/[MITgcm]/MITgcm/model/src/dynamics.F
ViewVC logotype

Annotation of /MITgcm/model/src/dynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.122 - (hide annotations) (download)
Sat Jul 30 23:39:48 2005 UTC (18 years, 9 months ago) by jmc
Branch: MAIN
CVS Tags: checkpoint57p_post
Changes since 1.121: +28 -4 lines
call CALC_GW from DYNAMICS (instead of from FORWARD_STEP)

1 jmc 1.122 C $Header: /u/gcmpack/MITgcm/model/src/dynamics.F,v 1.121 2005/07/30 22:09:38 jmc Exp $
2 heimbach 1.78 C $Name: $
3 cnh 1.1
4 edhill 1.100 #include "PACKAGES_CONFIG.h"
5 adcroft 1.24 #include "CPP_OPTIONS.h"
6 cnh 1.1
7 cnh 1.82 CBOP
8     C !ROUTINE: DYNAMICS
9     C !INTERFACE:
10 cnh 1.8 SUBROUTINE DYNAMICS(myTime, myIter, myThid)
11 cnh 1.82 C !DESCRIPTION: \bv
12     C *==========================================================*
13     C | SUBROUTINE DYNAMICS
14     C | o Controlling routine for the explicit part of the model
15     C | dynamics.
16     C *==========================================================*
17     C | This routine evaluates the "dynamics" terms for each
18     C | block of ocean in turn. Because the blocks of ocean have
19     C | overlap regions they are independent of one another.
20     C | If terms involving lateral integrals are needed in this
21     C | routine care will be needed. Similarly finite-difference
22     C | operations with stencils wider than the overlap region
23     C | require special consideration.
24     C | The algorithm...
25     C |
26     C | "Correction Step"
27     C | =================
28     C | Here we update the horizontal velocities with the surface
29     C | pressure such that the resulting flow is either consistent
30     C | with the free-surface evolution or the rigid-lid:
31     C | U[n] = U* + dt x d/dx P
32     C | V[n] = V* + dt x d/dy P
33 jmc 1.122 C | W[n] = W* + dt x d/dz P (NH mode)
34 cnh 1.82 C |
35     C | "Calculation of Gs"
36     C | ===================
37     C | This is where all the accelerations and tendencies (ie.
38     C | physics, parameterizations etc...) are calculated
39     C | rho = rho ( theta[n], salt[n] )
40     C | b = b(rho, theta)
41     C | K31 = K31 ( rho )
42     C | Gu[n] = Gu( u[n], v[n], wVel, b, ... )
43     C | Gv[n] = Gv( u[n], v[n], wVel, b, ... )
44     C | Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
45     C | Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
46     C |
47     C | "Time-stepping" or "Prediction"
48     C | ================================
49     C | The models variables are stepped forward with the appropriate
50     C | time-stepping scheme (currently we use Adams-Bashforth II)
51     C | - For momentum, the result is always *only* a "prediction"
52     C | in that the flow may be divergent and will be "corrected"
53     C | later with a surface pressure gradient.
54     C | - Normally for tracers the result is the new field at time
55     C | level [n+1} *BUT* in the case of implicit diffusion the result
56     C | is also *only* a prediction.
57     C | - We denote "predictors" with an asterisk (*).
58     C | U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
59     C | V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
60     C | theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
61     C | salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
62     C | With implicit diffusion:
63     C | theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
64     C | salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
65     C | (1 + dt * K * d_zz) theta[n] = theta*
66     C | (1 + dt * K * d_zz) salt[n] = salt*
67     C |
68     C *==========================================================*
69     C \ev
70     C !USES:
71 adcroft 1.40 IMPLICIT NONE
72 cnh 1.1 C == Global variables ===
73     #include "SIZE.h"
74     #include "EEPARAMS.h"
75 adcroft 1.6 #include "PARAMS.h"
76 adcroft 1.3 #include "DYNVARS.h"
77 edhill 1.103 #ifdef ALLOW_CD_CODE
78     #include "CD_CODE_VARS.h"
79     #endif
80 adcroft 1.42 #include "GRID.h"
81 heimbach 1.49 #ifdef ALLOW_AUTODIFF_TAMC
82 heimbach 1.53 # include "tamc.h"
83     # include "tamc_keys.h"
84 heimbach 1.67 # include "FFIELDS.h"
85 heimbach 1.91 # include "EOS.h"
86 heimbach 1.67 # ifdef ALLOW_KPP
87     # include "KPP.h"
88     # endif
89 heimbach 1.53 #endif /* ALLOW_AUTODIFF_TAMC */
90 jmc 1.62
91 cnh 1.82 C !CALLING SEQUENCE:
92     C DYNAMICS()
93     C |
94 jmc 1.122 C |-- CALC_EP_FORCING
95     C |
96 cnh 1.82 C |-- CALC_GRAD_PHI_SURF
97     C |
98     C |-- CALC_VISCOSITY
99     C |
100     C |-- CALC_PHI_HYD
101     C |
102     C |-- MOM_FLUXFORM
103     C |
104     C |-- MOM_VECINV
105     C |
106     C |-- TIMESTEP
107     C |
108     C |-- OBCS_APPLY_UV
109     C |
110 jmc 1.122 C |-- MOM_U_IMPLICIT_R
111     C |-- MOM_V_IMPLICIT_R
112     C |
113 cnh 1.82 C |-- IMPLDIFF
114     C |
115     C |-- OBCS_APPLY_UV
116     C |
117 jmc 1.122 C |-- CALC_GW
118     C |
119     C |-- DIAGNOSTICS_FILL
120     C |-- DEBUG_STATS_RL
121 cnh 1.82
122     C !INPUT/OUTPUT PARAMETERS:
123 cnh 1.1 C == Routine arguments ==
124 cnh 1.8 C myTime - Current time in simulation
125     C myIter - Current iteration number in simulation
126 cnh 1.1 C myThid - Thread number for this instance of the routine.
127 cnh 1.8 _RL myTime
128     INTEGER myIter
129 adcroft 1.47 INTEGER myThid
130 cnh 1.1
131 cnh 1.82 C !LOCAL VARIABLES:
132 cnh 1.1 C == Local variables
133 jmc 1.113 C fVer[UV] o fVer: Vertical flux term - note fVer
134     C is "pipelined" in the vertical
135     C so we need an fVer for each
136     C variable.
137 jmc 1.94 C phiHydC :: hydrostatic potential anomaly at cell center
138     C In z coords phiHyd is the hydrostatic potential
139     C (=pressure/rho0) anomaly
140     C In p coords phiHyd is the geopotential height anomaly.
141     C phiHydF :: hydrostatic potential anomaly at middle between 2 centers
142     C dPhiHydX,Y :: Gradient (X & Y directions) of hydrostatic potential anom.
143     C phiSurfX, :: gradient of Surface potential (Pressure/rho, ocean)
144 jmc 1.92 C phiSurfY or geopotential (atmos) in X and Y direction
145 jmc 1.110 C guDissip :: dissipation tendency (all explicit terms), u component
146     C gvDissip :: dissipation tendency (all explicit terms), v component
147 cnh 1.30 C iMin, iMax - Ranges and sub-block indices on which calculations
148     C jMin, jMax are applied.
149 cnh 1.1 C bi, bj
150 heimbach 1.53 C k, kup, - Index for layer above and below. kup and kDown
151     C kDown, km1 are switched with layer to be the appropriate
152 cnh 1.38 C index into fVerTerm.
153 cnh 1.30 _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
154     _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
155 jmc 1.94 _RL phiHydF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
156     _RL phiHydC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
157 jmc 1.92 _RL dPhiHydX(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
158     _RL dPhiHydY(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
159 jmc 1.63 _RL phiSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
160     _RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
161 jmc 1.110 _RL guDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
162     _RL gvDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
163 adcroft 1.42 _RL KappaRU (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
164     _RL KappaRV (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
165 adcroft 1.12
166 cnh 1.1 INTEGER iMin, iMax
167     INTEGER jMin, jMax
168     INTEGER bi, bj
169     INTEGER i, j
170 heimbach 1.77 INTEGER k, km1, kp1, kup, kDown
171 cnh 1.1
172 jmc 1.113 #ifdef ALLOW_DIAGNOSTICS
173 jmc 1.120 _RL tmpFac
174 jmc 1.113 #endif /* ALLOW_DIAGNOSTICS */
175    
176 jmc 1.62
177 adcroft 1.11 C--- The algorithm...
178     C
179     C "Correction Step"
180     C =================
181     C Here we update the horizontal velocities with the surface
182     C pressure such that the resulting flow is either consistent
183     C with the free-surface evolution or the rigid-lid:
184     C U[n] = U* + dt x d/dx P
185     C V[n] = V* + dt x d/dy P
186     C
187     C "Calculation of Gs"
188     C ===================
189     C This is where all the accelerations and tendencies (ie.
190 heimbach 1.53 C physics, parameterizations etc...) are calculated
191 adcroft 1.11 C rho = rho ( theta[n], salt[n] )
192 cnh 1.27 C b = b(rho, theta)
193 adcroft 1.11 C K31 = K31 ( rho )
194 jmc 1.61 C Gu[n] = Gu( u[n], v[n], wVel, b, ... )
195     C Gv[n] = Gv( u[n], v[n], wVel, b, ... )
196     C Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
197     C Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
198 adcroft 1.11 C
199 adcroft 1.12 C "Time-stepping" or "Prediction"
200 adcroft 1.11 C ================================
201     C The models variables are stepped forward with the appropriate
202     C time-stepping scheme (currently we use Adams-Bashforth II)
203     C - For momentum, the result is always *only* a "prediction"
204     C in that the flow may be divergent and will be "corrected"
205     C later with a surface pressure gradient.
206     C - Normally for tracers the result is the new field at time
207     C level [n+1} *BUT* in the case of implicit diffusion the result
208     C is also *only* a prediction.
209     C - We denote "predictors" with an asterisk (*).
210     C U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
211     C V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
212     C theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
213     C salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
214 adcroft 1.12 C With implicit diffusion:
215 adcroft 1.11 C theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
216     C salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
217 adcroft 1.12 C (1 + dt * K * d_zz) theta[n] = theta*
218     C (1 + dt * K * d_zz) salt[n] = salt*
219 adcroft 1.11 C---
220 cnh 1.82 CEOP
221 adcroft 1.11
222 heimbach 1.88 C-- Call to routine for calculation of
223     C Eliassen-Palm-flux-forced U-tendency,
224     C if desired:
225     #ifdef INCLUDE_EP_FORCING_CODE
226     CALL CALC_EP_FORCING(myThid)
227     #endif
228    
229 heimbach 1.76 #ifdef ALLOW_AUTODIFF_TAMC
230     C-- HPF directive to help TAMC
231     CHPF$ INDEPENDENT
232     #endif /* ALLOW_AUTODIFF_TAMC */
233    
234 cnh 1.1 DO bj=myByLo(myThid),myByHi(myThid)
235 heimbach 1.76
236     #ifdef ALLOW_AUTODIFF_TAMC
237     C-- HPF directive to help TAMC
238     CHPF$ INDEPENDENT, NEW (fVerU,fVerV
239 jmc 1.94 CHPF$& ,phiHydF
240 heimbach 1.76 CHPF$& ,KappaRU,KappaRV
241     CHPF$& )
242     #endif /* ALLOW_AUTODIFF_TAMC */
243    
244 cnh 1.1 DO bi=myBxLo(myThid),myBxHi(myThid)
245 heimbach 1.76
246     #ifdef ALLOW_AUTODIFF_TAMC
247     act1 = bi - myBxLo(myThid)
248     max1 = myBxHi(myThid) - myBxLo(myThid) + 1
249     act2 = bj - myByLo(myThid)
250     max2 = myByHi(myThid) - myByLo(myThid) + 1
251     act3 = myThid - 1
252     max3 = nTx*nTy
253     act4 = ikey_dynamics - 1
254 heimbach 1.91 idynkey = (act1 + 1) + act2*max1
255 heimbach 1.76 & + act3*max1*max2
256     & + act4*max1*max2*max3
257     #endif /* ALLOW_AUTODIFF_TAMC */
258    
259 heimbach 1.97 C-- Set up work arrays with valid (i.e. not NaN) values
260     C These inital values do not alter the numerical results. They
261     C just ensure that all memory references are to valid floating
262     C point numbers. This prevents spurious hardware signals due to
263     C uninitialised but inert locations.
264    
265 jmc 1.94 DO k=1,Nr
266     DO j=1-OLy,sNy+OLy
267     DO i=1-OLx,sNx+OLx
268 heimbach 1.87 KappaRU(i,j,k) = 0. _d 0
269     KappaRV(i,j,k) = 0. _d 0
270 heimbach 1.97 #ifdef ALLOW_AUTODIFF_TAMC
271     cph(
272     c-- need some re-initialisation here to break dependencies
273     cph)
274 jmc 1.122 gU(i,j,k,bi,bj) = 0. _d 0
275     gV(i,j,k,bi,bj) = 0. _d 0
276 heimbach 1.97 #endif
277 heimbach 1.87 ENDDO
278 jmc 1.94 ENDDO
279     ENDDO
280     DO j=1-OLy,sNy+OLy
281     DO i=1-OLx,sNx+OLx
282 heimbach 1.76 fVerU (i,j,1) = 0. _d 0
283     fVerU (i,j,2) = 0. _d 0
284     fVerV (i,j,1) = 0. _d 0
285     fVerV (i,j,2) = 0. _d 0
286 jmc 1.94 phiHydF (i,j) = 0. _d 0
287     phiHydC (i,j) = 0. _d 0
288 jmc 1.92 dPhiHydX(i,j) = 0. _d 0
289     dPhiHydY(i,j) = 0. _d 0
290 heimbach 1.97 phiSurfX(i,j) = 0. _d 0
291     phiSurfY(i,j) = 0. _d 0
292 jmc 1.110 guDissip(i,j) = 0. _d 0
293     gvDissip(i,j) = 0. _d 0
294 heimbach 1.76 ENDDO
295     ENDDO
296 heimbach 1.49
297 jmc 1.63 C-- Start computation of dynamics
298 jmc 1.93 iMin = 0
299     iMax = sNx+1
300     jMin = 0
301     jMax = sNy+1
302 jmc 1.63
303 heimbach 1.76 #ifdef ALLOW_AUTODIFF_TAMC
304 heimbach 1.91 CADJ STORE wvel (:,:,:,bi,bj) =
305     CADJ & comlev1_bibj, key = idynkey, byte = isbyte
306 heimbach 1.76 #endif /* ALLOW_AUTODIFF_TAMC */
307    
308 jmc 1.65 C-- Explicit part of the Surface Potentiel Gradient (add in TIMESTEP)
309 jmc 1.63 C (note: this loop will be replaced by CALL CALC_GRAD_ETA)
310     IF (implicSurfPress.NE.1.) THEN
311 jmc 1.65 CALL CALC_GRAD_PHI_SURF(
312     I bi,bj,iMin,iMax,jMin,jMax,
313     I etaN,
314     O phiSurfX,phiSurfY,
315     I myThid )
316 jmc 1.63 ENDIF
317 heimbach 1.83
318     #ifdef ALLOW_AUTODIFF_TAMC
319 heimbach 1.91 CADJ STORE uvel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
320     CADJ STORE vvel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
321 heimbach 1.83 #ifdef ALLOW_KPP
322     CADJ STORE KPPviscAz (:,:,:,bi,bj)
323 heimbach 1.91 CADJ & = comlev1_bibj, key=idynkey, byte=isbyte
324 heimbach 1.83 #endif /* ALLOW_KPP */
325     #endif /* ALLOW_AUTODIFF_TAMC */
326 adcroft 1.58
327 heimbach 1.77 #ifdef INCLUDE_CALC_DIFFUSIVITY_CALL
328     C-- Calculate the total vertical diffusivity
329     DO k=1,Nr
330     CALL CALC_VISCOSITY(
331     I bi,bj,iMin,iMax,jMin,jMax,k,
332     O KappaRU,KappaRV,
333     I myThid)
334     ENDDO
335     #endif
336    
337 heimbach 1.101 #ifdef ALLOW_AUTODIFF_TAMC
338     CADJ STORE KappaRU(:,:,:)
339     CADJ & = comlev1_bibj, key=idynkey, byte=isbyte
340     CADJ STORE KappaRV(:,:,:)
341     CADJ & = comlev1_bibj, key=idynkey, byte=isbyte
342     #endif /* ALLOW_AUTODIFF_TAMC */
343    
344 adcroft 1.58 C-- Start of dynamics loop
345     DO k=1,Nr
346    
347     C-- km1 Points to level above k (=k-1)
348     C-- kup Cycles through 1,2 to point to layer above
349     C-- kDown Cycles through 2,1 to point to current layer
350    
351     km1 = MAX(1,k-1)
352 heimbach 1.77 kp1 = MIN(k+1,Nr)
353 adcroft 1.58 kup = 1+MOD(k+1,2)
354     kDown= 1+MOD(k,2)
355    
356 heimbach 1.76 #ifdef ALLOW_AUTODIFF_TAMC
357 heimbach 1.91 kkey = (idynkey-1)*Nr + k
358 heimbach 1.99 c
359 heimbach 1.95 CADJ STORE totphihyd (:,:,k,bi,bj)
360 heimbach 1.99 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
361     CADJ STORE theta (:,:,k,bi,bj)
362     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
363     CADJ STORE salt (:,:,k,bi,bj)
364 heimbach 1.95 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
365 heimbach 1.76 #endif /* ALLOW_AUTODIFF_TAMC */
366    
367 adcroft 1.58 C-- Integrate hydrostatic balance for phiHyd with BC of
368     C phiHyd(z=0)=0
369 jmc 1.107 CALL CALC_PHI_HYD(
370 adcroft 1.58 I bi,bj,iMin,iMax,jMin,jMax,k,
371     I theta, salt,
372 jmc 1.94 U phiHydF,
373     O phiHydC, dPhiHydX, dPhiHydY,
374 jmc 1.92 I myTime, myIter, myThid )
375 mlosch 1.89
376 adcroft 1.58 C-- Calculate accelerations in the momentum equations (gU, gV, ...)
377 jmc 1.96 C and step forward storing the result in gU, gV, etc...
378 adcroft 1.58 IF ( momStepping ) THEN
379 edhill 1.105 #ifdef ALLOW_MOM_FLUXFORM
380 adcroft 1.79 IF (.NOT. vectorInvariantMomentum) CALL MOM_FLUXFORM(
381 adcroft 1.58 I bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
382 jmc 1.121 I KappaRU, KappaRV,
383 adcroft 1.58 U fVerU, fVerV,
384 jmc 1.121 O guDissip, gvDissip,
385 adcroft 1.80 I myTime, myIter, myThid)
386 adcroft 1.79 #endif
387 edhill 1.105 #ifdef ALLOW_MOM_VECINV
388 adcroft 1.79 IF (vectorInvariantMomentum) CALL MOM_VECINV(
389     I bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
390 jmc 1.121 I KappaRU, KappaRV,
391 adcroft 1.79 U fVerU, fVerV,
392 jmc 1.110 O guDissip, gvDissip,
393 adcroft 1.80 I myTime, myIter, myThid)
394 adcroft 1.79 #endif
395 adcroft 1.58 CALL TIMESTEP(
396 jmc 1.63 I bi,bj,iMin,iMax,jMin,jMax,k,
397 jmc 1.94 I dPhiHydX,dPhiHydY, phiSurfX, phiSurfY,
398 jmc 1.110 I guDissip, gvDissip,
399 jmc 1.96 I myTime, myIter, myThid)
400 adcroft 1.58
401     #ifdef ALLOW_OBCS
402     C-- Apply open boundary conditions
403 jmc 1.96 IF (useOBCS) THEN
404     CALL OBCS_APPLY_UV( bi, bj, k, gU, gV, myThid )
405     ENDIF
406 adcroft 1.58 #endif /* ALLOW_OBCS */
407    
408     ENDIF
409    
410    
411     C-- end of dynamics k loop (1:Nr)
412     ENDDO
413    
414 jmc 1.106 C-- Implicit Vertical advection & viscosity
415     #ifdef INCLUDE_IMPLVERTADV_CODE
416     IF ( momImplVertAdv ) THEN
417     CALL MOM_U_IMPLICIT_R( kappaRU,
418     I bi, bj, myTime, myIter, myThid )
419     CALL MOM_V_IMPLICIT_R( kappaRV,
420     I bi, bj, myTime, myIter, myThid )
421     ELSEIF ( implicitViscosity ) THEN
422     #else /* INCLUDE_IMPLVERTADV_CODE */
423     IF ( implicitViscosity ) THEN
424     #endif /* INCLUDE_IMPLVERTADV_CODE */
425 adcroft 1.58 #ifdef ALLOW_AUTODIFF_TAMC
426 heimbach 1.101 CADJ STORE KappaRU(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
427 jmc 1.96 CADJ STORE gU(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
428 adcroft 1.58 #endif /* ALLOW_AUTODIFF_TAMC */
429 adcroft 1.42 CALL IMPLDIFF(
430     I bi, bj, iMin, iMax, jMin, jMax,
431 jmc 1.111 I 0, KappaRU,recip_HFacW,
432 jmc 1.96 U gU,
433 adcroft 1.42 I myThid )
434 adcroft 1.58 #ifdef ALLOW_AUTODIFF_TAMC
435 heimbach 1.101 CADJ STORE KappaRV(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
436 heimbach 1.97 CADJ STORE gV(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
437 adcroft 1.58 #endif /* ALLOW_AUTODIFF_TAMC */
438 adcroft 1.42 CALL IMPLDIFF(
439     I bi, bj, iMin, iMax, jMin, jMax,
440 jmc 1.111 I 0, KappaRV,recip_HFacS,
441 jmc 1.96 U gV,
442 adcroft 1.42 I myThid )
443 jmc 1.106 ENDIF
444 heimbach 1.49
445 adcroft 1.58 #ifdef ALLOW_OBCS
446     C-- Apply open boundary conditions
447 jmc 1.106 IF ( useOBCS .AND.(implicitViscosity.OR.momImplVertAdv) ) THEN
448 adcroft 1.58 DO K=1,Nr
449 jmc 1.96 CALL OBCS_APPLY_UV( bi, bj, k, gU, gV, myThid )
450 adcroft 1.58 ENDDO
451 jmc 1.106 ENDIF
452 adcroft 1.58 #endif /* ALLOW_OBCS */
453 heimbach 1.49
454 edhill 1.102 #ifdef ALLOW_CD_CODE
455 jmc 1.106 IF (implicitViscosity.AND.useCDscheme) THEN
456 adcroft 1.58 #ifdef ALLOW_AUTODIFF_TAMC
457 heimbach 1.91 CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
458 adcroft 1.58 #endif /* ALLOW_AUTODIFF_TAMC */
459 adcroft 1.42 CALL IMPLDIFF(
460     I bi, bj, iMin, iMax, jMin, jMax,
461 jmc 1.111 I 0, KappaRU,recip_HFacW,
462 adcroft 1.42 U vVelD,
463     I myThid )
464 adcroft 1.58 #ifdef ALLOW_AUTODIFF_TAMC
465 heimbach 1.91 CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
466 adcroft 1.58 #endif /* ALLOW_AUTODIFF_TAMC */
467 adcroft 1.42 CALL IMPLDIFF(
468     I bi, bj, iMin, iMax, jMin, jMax,
469 jmc 1.111 I 0, KappaRV,recip_HFacS,
470 adcroft 1.42 U uVelD,
471     I myThid )
472 jmc 1.106 ENDIF
473 edhill 1.102 #endif /* ALLOW_CD_CODE */
474 jmc 1.106 C-- End implicit Vertical advection & viscosity
475 cnh 1.1
476     ENDDO
477     ENDDO
478 mlosch 1.90
479 heimbach 1.109 #ifdef ALLOW_OBCS
480     IF (useOBCS) THEN
481     CALL OBCS_PRESCRIBE_EXCHANGES(myThid)
482     ENDIF
483     #endif
484    
485 jmc 1.113 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
486    
487 jmc 1.122 #ifdef ALLOW_NONHYDROSTATIC
488     C-- Step forward W field in N-H algorithm
489     IF ( momStepping .AND. nonHydrostatic ) THEN
490     #ifdef ALLOW_DEBUG
491     IF ( debugLevel .GE. debLevB )
492     & CALL DEBUG_CALL('CALC_GW',myThid)
493     #endif
494     CALL TIMER_START('CALC_GW [DYNAMICS]',myThid)
495     CALL CALC_GW( myTime, myIter, myThid )
496     CALL TIMER_STOP ('CALC_GW [DYNAMICS]',myThid)
497     ENDIF
498     #endif
499    
500     C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
501    
502 mlosch 1.90 Cml(
503     C In order to compare the variance of phiHydLow of a p/z-coordinate
504     C run with etaH of a z/p-coordinate run the drift of phiHydLow
505     C has to be removed by something like the following subroutine:
506     C CALL REMOVE_MEAN_RL( 1, phiHydLow, maskH, maskH, rA, drF,
507     C & 'phiHydLow', myThid )
508     Cml)
509 adcroft 1.69
510 jmc 1.113 #ifdef ALLOW_DIAGNOSTICS
511     IF ( usediagnostics ) THEN
512    
513     CALL DIAGNOSTICS_FILL(totPhihyd,'PHIHYD ',0,Nr,0,1,1,myThid)
514 jmc 1.120 CALL DIAGNOSTICS_FILL(phiHydLow,'PHIBOT ',0, 1,0,1,1,myThid)
515 molod 1.116
516 jmc 1.120 tmpFac = 1. _d 0
517     CALL DIAGNOSTICS_SCALE_FILL(totPhihyd,tmpFac,2,
518     & 'PHIHYDSQ',0,Nr,0,1,1,myThid)
519 molod 1.116
520 jmc 1.120 CALL DIAGNOSTICS_SCALE_FILL(phiHydLow,tmpFac,2,
521     & 'PHIBOTSQ',0, 1,0,1,1,myThid)
522 jmc 1.113
523     ENDIF
524     #endif /* ALLOW_DIAGNOSTICS */
525    
526 edhill 1.104 #ifdef ALLOW_DEBUG
527 heimbach 1.98 If ( debugLevel .GE. debLevB ) THEN
528 adcroft 1.69 CALL DEBUG_STATS_RL(1,EtaN,'EtaN (DYNAMICS)',myThid)
529 adcroft 1.73 CALL DEBUG_STATS_RL(Nr,uVel,'Uvel (DYNAMICS)',myThid)
530 adcroft 1.69 CALL DEBUG_STATS_RL(Nr,vVel,'Vvel (DYNAMICS)',myThid)
531     CALL DEBUG_STATS_RL(Nr,wVel,'Wvel (DYNAMICS)',myThid)
532     CALL DEBUG_STATS_RL(Nr,theta,'Theta (DYNAMICS)',myThid)
533     CALL DEBUG_STATS_RL(Nr,salt,'Salt (DYNAMICS)',myThid)
534 jmc 1.115 CALL DEBUG_STATS_RL(Nr,gU,'Gu (DYNAMICS)',myThid)
535     CALL DEBUG_STATS_RL(Nr,gV,'Gv (DYNAMICS)',myThid)
536     CALL DEBUG_STATS_RL(Nr,gT,'Gt (DYNAMICS)',myThid)
537     CALL DEBUG_STATS_RL(Nr,gS,'Gs (DYNAMICS)',myThid)
538     #ifndef ALLOW_ADAMSBASHFORTH_3
539     CALL DEBUG_STATS_RL(Nr,guNm1,'GuNm1 (DYNAMICS)',myThid)
540     CALL DEBUG_STATS_RL(Nr,gvNm1,'GvNm1 (DYNAMICS)',myThid)
541     CALL DEBUG_STATS_RL(Nr,gtNm1,'GtNm1 (DYNAMICS)',myThid)
542     CALL DEBUG_STATS_RL(Nr,gsNm1,'GsNm1 (DYNAMICS)',myThid)
543     #endif
544 adcroft 1.70 ENDIF
545 adcroft 1.69 #endif
546 cnh 1.1
547     RETURN
548     END

  ViewVC Help
Powered by ViewVC 1.1.22