/[MITgcm]/MITgcm/model/src/dynamics.F
ViewVC logotype

Annotation of /MITgcm/model/src/dynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.120 - (hide annotations) (download)
Mon Jul 11 19:30:42 2005 UTC (18 years, 10 months ago) by jmc
Branch: MAIN
CVS Tags: checkpoint57m_post, checkpoint57n_post, checkpoint57l_post, checkpoint57o_post
Changes since 1.119: +8 -32 lines
call diagnostics_scale_fill (instead of diagnostics_fill) and avoid temp array

1 jmc 1.120 C $Header: /u/gcmpack/MITgcm/model/src/dynamics.F,v 1.119 2005/06/27 12:27:19 jmc Exp $
2 heimbach 1.78 C $Name: $
3 cnh 1.1
4 edhill 1.100 #include "PACKAGES_CONFIG.h"
5 adcroft 1.24 #include "CPP_OPTIONS.h"
6 cnh 1.1
7 cnh 1.82 CBOP
8     C !ROUTINE: DYNAMICS
9     C !INTERFACE:
10 cnh 1.8 SUBROUTINE DYNAMICS(myTime, myIter, myThid)
11 cnh 1.82 C !DESCRIPTION: \bv
12     C *==========================================================*
13     C | SUBROUTINE DYNAMICS
14     C | o Controlling routine for the explicit part of the model
15     C | dynamics.
16     C *==========================================================*
17     C | This routine evaluates the "dynamics" terms for each
18     C | block of ocean in turn. Because the blocks of ocean have
19     C | overlap regions they are independent of one another.
20     C | If terms involving lateral integrals are needed in this
21     C | routine care will be needed. Similarly finite-difference
22     C | operations with stencils wider than the overlap region
23     C | require special consideration.
24     C | The algorithm...
25     C |
26     C | "Correction Step"
27     C | =================
28     C | Here we update the horizontal velocities with the surface
29     C | pressure such that the resulting flow is either consistent
30     C | with the free-surface evolution or the rigid-lid:
31     C | U[n] = U* + dt x d/dx P
32     C | V[n] = V* + dt x d/dy P
33     C |
34     C | "Calculation of Gs"
35     C | ===================
36     C | This is where all the accelerations and tendencies (ie.
37     C | physics, parameterizations etc...) are calculated
38     C | rho = rho ( theta[n], salt[n] )
39     C | b = b(rho, theta)
40     C | K31 = K31 ( rho )
41     C | Gu[n] = Gu( u[n], v[n], wVel, b, ... )
42     C | Gv[n] = Gv( u[n], v[n], wVel, b, ... )
43     C | Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
44     C | Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
45     C |
46     C | "Time-stepping" or "Prediction"
47     C | ================================
48     C | The models variables are stepped forward with the appropriate
49     C | time-stepping scheme (currently we use Adams-Bashforth II)
50     C | - For momentum, the result is always *only* a "prediction"
51     C | in that the flow may be divergent and will be "corrected"
52     C | later with a surface pressure gradient.
53     C | - Normally for tracers the result is the new field at time
54     C | level [n+1} *BUT* in the case of implicit diffusion the result
55     C | is also *only* a prediction.
56     C | - We denote "predictors" with an asterisk (*).
57     C | U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
58     C | V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
59     C | theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
60     C | salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
61     C | With implicit diffusion:
62     C | theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
63     C | salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
64     C | (1 + dt * K * d_zz) theta[n] = theta*
65     C | (1 + dt * K * d_zz) salt[n] = salt*
66     C |
67     C *==========================================================*
68     C \ev
69     C !USES:
70 adcroft 1.40 IMPLICIT NONE
71 cnh 1.1 C == Global variables ===
72     #include "SIZE.h"
73     #include "EEPARAMS.h"
74 adcroft 1.6 #include "PARAMS.h"
75 adcroft 1.3 #include "DYNVARS.h"
76 edhill 1.103 #ifdef ALLOW_CD_CODE
77     #include "CD_CODE_VARS.h"
78     #endif
79 adcroft 1.42 #include "GRID.h"
80 heimbach 1.49 #ifdef ALLOW_AUTODIFF_TAMC
81 heimbach 1.53 # include "tamc.h"
82     # include "tamc_keys.h"
83 heimbach 1.67 # include "FFIELDS.h"
84 heimbach 1.91 # include "EOS.h"
85 heimbach 1.67 # ifdef ALLOW_KPP
86     # include "KPP.h"
87     # endif
88 heimbach 1.53 #endif /* ALLOW_AUTODIFF_TAMC */
89 jmc 1.62
90 cnh 1.82 C !CALLING SEQUENCE:
91     C DYNAMICS()
92     C |
93     C |-- CALC_GRAD_PHI_SURF
94     C |
95     C |-- CALC_VISCOSITY
96     C |
97     C |-- CALC_PHI_HYD
98     C |
99     C |-- MOM_FLUXFORM
100     C |
101     C |-- MOM_VECINV
102     C |
103     C |-- TIMESTEP
104     C |
105     C |-- OBCS_APPLY_UV
106     C |
107     C |-- IMPLDIFF
108     C |
109     C |-- OBCS_APPLY_UV
110     C |
111     C |-- CALL DEBUG_STATS_RL
112    
113     C !INPUT/OUTPUT PARAMETERS:
114 cnh 1.1 C == Routine arguments ==
115 cnh 1.8 C myTime - Current time in simulation
116     C myIter - Current iteration number in simulation
117 cnh 1.1 C myThid - Thread number for this instance of the routine.
118 cnh 1.8 _RL myTime
119     INTEGER myIter
120 adcroft 1.47 INTEGER myThid
121 cnh 1.1
122 cnh 1.82 C !LOCAL VARIABLES:
123 cnh 1.1 C == Local variables
124 jmc 1.113 C fVer[UV] o fVer: Vertical flux term - note fVer
125     C is "pipelined" in the vertical
126     C so we need an fVer for each
127     C variable.
128 jmc 1.94 C phiHydC :: hydrostatic potential anomaly at cell center
129     C In z coords phiHyd is the hydrostatic potential
130     C (=pressure/rho0) anomaly
131     C In p coords phiHyd is the geopotential height anomaly.
132     C phiHydF :: hydrostatic potential anomaly at middle between 2 centers
133     C dPhiHydX,Y :: Gradient (X & Y directions) of hydrostatic potential anom.
134     C phiSurfX, :: gradient of Surface potential (Pressure/rho, ocean)
135 jmc 1.92 C phiSurfY or geopotential (atmos) in X and Y direction
136 jmc 1.110 C guDissip :: dissipation tendency (all explicit terms), u component
137     C gvDissip :: dissipation tendency (all explicit terms), v component
138 cnh 1.30 C iMin, iMax - Ranges and sub-block indices on which calculations
139     C jMin, jMax are applied.
140 cnh 1.1 C bi, bj
141 heimbach 1.53 C k, kup, - Index for layer above and below. kup and kDown
142     C kDown, km1 are switched with layer to be the appropriate
143 cnh 1.38 C index into fVerTerm.
144 cnh 1.30 _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
145     _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
146 jmc 1.94 _RL phiHydF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
147     _RL phiHydC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
148 jmc 1.92 _RL dPhiHydX(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
149     _RL dPhiHydY(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
150 jmc 1.63 _RL phiSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
151     _RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
152 jmc 1.110 _RL guDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
153     _RL gvDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
154 adcroft 1.42 _RL KappaRU (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
155     _RL KappaRV (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
156 adcroft 1.12
157 cnh 1.1 INTEGER iMin, iMax
158     INTEGER jMin, jMax
159     INTEGER bi, bj
160     INTEGER i, j
161 heimbach 1.77 INTEGER k, km1, kp1, kup, kDown
162 cnh 1.1
163 jmc 1.113 #ifdef ALLOW_DIAGNOSTICS
164 jmc 1.120 _RL tmpFac
165 jmc 1.113 #endif /* ALLOW_DIAGNOSTICS */
166    
167 jmc 1.62
168 adcroft 1.11 C--- The algorithm...
169     C
170     C "Correction Step"
171     C =================
172     C Here we update the horizontal velocities with the surface
173     C pressure such that the resulting flow is either consistent
174     C with the free-surface evolution or the rigid-lid:
175     C U[n] = U* + dt x d/dx P
176     C V[n] = V* + dt x d/dy P
177     C
178     C "Calculation of Gs"
179     C ===================
180     C This is where all the accelerations and tendencies (ie.
181 heimbach 1.53 C physics, parameterizations etc...) are calculated
182 adcroft 1.11 C rho = rho ( theta[n], salt[n] )
183 cnh 1.27 C b = b(rho, theta)
184 adcroft 1.11 C K31 = K31 ( rho )
185 jmc 1.61 C Gu[n] = Gu( u[n], v[n], wVel, b, ... )
186     C Gv[n] = Gv( u[n], v[n], wVel, b, ... )
187     C Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
188     C Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
189 adcroft 1.11 C
190 adcroft 1.12 C "Time-stepping" or "Prediction"
191 adcroft 1.11 C ================================
192     C The models variables are stepped forward with the appropriate
193     C time-stepping scheme (currently we use Adams-Bashforth II)
194     C - For momentum, the result is always *only* a "prediction"
195     C in that the flow may be divergent and will be "corrected"
196     C later with a surface pressure gradient.
197     C - Normally for tracers the result is the new field at time
198     C level [n+1} *BUT* in the case of implicit diffusion the result
199     C is also *only* a prediction.
200     C - We denote "predictors" with an asterisk (*).
201     C U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
202     C V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
203     C theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
204     C salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
205 adcroft 1.12 C With implicit diffusion:
206 adcroft 1.11 C theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
207     C salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
208 adcroft 1.12 C (1 + dt * K * d_zz) theta[n] = theta*
209     C (1 + dt * K * d_zz) salt[n] = salt*
210 adcroft 1.11 C---
211 cnh 1.82 CEOP
212 adcroft 1.11
213 heimbach 1.88 C-- Call to routine for calculation of
214     C Eliassen-Palm-flux-forced U-tendency,
215     C if desired:
216     #ifdef INCLUDE_EP_FORCING_CODE
217     CALL CALC_EP_FORCING(myThid)
218     #endif
219    
220 heimbach 1.76 #ifdef ALLOW_AUTODIFF_TAMC
221     C-- HPF directive to help TAMC
222     CHPF$ INDEPENDENT
223     #endif /* ALLOW_AUTODIFF_TAMC */
224    
225 cnh 1.1 DO bj=myByLo(myThid),myByHi(myThid)
226 heimbach 1.76
227     #ifdef ALLOW_AUTODIFF_TAMC
228     C-- HPF directive to help TAMC
229     CHPF$ INDEPENDENT, NEW (fVerU,fVerV
230 jmc 1.94 CHPF$& ,phiHydF
231 heimbach 1.76 CHPF$& ,KappaRU,KappaRV
232     CHPF$& )
233     #endif /* ALLOW_AUTODIFF_TAMC */
234    
235 cnh 1.1 DO bi=myBxLo(myThid),myBxHi(myThid)
236 heimbach 1.76
237     #ifdef ALLOW_AUTODIFF_TAMC
238     act1 = bi - myBxLo(myThid)
239     max1 = myBxHi(myThid) - myBxLo(myThid) + 1
240     act2 = bj - myByLo(myThid)
241     max2 = myByHi(myThid) - myByLo(myThid) + 1
242     act3 = myThid - 1
243     max3 = nTx*nTy
244     act4 = ikey_dynamics - 1
245 heimbach 1.91 idynkey = (act1 + 1) + act2*max1
246 heimbach 1.76 & + act3*max1*max2
247     & + act4*max1*max2*max3
248     #endif /* ALLOW_AUTODIFF_TAMC */
249    
250 heimbach 1.97 C-- Set up work arrays with valid (i.e. not NaN) values
251     C These inital values do not alter the numerical results. They
252     C just ensure that all memory references are to valid floating
253     C point numbers. This prevents spurious hardware signals due to
254     C uninitialised but inert locations.
255    
256 jmc 1.94 DO k=1,Nr
257     DO j=1-OLy,sNy+OLy
258     DO i=1-OLx,sNx+OLx
259 heimbach 1.87 KappaRU(i,j,k) = 0. _d 0
260     KappaRV(i,j,k) = 0. _d 0
261 heimbach 1.97 #ifdef ALLOW_AUTODIFF_TAMC
262     cph(
263     c-- need some re-initialisation here to break dependencies
264     cph)
265     gu(i,j,k,bi,bj) = 0. _d 0
266     gv(i,j,k,bi,bj) = 0. _d 0
267     #endif
268 heimbach 1.87 ENDDO
269 jmc 1.94 ENDDO
270     ENDDO
271     DO j=1-OLy,sNy+OLy
272     DO i=1-OLx,sNx+OLx
273 heimbach 1.76 fVerU (i,j,1) = 0. _d 0
274     fVerU (i,j,2) = 0. _d 0
275     fVerV (i,j,1) = 0. _d 0
276     fVerV (i,j,2) = 0. _d 0
277 jmc 1.94 phiHydF (i,j) = 0. _d 0
278     phiHydC (i,j) = 0. _d 0
279 jmc 1.92 dPhiHydX(i,j) = 0. _d 0
280     dPhiHydY(i,j) = 0. _d 0
281 heimbach 1.97 phiSurfX(i,j) = 0. _d 0
282     phiSurfY(i,j) = 0. _d 0
283 jmc 1.110 guDissip(i,j) = 0. _d 0
284     gvDissip(i,j) = 0. _d 0
285 heimbach 1.76 ENDDO
286     ENDDO
287 heimbach 1.49
288 jmc 1.63 C-- Start computation of dynamics
289 jmc 1.93 iMin = 0
290     iMax = sNx+1
291     jMin = 0
292     jMax = sNy+1
293 jmc 1.63
294 heimbach 1.76 #ifdef ALLOW_AUTODIFF_TAMC
295 heimbach 1.91 CADJ STORE wvel (:,:,:,bi,bj) =
296     CADJ & comlev1_bibj, key = idynkey, byte = isbyte
297 heimbach 1.76 #endif /* ALLOW_AUTODIFF_TAMC */
298    
299 jmc 1.65 C-- Explicit part of the Surface Potentiel Gradient (add in TIMESTEP)
300 jmc 1.63 C (note: this loop will be replaced by CALL CALC_GRAD_ETA)
301     IF (implicSurfPress.NE.1.) THEN
302 jmc 1.65 CALL CALC_GRAD_PHI_SURF(
303     I bi,bj,iMin,iMax,jMin,jMax,
304     I etaN,
305     O phiSurfX,phiSurfY,
306     I myThid )
307 jmc 1.63 ENDIF
308 heimbach 1.83
309     #ifdef ALLOW_AUTODIFF_TAMC
310 heimbach 1.91 CADJ STORE uvel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
311     CADJ STORE vvel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
312 heimbach 1.83 #ifdef ALLOW_KPP
313     CADJ STORE KPPviscAz (:,:,:,bi,bj)
314 heimbach 1.91 CADJ & = comlev1_bibj, key=idynkey, byte=isbyte
315 heimbach 1.83 #endif /* ALLOW_KPP */
316     #endif /* ALLOW_AUTODIFF_TAMC */
317 adcroft 1.58
318 heimbach 1.77 #ifdef INCLUDE_CALC_DIFFUSIVITY_CALL
319     C-- Calculate the total vertical diffusivity
320     DO k=1,Nr
321     CALL CALC_VISCOSITY(
322     I bi,bj,iMin,iMax,jMin,jMax,k,
323     O KappaRU,KappaRV,
324     I myThid)
325     ENDDO
326     #endif
327    
328 heimbach 1.101 #ifdef ALLOW_AUTODIFF_TAMC
329     CADJ STORE KappaRU(:,:,:)
330     CADJ & = comlev1_bibj, key=idynkey, byte=isbyte
331     CADJ STORE KappaRV(:,:,:)
332     CADJ & = comlev1_bibj, key=idynkey, byte=isbyte
333     #endif /* ALLOW_AUTODIFF_TAMC */
334    
335 adcroft 1.58 C-- Start of dynamics loop
336     DO k=1,Nr
337    
338     C-- km1 Points to level above k (=k-1)
339     C-- kup Cycles through 1,2 to point to layer above
340     C-- kDown Cycles through 2,1 to point to current layer
341    
342     km1 = MAX(1,k-1)
343 heimbach 1.77 kp1 = MIN(k+1,Nr)
344 adcroft 1.58 kup = 1+MOD(k+1,2)
345     kDown= 1+MOD(k,2)
346    
347 heimbach 1.76 #ifdef ALLOW_AUTODIFF_TAMC
348 heimbach 1.91 kkey = (idynkey-1)*Nr + k
349 heimbach 1.99 c
350 heimbach 1.95 CADJ STORE totphihyd (:,:,k,bi,bj)
351 heimbach 1.99 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
352     CADJ STORE theta (:,:,k,bi,bj)
353     CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
354     CADJ STORE salt (:,:,k,bi,bj)
355 heimbach 1.95 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
356 heimbach 1.76 #endif /* ALLOW_AUTODIFF_TAMC */
357    
358 adcroft 1.58 C-- Integrate hydrostatic balance for phiHyd with BC of
359     C phiHyd(z=0)=0
360 jmc 1.107 CALL CALC_PHI_HYD(
361 adcroft 1.58 I bi,bj,iMin,iMax,jMin,jMax,k,
362     I theta, salt,
363 jmc 1.94 U phiHydF,
364     O phiHydC, dPhiHydX, dPhiHydY,
365 jmc 1.92 I myTime, myIter, myThid )
366 mlosch 1.89
367 adcroft 1.58 C-- Calculate accelerations in the momentum equations (gU, gV, ...)
368 jmc 1.96 C and step forward storing the result in gU, gV, etc...
369 adcroft 1.58 IF ( momStepping ) THEN
370 edhill 1.105 #ifdef ALLOW_MOM_FLUXFORM
371 adcroft 1.79 IF (.NOT. vectorInvariantMomentum) CALL MOM_FLUXFORM(
372 adcroft 1.58 I bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
373 jmc 1.94 I dPhiHydX,dPhiHydY,KappaRU,KappaRV,
374 adcroft 1.58 U fVerU, fVerV,
375 adcroft 1.80 I myTime, myIter, myThid)
376 adcroft 1.79 #endif
377 edhill 1.105 #ifdef ALLOW_MOM_VECINV
378 adcroft 1.79 IF (vectorInvariantMomentum) CALL MOM_VECINV(
379     I bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
380 jmc 1.92 I dPhiHydX,dPhiHydY,KappaRU,KappaRV,
381 adcroft 1.79 U fVerU, fVerV,
382 jmc 1.110 O guDissip, gvDissip,
383 adcroft 1.80 I myTime, myIter, myThid)
384 adcroft 1.79 #endif
385 adcroft 1.58 CALL TIMESTEP(
386 jmc 1.63 I bi,bj,iMin,iMax,jMin,jMax,k,
387 jmc 1.94 I dPhiHydX,dPhiHydY, phiSurfX, phiSurfY,
388 jmc 1.110 I guDissip, gvDissip,
389 jmc 1.96 I myTime, myIter, myThid)
390 adcroft 1.58
391     #ifdef ALLOW_OBCS
392     C-- Apply open boundary conditions
393 jmc 1.96 IF (useOBCS) THEN
394     CALL OBCS_APPLY_UV( bi, bj, k, gU, gV, myThid )
395     ENDIF
396 adcroft 1.58 #endif /* ALLOW_OBCS */
397    
398     ENDIF
399    
400    
401     C-- end of dynamics k loop (1:Nr)
402     ENDDO
403    
404 jmc 1.106 C-- Implicit Vertical advection & viscosity
405     #ifdef INCLUDE_IMPLVERTADV_CODE
406     IF ( momImplVertAdv ) THEN
407     CALL MOM_U_IMPLICIT_R( kappaRU,
408     I bi, bj, myTime, myIter, myThid )
409     CALL MOM_V_IMPLICIT_R( kappaRV,
410     I bi, bj, myTime, myIter, myThid )
411     ELSEIF ( implicitViscosity ) THEN
412     #else /* INCLUDE_IMPLVERTADV_CODE */
413     IF ( implicitViscosity ) THEN
414     #endif /* INCLUDE_IMPLVERTADV_CODE */
415 adcroft 1.58 #ifdef ALLOW_AUTODIFF_TAMC
416 heimbach 1.101 CADJ STORE KappaRU(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
417 jmc 1.96 CADJ STORE gU(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
418 adcroft 1.58 #endif /* ALLOW_AUTODIFF_TAMC */
419 adcroft 1.42 CALL IMPLDIFF(
420     I bi, bj, iMin, iMax, jMin, jMax,
421 jmc 1.111 I 0, KappaRU,recip_HFacW,
422 jmc 1.96 U gU,
423 adcroft 1.42 I myThid )
424 adcroft 1.58 #ifdef ALLOW_AUTODIFF_TAMC
425 heimbach 1.101 CADJ STORE KappaRV(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
426 heimbach 1.97 CADJ STORE gV(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
427 adcroft 1.58 #endif /* ALLOW_AUTODIFF_TAMC */
428 adcroft 1.42 CALL IMPLDIFF(
429     I bi, bj, iMin, iMax, jMin, jMax,
430 jmc 1.111 I 0, KappaRV,recip_HFacS,
431 jmc 1.96 U gV,
432 adcroft 1.42 I myThid )
433 jmc 1.106 ENDIF
434 heimbach 1.49
435 adcroft 1.58 #ifdef ALLOW_OBCS
436     C-- Apply open boundary conditions
437 jmc 1.106 IF ( useOBCS .AND.(implicitViscosity.OR.momImplVertAdv) ) THEN
438 adcroft 1.58 DO K=1,Nr
439 jmc 1.96 CALL OBCS_APPLY_UV( bi, bj, k, gU, gV, myThid )
440 adcroft 1.58 ENDDO
441 jmc 1.106 ENDIF
442 adcroft 1.58 #endif /* ALLOW_OBCS */
443 heimbach 1.49
444 edhill 1.102 #ifdef ALLOW_CD_CODE
445 jmc 1.106 IF (implicitViscosity.AND.useCDscheme) THEN
446 adcroft 1.58 #ifdef ALLOW_AUTODIFF_TAMC
447 heimbach 1.91 CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
448 adcroft 1.58 #endif /* ALLOW_AUTODIFF_TAMC */
449 adcroft 1.42 CALL IMPLDIFF(
450     I bi, bj, iMin, iMax, jMin, jMax,
451 jmc 1.111 I 0, KappaRU,recip_HFacW,
452 adcroft 1.42 U vVelD,
453     I myThid )
454 adcroft 1.58 #ifdef ALLOW_AUTODIFF_TAMC
455 heimbach 1.91 CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
456 adcroft 1.58 #endif /* ALLOW_AUTODIFF_TAMC */
457 adcroft 1.42 CALL IMPLDIFF(
458     I bi, bj, iMin, iMax, jMin, jMax,
459 jmc 1.111 I 0, KappaRV,recip_HFacS,
460 adcroft 1.42 U uVelD,
461     I myThid )
462 jmc 1.106 ENDIF
463 edhill 1.102 #endif /* ALLOW_CD_CODE */
464 jmc 1.106 C-- End implicit Vertical advection & viscosity
465 cnh 1.1
466     ENDDO
467     ENDDO
468 mlosch 1.90
469 heimbach 1.109 #ifdef ALLOW_OBCS
470     IF (useOBCS) THEN
471     CALL OBCS_PRESCRIBE_EXCHANGES(myThid)
472     ENDIF
473     #endif
474    
475 jmc 1.113 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
476    
477 mlosch 1.90 Cml(
478     C In order to compare the variance of phiHydLow of a p/z-coordinate
479     C run with etaH of a z/p-coordinate run the drift of phiHydLow
480     C has to be removed by something like the following subroutine:
481     C CALL REMOVE_MEAN_RL( 1, phiHydLow, maskH, maskH, rA, drF,
482     C & 'phiHydLow', myThid )
483     Cml)
484 adcroft 1.69
485 jmc 1.113 #ifdef ALLOW_DIAGNOSTICS
486     IF ( usediagnostics ) THEN
487    
488     CALL DIAGNOSTICS_FILL(totPhihyd,'PHIHYD ',0,Nr,0,1,1,myThid)
489 jmc 1.120 CALL DIAGNOSTICS_FILL(phiHydLow,'PHIBOT ',0, 1,0,1,1,myThid)
490 molod 1.116
491 jmc 1.120 tmpFac = 1. _d 0
492     CALL DIAGNOSTICS_SCALE_FILL(totPhihyd,tmpFac,2,
493     & 'PHIHYDSQ',0,Nr,0,1,1,myThid)
494 molod 1.116
495 jmc 1.120 CALL DIAGNOSTICS_SCALE_FILL(phiHydLow,tmpFac,2,
496     & 'PHIBOTSQ',0, 1,0,1,1,myThid)
497 jmc 1.113
498     ENDIF
499     #endif /* ALLOW_DIAGNOSTICS */
500    
501 edhill 1.104 #ifdef ALLOW_DEBUG
502 heimbach 1.98 If ( debugLevel .GE. debLevB ) THEN
503 adcroft 1.69 CALL DEBUG_STATS_RL(1,EtaN,'EtaN (DYNAMICS)',myThid)
504 adcroft 1.73 CALL DEBUG_STATS_RL(Nr,uVel,'Uvel (DYNAMICS)',myThid)
505 adcroft 1.69 CALL DEBUG_STATS_RL(Nr,vVel,'Vvel (DYNAMICS)',myThid)
506     CALL DEBUG_STATS_RL(Nr,wVel,'Wvel (DYNAMICS)',myThid)
507     CALL DEBUG_STATS_RL(Nr,theta,'Theta (DYNAMICS)',myThid)
508     CALL DEBUG_STATS_RL(Nr,salt,'Salt (DYNAMICS)',myThid)
509 jmc 1.115 CALL DEBUG_STATS_RL(Nr,gU,'Gu (DYNAMICS)',myThid)
510     CALL DEBUG_STATS_RL(Nr,gV,'Gv (DYNAMICS)',myThid)
511     CALL DEBUG_STATS_RL(Nr,gT,'Gt (DYNAMICS)',myThid)
512     CALL DEBUG_STATS_RL(Nr,gS,'Gs (DYNAMICS)',myThid)
513     #ifndef ALLOW_ADAMSBASHFORTH_3
514     CALL DEBUG_STATS_RL(Nr,guNm1,'GuNm1 (DYNAMICS)',myThid)
515     CALL DEBUG_STATS_RL(Nr,gvNm1,'GvNm1 (DYNAMICS)',myThid)
516     CALL DEBUG_STATS_RL(Nr,gtNm1,'GtNm1 (DYNAMICS)',myThid)
517     CALL DEBUG_STATS_RL(Nr,gsNm1,'GsNm1 (DYNAMICS)',myThid)
518     #endif
519 adcroft 1.70 ENDIF
520 adcroft 1.69 #endif
521 cnh 1.1
522     RETURN
523     END

  ViewVC Help
Powered by ViewVC 1.1.22