_OPTIONS.h"
6 jmc 1.125 #undef DYNAMICS_GUGV_EXCH_CHECK
7 cnh 1.1
8 cnh 1.82 CBOP
9     C !ROUTINE: DYNAMICS
10     C !INTERFACE:
11 cnh 1.8 SUBROUTINE DYNAMICS(myTime, myIter, myThid)
12 cnh 1.82 C !DESCRIPTION: \bv
13     C *==========================================================*
14     C | SUBROUTINE DYNAMICS
15     C | o Controlling routine for the explicit part of the model
16     C | dynamics.
17     C *==========================================================*
18     C | This routine evaluates the "dynamics" terms for each
19     C | block of ocean in turn. Because the blocks of ocean have
20     C | overlap regions they are independent of one another.
21     C | If terms involving lateral integrals are needed in this
22     C | routine care will be needed. Similarly finite-difference
23     C | operations with stencils wider than the overlap region
24     C | require special consideration.
25     C | The algorithm...
26     C |
27     C | "Correction Step"
28     C | =================
29     C | Here we update the horizontal velocities with the surface
30     C | pressure such that the resulting flow is either consistent
31     C | with the free-surface evolution or the rigid-lid:
32     C | U[n] = U* + dt x d/dx P
33     C | V[n] = V* + dt x d/dy P
34 jmc 1.122 C | W[n] = W* + dt x d/dz P (NH mode)
35 cnh 1.82 C |
36     C | "Calculation of Gs"
37     C | ===================
38     C | This is where all the accelerations and tendencies (ie.
39     C | physics, parameterizations etc...) are calculated
40     C | rho = rho ( theta[n], salt[n] )
41     C | b = b(rho, theta)
42     C | K31 = K31 ( rho )
43     C | Gu[n] = Gu( u[n], v[n], wVel, b, ... )
44     C | Gv[n] = Gv( u[n], v[n], wVel, b, ... )
45     C | Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
46     C | Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
47     C |
48     C | "Time-stepping" or "Prediction"
49     C | ================================
50     C | The models variables are stepped forward with the appropriate
51     C | time-stepping scheme (currently we use Adams-Bashforth II)
52     C | - For momentum, the result is always *only* a "prediction"
53     C | in that the flow may be divergent and will be "corrected"
54     C | later with a surface pressure gradient.
55     C | - Normally for tracers the result is the new field at time
56     C | level [n+1} *BUT* in the case of implicit diffusion the result
57     C | is also *only* a prediction.
58     C | - We denote "predictors" with an asterisk (*).
59     C | U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
60     C | V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
61     C | theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
62     C | salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
63     C | With implicit diffusion:
64     C | theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
65     C | salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
66     C | (1 + dt * K * d_zz) theta[n] = theta*
67     C | (1 + dt * K * d_zz) salt[n] = salt*
68     C |
69     C *==========================================================*
70     C \ev
71     C !USES:
72 adcroft 1.40 IMPLICIT NONE
73 cnh 1.1 C == Global variables ===
74     #include "SIZE.h"
75     #include "EEPARAMS.h"
76 adcroft 1.6 #include "PARAMS.h"
77 adcroft 1.3 #include "DYNVARS.h"
78 edhill 1.103 #ifdef ALLOW_CD_CODE
79     #include "CD_CODE_VARS.h"
80     #endif
81 adcroft 1.42 #include "GRID.h"
82 heimbach 1.49 #ifdef ALLOW_AUTODIFF_TAMC
83 heimbach 1.53 # include "tamc.h"
84     # include "tamc_keys.h"
85 heimbach 1.67 # include "FFIELDS.h"
86 heimbach 1.91 # include "EOS.h"
87 heimbach 1.67 # ifdef ALLOW_KPP
88     # include "KPP.h"
89     # endif
90 heimbach 1.53 #endif /* ALLOW_AUTODIFF_TAMC */
91 jmc 1.62
92 cnh 1.82 C !CALLING SEQUENCE:
93     C DYNAMICS()
94     C |
95 jmc 1.122 C |-- CALC_EP_FORCING
96     C |
97 cnh 1.82 C |-- CALC_GRAD_PHI_SURF
98     C |
99     C |-- CALC_VISCOSITY
100     C |
101     C |-- CALC_PHI_HYD
102     C |
103     C |-- MOM_FLUXFORM
104     C |
105     C |-- MOM_VECINV
106     C |
107     C |-- TIMESTEP
108     C |
109     C |-- OBCS_APPLY_UV
110     C |
111 jmc 1.122 C |-- MOM_U_IMPLICIT_R
112     C |-- MOM_V_IMPLICIT_R
113     C |
114 cnh 1.82 C |-- IMPLDIFF
115     C |
116     C |-- OBCS_APPLY_UV
117     C |
118 jmc 1.122 C |-- CALC_GW
119     C |
120     C |-- DIAGNOSTICS_FILL
121     C |-- DEBUG_STATS_RL
122 cnh 1.82
123     C !INPUT/OUTPUT PARAMETERS:
124 cnh 1.1 C == Routine arguments ==
125 cnh 1.8 C myTime - Current time in simulation
126     C myIter - Current iteration number in simulation
127 cnh 1.1 C myThid - Thread number for this instance of the routine.
128 cnh 1.8 _RL myTime
129     INTEGER myIter
130 adcroft 1.47 INTEGER myThid
131 cnh 1.1
132 cnh 1.82 C !LOCAL VARIABLES:
133 cnh 1.1 C == Local variables
134 jmc 1.113 C fVer[UV] o fVer: Vertical flux term - note fVer
135     C is "pipelined" in the vertical
136     C so we need an fVer for each
137     C variable.
138 jmc 1.94 C phiHydC :: hydrostatic potential anomaly at cell center
139     C In z coords phiHyd is the hydrostatic potential
140     C (=pressure/rho0) anomaly
141     C In p coords phiHyd is the geopotential height anomaly.
142     C phiHydF :: hydrostatic potential anomaly at middle between 2 centers
143     C dPhiHydX,Y :: Gradient (X & Y directions) of hydrostatic potential anom.
144     C phiSurfX, :: gradient of Surface potential (Pressure/rho, ocean)
145 jmc 1.92 C phiSurfY or geopotential (atmos) in X and Y direction
146 jmc 1.110 C guDissip :: dissipation tendency (all explicit terms), u component
147     C gvDissip :: dissipation tendency (all explicit terms), v component
148 cnh 1.30 C iMin, iMax - Ranges and sub-block indices on which calculations
149     C jMin, jMax are applied.
150 cnh 1.1 C bi, bj
151 heimbach 1.53 C k, kup, - Index for layer above and below. kup and kDown
152     C kDown, km1 are switched with layer to be the appropriate
153 cnh 1.38 C index into fVerTerm.
154 cnh 1.30 _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
155     _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
156 jmc 1.94 _RL phiHydF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
157     _RL phiHydC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
158 jmc 1.92 _RL dPhiHydX(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
159     _RL dPhiHydY(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
160 jmc 1.63 _RL phiSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
161     _RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
162 jmc 1.110 _RL guDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
163     _RL gvDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
164 adcroft 1.42 _RL KappaRU (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
165     _RL KappaRV (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
166 adcroft 1.12
167 cnh 1.1 INTEGER iMin, iMax
168     INTEGER jMin, jMax
169     INTEGER bi, bj
170     INTEGER i, j
171 heimbach 1.77 INTEGER k, km1, kp1, kup, kDown
172 cnh 1.1
173 jmc 1.113 #ifdef ALLOW_DIAGNOSTICS
174 jmc 1.120 _RL tmpFac
175 jmc 1.113 #endif /* ALLOW_DIAGNOSTICS */
176    
177 jmc 1.62
178 adcroft 1.11 C--- The algorithm...
179     C
180     C "Correction Step"
181     C =================
182     C Here we update the horizontal velocities with the surface
183     C pressure such that the resulting flow is either consistent
184     C with the free-surface evolution or the rigid-lid:
185     C U[n] = U* + dt x d/dx P
186     C V[n] = V* + dt x d/dy P
187     C
188     C "Calculation of Gs"
189     C ===================
190     C This is where all the accelerations and tendencies (ie.
191 heimbach 1.53 C physics, parameterizations etc...) are calculated
192 adcroft 1.11 C rho = rho ( theta[n], salt[n] )
193 cnh 1.27 C b = b(rho, theta)
194 adcroft 1.11 C K31 = K31 ( rho )
195 jmc 1.61 C Gu[n] = Gu( u[n], v[n], wVel, b, ... )
196     C Gv[n] = Gv( u[n], v[n], wVel, b, ... )
197     C Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
198     C Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
199 adcroft 1.11 C
200 adcroft 1.12 C "Time-stepping" or "Prediction"
201 adcroft 1.11 C ================================
202     C The models variables are stepped forward with the appropriate
203     C time-stepping scheme (currently we use Adams-Bashforth II)
204     C - For momentum, the result is always *only* a "prediction"
205     C in that the flow may be divergent and will be "corrected"
206     C later with a surface pressure gradient.
207     C - Normally for tracers the result is the new field at time
208     C level [n+1} *BUT* in the case of implicit diffusion the result
209     C is also *only* a prediction.
210     C - We denote "predictors" with an asterisk (*).
211     C U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
212     C V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
213     C theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
214     C salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
215 adcroft 1.12 C With implicit diffusion:
216 adcroft 1.11 C theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
217     C salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
218 adcroft 1.12 C (1 + dt * K * d_zz) theta[n] = theta*
219     C (1 + dt * K * d_zz) salt[n] = salt*
220 adcroft 1.11 C---
221 cnh 1.82 CEOP
222 adcroft 1.11
223 jmc 1.123 #ifdef ALLOW_DEBUG
224     IF ( debugLevel .GE. debLevB )
225     & CALL DEBUG_ENTER( 'DYNAMICS', myThid )
226     #endif
227    
228 heimbach 1.88 C-- Call to routine for calculation of
229     C Eliassen-Palm-flux-forced U-tendency,
230     C if desired:
231     #ifdef INCLUDE_EP_FORCING_CODE
232     CALL CALC_EP_FORCING(myThid)
233     #endif
234    
235 heimbach 1.76 #ifdef ALLOW_AUTODIFF_TAMC
236     C-- HPF directive to help TAMC
237     CHPF$ INDEPENDENT
238     #endif /* ALLOW_AUTODIFF_TAMC */
239    
240 cnh 1.1 DO bj=myByLo(myThid),myByHi(myThid)
241 heimbach 1.76
242     #ifdef ALLOW_AUTODIFF_TAMC
243     C-- HPF directive to help TAMC
244     CHPF$ INDEPENDENT, NEW (fVerU,fVerV
245 jmc 1.94 CHPF$& ,phiHydF
246 heimbach 1.76 CHPF$& ,KappaRU,KappaRV
247     CHPF$& )
248     #endif /* ALLOW_AUTODIFF_TAMC */
249    
250 cnh 1.1 DO bi=myBxLo(myThid),myBxHi(myThid)
251 heimbach 1.76
252     #ifdef ALLOW_AUTODIFF_TAMC
253     act1 = bi - myBxLo(myThid)
254     max1 = myBxHi(myThid) - myBxLo(myThid) + 1
255     act2 = bj - myByLo(myThid)
256     max2 = myByHi(myThid) - myByLo(myThid) + 1
257     act3 = myThid - 1
258     max3 = nTx*nTy
259     act4 = ikey_dynamics - 1
260 heimbach 1.91 idynkey = (act1 + 1) + act2*max1
261 heimbach 1.76 & + act3*max1*max2
262     & + act4*max1*max2*max3
263     #endif /* ALLOW_AUTODIFF_TAMC */
264    
265 heimbach 1.97 C-- Set up work arrays with valid (i.e. not NaN) values
266     C These inital values do not alter the numerical results. They
267     C just ensure that all memory references are to valid floating
268     C point numbers. This prevents spurious hardware signals due to
269     C uninitialised but inert locations.
270    
271 jmc 1.94 DO k=1,Nr
272     DO j=1-OLy,sNy+OLy
273     DO i=1-OLx,sNx+OLx
274 heimbach 1.87 KappaRU(i,j,k) = 0. _d 0
275     KappaRV(i,j,k) = 0. _d 0
276 heimbach 1.97 #ifdef ALLOW_AUTODIFF_TAMC
277     cph(
278     c-- need some re-initialisation here to break dependencies
279     cph)
280 jmc 1.122 gU(i,j,k,bi,bj) = 0. _d 0
281     gV(i,j,k,bi,bj) = 0. _d 0
282 heimbach 1.97 #endif
283 heimbach 1.87 ENDDO
284 jmc 1.94 ENDDO
285     ENDDO
286     DO j=1-OLy,sNy+OLy
287     DO i=1-OLx,sNx+OLx
288 heimbach 1.76 fVerU (i,j,1) = 0. _d 0
289     fVerU (i,j,2) = 0. _d 0
290     fVerV (i,j,1) = 0. _d 0
291     fVerV (i,j,2) = 0. _d 0
292 jmc 1.94 phiHydF (i,j) = 0. _d 0
293     phiHydC (i,j) = 0. _d 0
294 jmc 1.92 dPhiHydX(i,j) = 0. _d 0
295     dPhiHydY(i,j) = 0. _d 0
296 heimbach 1.97 phiSurfX(i,j) = 0. _d 0
297     phiSurfY(i,j) = 0. _d 0
298 jmc 1.110 guDissip(i,j) = 0. _d 0
299     gvDissip(i,j) = 0. _d 0
300 heimbach 1.76 ENDDO
301     ENDDO
302 heimbach 1.49
303 jmc 1.63 C-- Start computation of dynamics
304 jmc 1.93 iMin = 0
305     iMax = sNx+1
306     jMin = 0
307     jMax = sNy+1
308 jmc 1.63
309 heimbach 1.76 #ifdef ALLOW_AUTODIFF_TAMC
310 heimbach 1.91 CADJ STORE wvel (:,:,:,bi,bj) =
311     CADJ & comlev1_bibj, key = idynkey, byte = isbyte
312 heimbach 1.76 #endif /* ALLOW_AUTODIFF_TAMC */
313    
314 jmc 1.65 C-- Explicit part of the Surface Potentiel Gradient (add in TIMESTEP)
315 jmc 1.63 C (note: this loop will be replaced by CALL CALC_GRAD_ETA)
316     IF (implicSurfPress.NE.1.) THEN
317 jmc 1.65 CALL CALC_GRAD_PHI_SURF(
318     I bi,bj,iMin,iMax,jMin,jMax,
319     I etaN,
320     O phiSurfX,phiSurfY,
321     I myThid )
322 jmc 1.63 ENDIF
323 heimbach 1.83
324     #ifdef ALLOW_AUTODIFF_TAMC
325 heimbach 1.91 CADJ STORE uvel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
326     CADJ STORE vvel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
327 heimbach 1.83 #ifdef ALLOW_KPP
328     CADJ STORE KPPviscAz (:,:,:,bi,bj)
329 heimbach 1.91 CADJ & = comlev1_bibj, key=idynkey, byte=isbyte
330 heimbach 1.83 #endif /* ALLOW_KPP */
331     #endif /* ALLOW_AUTODIFF_TAMC */
332 adcroft 1.58
333 heimbach 1.77 #ifdef INCLUDE_CALC_DIFFUSIVITY_CALL
334     C-- Calculate the total vertical diffusivity
335     DO k=1,Nr
336     CALL CALC_VISCOSITY(
337     I bi,bj,iMin,iMax,jMin,jMax,k,
338     O KappaRU,KappaRV,
339     I myThid)
340     ENDDO
341     #endif
342    
343 heimbach 1.101 #ifdef ALLOW_AUTODIFF_TAMC
344     CADJ STORE KappaRU(:,:,:)
345     CADJ & = comlev1_bibj, key=idynkey, byte=isbyte
346     CADJ STORE KappaRV(:,:,:)
347     CADJ & = comlev1_bibj, key=idynkey, byte=isbyte
348     #endif /* ALLOW_AUTODIFF_TAMC */
349    
350 adcroft 1.58 C-- Start of dynamics loop
351     DO k=1,Nr
352    
353     C-- km1 Points to level above k (=k-1)
354     C-- kup Cycles through 1,2 to point to layer above
355     C-- kDown Cycles through 2,1 to point to current layer
356    
357     km1 = MAX(1,k-1)
358 heimbach 1.77 kp1 = MIN(k+1,Nr)
359 adcroft 1.58 kup = 1+MOD(k+1,2)
360     kDown= 1+MOD(k,2)
361    
362 heimbach 1.76 #ifdef ALLOW_AUTODIFF_TAMC
363 heimbach 1.91 kkey = (idynkey-1)*Nr + k
364 heimbach 1.99 c
365 heimbach 1.95 CADJ STORE totphihyd (:,:,k,bi,bj)
366 heimbach 1.99 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
367     CADJ STORE theta (:,:,k,bi,bj)
368     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
369     CADJ STORE salt (:,:,k,bi,bj)
370 heimbach 1.95 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
371 heimbach 1.126 # ifdef NONLIN_FRSURF
372     cph-test
373     CADJ STORE phiHydC (:,:)
374     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
375     CADJ STORE phiHydF (:,:)
376     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
377     CADJ STORE gudissip (:,:)
378     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
379     CADJ STORE gvdissip (:,:)
380     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
381     CADJ STORE fVerU (:,:,:)
382     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
383     CADJ STORE fVerV (:,:,:)
384     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
385     CADJ STORE gu(:,:,k,bi,bj)
386     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
387     CADJ STORE gv(:,:,k,bi,bj)
388     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
389     CADJ STORE gunm1(:,:,k,bi,bj)
390     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
391     CADJ STORE gvnm1(:,:,k,bi,bj)
392     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
393     # ifdef ALLOW_CD_CODE
394     CADJ STORE unm1(:,:,k,bi,bj)
395     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
396     CADJ STORE vnm1(:,:,k,bi,bj)
397     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
398     CADJ STORE uVelD(:,:,k,bi,bj)
399     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
400     CADJ STORE vVelD(:,:,k,bi,bj)
401     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
402     # endif
403     # endif
404 heimbach 1.76 #endif /* ALLOW_AUTODIFF_TAMC */
405    
406 adcroft 1.58 C-- Integrate hydrostatic balance for phiHyd with BC of
407     C phiHyd(z=0)=0
408 jmc 1.128 IF ( implicitIntGravWave ) THEN
409     CALL CALC_PHI_HYD(
410     I bi,bj,iMin,iMax,jMin,jMax,k,
411     I gT, gS,
412     U phiHydF,
413     O phiHydC, dPhiHydX, dPhiHydY,
414     I myTime, myIter, myThid )
415     ELSE
416     CALL CALC_PHI_HYD(
417 adcroft 1.58 I bi,bj,iMin,iMax,jMin,jMax,k,
418     I theta, salt,
419 jmc 1.94 U phiHydF,
420     O phiHydC, dPhiHydX, dPhiHydY,
421 jmc 1.92 I myTime, myIter, myThid )
422 jmc 1.128 ENDIF
423 mlosch 1.89
424 adcroft 1.58 C-- Calculate accelerations in the momentum equations (gU, gV, ...)
425 jmc 1.96 C and step forward storing the result in gU, gV, etc...
426 adcroft 1.58 IF ( momStepping ) THEN
427 edhill 1.105 #ifdef ALLOW_MOM_FLUXFORM
428 adcroft 1.79 IF (.NOT. vectorInvariantMomentum) CALL MOM_FLUXFORM(
429 adcroft 1.58 I bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
430 jmc 1.121 I KappaRU, KappaRV,
431 adcroft 1.58 U fVerU, fVerV,
432 jmc 1.121 O guDissip, gvDissip,
433 adcroft 1.80 I myTime, myIter, myThid)
434 adcroft 1.79 #endif
435 edhill 1.105 #ifdef ALLOW_MOM_VECINV
436 heimbach 1.126 IF (vectorInvariantMomentum) THEN
437     C
438     # ifdef ALLOW_AUTODIFF_TAMC
439     # ifdef NONLIN_FRSURF
440     CADJ STORE fVerU(:,:,:)
441     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
442     CADJ STORE fVerV(:,:,:)
443     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
444     # endif
445     # endif /* ALLOW_AUTODIFF_TAMC */
446     C
447     CALL MOM_VECINV(
448 adcroft 1.79 I bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
449 jmc 1.121 I KappaRU, KappaRV,
450 adcroft 1.79 U fVerU, fVerV,
451 jmc 1.110 O guDissip, gvDissip,
452 adcroft 1.80 I myTime, myIter, myThid)
453 heimbach 1.126 ENDIF
454 adcroft 1.79 #endif
455 adcroft 1.58 CALL TIMESTEP(
456 jmc 1.63 I bi,bj,iMin,iMax,jMin,jMax,k,
457 jmc 1.94 I dPhiHydX,dPhiHydY, phiSurfX, phiSurfY,
458 jmc 1.110 I guDissip, gvDissip,
459 jmc 1.96 I myTime, myIter, myThid)
460 adcroft 1.58
461     #ifdef ALLOW_OBCS
462     C-- Apply open boundary conditions
463 jmc 1.96 IF (useOBCS) THEN
464     CALL OBCS_APPLY_UV( bi, bj, k, gU, gV, myThid )
465     ENDIF
466 adcroft 1.58 #endif /* ALLOW_OBCS */
467    
468     ENDIF
469    
470    
471     C-- end of dynamics k loop (1:Nr)
472     ENDDO
473    
474 jmc 1.106 C-- Implicit Vertical advection & viscosity
475     #ifdef INCLUDE_IMPLVERTADV_CODE
476     IF ( momImplVertAdv ) THEN
477     CALL MOM_U_IMPLICIT_R( kappaRU,
478     I bi, bj, myTime, myIter, myThid )
479     CALL MOM_V_IMPLICIT_R( kappaRV,
480     I bi, bj, myTime, myIter, myThid )
481     ELSEIF ( implicitViscosity ) THEN
482     #else /* INCLUDE_IMPLVERTADV_CODE */
483     IF ( implicitViscosity ) THEN
484     #endif /* INCLUDE_IMPLVERTADV_CODE */
485 adcroft 1.58 #ifdef ALLOW_AUTODIFF_TAMC
486 heimbach 1.101 CADJ STORE KappaRU(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
487 jmc 1.96 CADJ STORE gU(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
488 adcroft 1.58 #endif /* ALLOW_AUTODIFF_TAMC */
489 adcroft 1.42 CALL IMPLDIFF(
490     I bi, bj, iMin, iMax, jMin, jMax,
491 jmc 1.124 I -1, KappaRU,recip_HFacW,
492 jmc 1.96 U gU,
493 adcroft 1.42 I myThid )
494 adcroft 1.58 #ifdef ALLOW_AUTODIFF_TAMC
495 heimbach 1.101 CADJ STORE KappaRV(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
496 heimbach 1.97 CADJ STORE gV(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
497 adcroft 1.58 #endif /* ALLOW_AUTODIFF_TAMC */
498 adcroft 1.42 CALL IMPLDIFF(
499     I bi, bj, iMin, iMax, jMin, jMax,
500 jmc 1.124 I -2, KappaRV,recip_HFacS,
501 jmc 1.96 U gV,
502 adcroft 1.42 I myThid )
503 jmc 1.106 ENDIF
504 heimbach 1.49
505 adcroft 1.58 #ifdef ALLOW_OBCS
506     C-- Apply open boundary conditions
507 jmc 1.106 IF ( useOBCS .AND.(implicitViscosity.OR.momImplVertAdv) ) THEN
508 adcroft 1.58 DO K=1,Nr
509 jmc 1.96 CALL OBCS_APPLY_UV( bi, bj, k, gU, gV, myThid )
510 adcroft 1.58 ENDDO
511 jmc 1.106 ENDIF
512 adcroft 1.58 #endif /* ALLOW_OBCS */
513 heimbach 1.49
514 edhill 1.102 #ifdef ALLOW_CD_CODE
515 jmc 1.106 IF (implicitViscosity.AND.useCDscheme) THEN
516 adcroft 1.58 #ifdef ALLOW_AUTODIFF_TAMC
517 heimbach 1.91 CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
518 adcroft 1.58 #endif /* ALLOW_AUTODIFF_TAMC */
519 adcroft 1.42 CALL IMPLDIFF(
520     I bi, bj, iMin, iMax, jMin, jMax,
521 jmc 1.111 I 0, KappaRU,recip_HFacW,
522 adcroft 1.42 U vVelD,
523     I myThid )
524 adcroft 1.58 #ifdef ALLOW_AUTODIFF_TAMC
525 heimbach 1.91 CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
526 adcroft 1.58 #endif /* ALLOW_AUTODIFF_TAMC */
527 adcroft 1.42 CALL IMPLDIFF(
528     I bi, bj, iMin, iMax, jMin, jMax,
529 jmc 1.111 I 0, KappaRV,recip_HFacS,
530 adcroft 1.42 U uVelD,
531     I myThid )
532 jmc 1.106 ENDIF
533 edhill 1.102 #endif /* ALLOW_CD_CODE */
534 jmc 1.106 C-- End implicit Vertical advection & viscosity
535 cnh 1.1
536     ENDDO
537     ENDDO
538 mlosch 1.90
539 heimbach 1.109 #ifdef ALLOW_OBCS
540     IF (useOBCS) THEN
541     CALL OBCS_PRESCRIBE_EXCHANGES(myThid)
542     ENDIF
543     #endif
544    
545 jmc 1.113 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
546    
547 jmc 1.122 #ifdef ALLOW_NONHYDROSTATIC
548     C-- Step forward W field in N-H algorithm
549 jmc 1.128 IF ( nonHydrostatic ) THEN
550 jmc 1.122 #ifdef ALLOW_DEBUG
551 jmc 1.123 IF ( debugLevel .GE. debLevB )
552     & CALL DEBUG_CALL('CALC_GW', myThid )
553 jmc 1.122 #endif
554     CALL TIMER_START('CALC_GW [DYNAMICS]',myThid)
555     CALL CALC_GW( myTime, myIter, myThid )
556     ENDIF
557 jmc 1.128 IF ( nonHydrostatic.OR.implicitIntGravWave )
558     & CALL TIMESTEP_WVEL( myTime, myIter, myThid )
559     IF ( nonHydrostatic )
560     & CALL TIMER_STOP ('CALC_GW [DYNAMICS]',myThid)
561 jmc 1.122 #endif
562    
563     C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
564    
565 mlosch 1.90 Cml(
566     C In order to compare the variance of phiHydLow of a p/z-coordinate
567     C run with etaH of a z/p-coordinate run the drift of phiHydLow
568     C has to be removed by something like the following subroutine:
569     C CALL REMOVE_MEAN_RL( 1, phiHydLow, maskH, maskH, rA, drF,
570     C & 'phiHydLow', myThid )
571     Cml)
572 adcroft 1.69
573 jmc 1.113 #ifdef ALLOW_DIAGNOSTICS
574     IF ( usediagnostics ) THEN
575    
576     CALL DIAGNOSTICS_FILL(totPhihyd,'PHIHYD ',0,Nr,0,1,1,myThid)
577 jmc 1.120 CALL DIAGNOSTICS_FILL(phiHydLow,'PHIBOT ',0, 1,0,1,1,myThid)
578 molod 1.116
579 jmc 1.120 tmpFac = 1. _d 0
580     CALL DIAGNOSTICS_SCALE_FILL(totPhihyd,tmpFac,2,
581     & 'PHIHYDSQ',0,Nr,0,1,1,myThid)
582 molod 1.116
583 jmc 1.120 CALL DIAGNOSTICS_SCALE_FILL(phiHydLow,tmpFac,2,
584     & 'PHIBOTSQ',0, 1,0,1,1,myThid)
585 jmc 1.113
586     ENDIF
587     #endif /* ALLOW_DIAGNOSTICS */
588    
589 edhill 1.104 #ifdef ALLOW_DEBUG
590 heimbach 1.98 If ( debugLevel .GE. debLevB ) THEN
591 adcroft 1.69 CALL DEBUG_STATS_RL(1,EtaN,'EtaN (DYNAMICS)',myThid)
592 adcroft 1.73 CALL DEBUG_STATS_RL(Nr,uVel,'Uvel (DYNAMICS)',myThid)
593 adcroft 1.69 CALL DEBUG_STATS_RL(Nr,vVel,'Vvel (DYNAMICS)',myThid)
594     CALL DEBUG_STATS_RL(Nr,wVel,'Wvel (DYNAMICS)',myThid)
595     CALL DEBUG_STATS_RL(Nr,theta,'Theta (DYNAMICS)',myThid)
596     CALL DEBUG_STATS_RL(Nr,salt,'Salt (DYNAMICS)',myThid)
597 jmc 1.115 CALL DEBUG_STATS_RL(Nr,gU,'Gu (DYNAMICS)',myThid)
598     CALL DEBUG_STATS_RL(Nr,gV,'Gv (DYNAMICS)',myThid)
599     CALL DEBUG_STATS_RL(Nr,gT,'Gt (DYNAMICS)',myThid)
600     CALL DEBUG_STATS_RL(Nr,gS,'Gs (DYNAMICS)',myThid)
601     #ifndef ALLOW_ADAMSBASHFORTH_3
602     CALL DEBUG_STATS_RL(Nr,guNm1,'GuNm1 (DYNAMICS)',myThid)
603     CALL DEBUG_STATS_RL(Nr,gvNm1,'GvNm1 (DYNAMICS)',myThid)
604     CALL DEBUG_STATS_RL(Nr,gtNm1,'GtNm1 (DYNAMICS)',myThid)
605     CALL DEBUG_STATS_RL(Nr,gsNm1,'GsNm1 (DYNAMICS)',myThid)
606     #endif
607 adcroft 1.70 ENDIF
608 adcroft 1.69 #endif
609 cnh 1.1
610 jmc 1.125 #ifdef DYNAMICS_GUGV_EXCH_CHECK
611     C- jmc: For safety checking only: This Exchange here should not change
612     C the solution. If solution changes, it means something is wrong,
613     C but it does not mean that it is less wrong with this exchange.
614     IF ( debugLevel .GT. debLevB ) THEN
615     CALL EXCH_UV_XYZ_RL(gU,gV,.TRUE.,myThid)
616     ENDIF
617     #endif
618    
619 jmc 1.123 #ifdef ALLOW_DEBUG
620     IF ( debugLevel .GE. debLevB )
621     & CALL DEBUG_LEAVE( 'DYNAMICS', myThid )
622     #endif
623    
624 cnh 1.1 RETURN
625     END

  ViewVC Help
Powered by ViewVC 1.1.22