C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/model/src/config_summary.F,v 1.115 2009/04/21 16:04:39 jmc Exp $ C $Name: $ #include "PACKAGES_CONFIG.h" #include "CPP_OPTIONS.h" C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| CBOP C !ROUTINE: CONFIG_SUMMARY C !INTERFACE: SUBROUTINE CONFIG_SUMMARY( myThid ) C !DESCRIPTION: C This routine summarizes the model parameter settings by writing a C tabulated list of the kernel model configuration variables. It C describes all the parameter settings in force and the meaning and C units of those parameters. Individal packages report a similar C table for each package using the same format as employed here. If C parameters are missing or incorrectly described or dimensioned C please contact C !USES: IMPLICIT NONE #include "SIZE.h" #include "EEPARAMS.h" #include "PARAMS.h" #include "EOS.h" #include "GRID.h" #ifdef ALLOW_MNC #include "MNC_PARAMS.h" #endif C !INPUT/OUTPUT PARAMETERS: C myThid :: Number of this instance of CONFIG_SUMMARY INTEGER myThid CEOP C !FUNCTIONS: INTEGER ILNBLNK EXTERNAL ILNBLNK C !LOCAL VARIABLES: C msgBuf :: Temp. for building output string. C rUnits :: vertical coordinate units C ioUnit :: Temp. for fortran I/O unit C I,J,K :: Loop counters. C bi,bj :: Tile loop counters. CHARACTER*(MAX_LEN_MBUF) msgBuf CHARACTER*2 rUnits INTEGER ioUnit INTEGER I,J,K INTEGER bi, bj Real*8 rcoord(Nr+1) INTEGER coordLine INTEGER tileLine _BARRIER _BEGIN_MASTER(myThid) ioUnit = standardMessageUnit rUnits = ' m' IF ( usingPCoords ) rUnits = 'Pa' WRITE(msgBuf,'(A)') &'// =======================================================' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(A)') '// Model configuration' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(A)') &'// =======================================================' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(A)') '// ' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(A)') & '// "Physical" paramters ( PARM01 in namelist ) ' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(A)') '// ' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) CALL WRITE_0D_C( buoyancyRelation, -1, INDEX_NONE, & 'buoyancyRelation =', ' /* Type of relation to get Buoyancy */') CALL WRITE_0D_L( fluidIsAir, INDEX_NONE, & 'fluidIsAir =', ' /* fluid major constituent is Air */') CALL WRITE_0D_L( fluidIsWater, INDEX_NONE, & 'fluidIsWater=', ' /* fluid major constituent is Water */') CALL WRITE_0D_L( usingPCoords, INDEX_NONE, & 'usingPCoords =', ' /* use p (or p*) vertical coordinate */') CALL WRITE_0D_L( usingZCoords, INDEX_NONE, & 'usingZCoords =', ' /* use z (or z*) vertical coordinate */') CALL WRITE_1D_R8( tRef, Nr, INDEX_K,'tRef =', &' /* Reference temperature profile ( oC or K ) */') CALL WRITE_1D_R8( sRef, Nr, INDEX_K,'sRef =', &' /* Reference salinity profile ( psu ) */') CALL WRITE_0D_RL( viscAh, INDEX_NONE,'viscAh =', &' /* Lateral eddy viscosity ( m^2/s ) */') IF ( viscAhD.NE.viscAh ) & CALL WRITE_0D_RL( viscAhD, INDEX_NONE,'viscAhD =', & ' /* Lateral eddy viscosity (Divergence)( m^2/s ) */') IF ( viscAhZ.NE.viscAh ) & CALL WRITE_0D_RL( viscAhZ, INDEX_NONE,'viscAhZ =', & ' /* Lateral eddy viscosity (Vorticity) ( m^2/s ) */') CALL WRITE_0D_RL( viscAhMax, INDEX_NONE,'viscAhMax =', &' /* Maximum lateral eddy viscosity ( m^2/s ) */') CALL WRITE_0D_RL( viscAhGrid, INDEX_NONE,'viscAhGrid =', &' /* Grid dependent lateral eddy viscosity ( non-dim. ) */') CALL WRITE_0D_L( useFullLeith, INDEX_NONE, &'useFullLeith =', &' /* Use Full Form of Leith Viscosity on/off flag*/') CALL WRITE_0D_L( useStrainTensionVisc, INDEX_NONE, &'useStrainTensionVisc =', &' /* Use StrainTension Form of Viscous Operator on/off flag*/') CALL WRITE_0D_L( useAreaViscLength, INDEX_NONE, &'useAreaViscLength =', &' /* Use area for visc length instead of geom. mean*/') CALL WRITE_0D_RL( viscC2leith, INDEX_NONE,'viscC2leith =', &' /* Leith harmonic visc. factor (on grad(vort),non-dim.) */') CALL WRITE_0D_RL( viscC2leithD, INDEX_NONE,'viscC2leithD =', &' /* Leith harmonic viscosity factor (on grad(div),non-dim.) */') CALL WRITE_0D_RL( viscC2smag, INDEX_NONE,'viscC2smag =', &' /* Smagorinsky harmonic viscosity factor (non-dim.) */') CALL WRITE_0D_RL( viscA4, INDEX_NONE,'viscA4 =', &' /* Lateral biharmonic viscosity ( m^4/s ) */') IF ( viscA4D.NE.viscA4 ) & CALL WRITE_0D_RL( viscA4D, INDEX_NONE,'viscA4D =', & ' /* Lateral biharmonic viscosity (Divergence)( m^4/s ) */') IF ( viscA4Z.NE.viscA4 ) & CALL WRITE_0D_RL( viscA4Z, INDEX_NONE,'viscA4Z =', & ' /* Lateral biharmonic viscosity (Vorticity) ( m^4/s ) */') CALL WRITE_0D_RL( viscA4Max, INDEX_NONE,'viscA4Max =', &' /* Maximum biharmonic viscosity ( m^2/s ) */') CALL WRITE_0D_RL( viscA4Grid, INDEX_NONE,'viscA4Grid =', &' /* Grid dependent biharmonic viscosity ( non-dim. ) */') CALL WRITE_0D_RL( viscC4leith, INDEX_NONE,'viscC4leith =', &' /* Leith biharm viscosity factor (on grad(vort), non-dim.) */') CALL WRITE_0D_RL( viscC4leithD, INDEX_NONE,'viscC4leithD =', &' /* Leith biharm viscosity factor (on grad(div), non-dim.) */') CALL WRITE_0D_RL( viscC4Smag, INDEX_NONE,'viscC4Smag =', &' /* Smagorinsky biharm viscosity factor (non-dim) */') CALL WRITE_0D_L( no_slip_sides, INDEX_NONE, & 'no_slip_sides =', ' /* Viscous BCs: No-slip sides */') CALL WRITE_0D_RL( sideDragFactor, INDEX_NONE, 'sideDragFactor =', & ' /* side-drag scaling factor (non-dim) */') CALL WRITE_0D_RL( viscAr, INDEX_NONE,'viscAr =', &' /* Vertical eddy viscosity ('//rUnits//'^2/s ) */') CALL WRITE_0D_L( no_slip_bottom, INDEX_NONE, & 'no_slip_bottom =', ' /* Viscous BCs: No-slip bottom */') CALL WRITE_0D_RL( bottomDragLinear, INDEX_NONE, & 'bottomDragLinear =', & ' /* linear bottom-drag coefficient ( m/s ) */') CALL WRITE_0D_RL( bottomDragQuadratic, INDEX_NONE, & 'bottomDragQuadratic =', & ' /* quadratic bottom-drag coefficient (-) */') CALL WRITE_0D_RL( diffKhT, INDEX_NONE,'diffKhT =', &' /* Laplacian diffusion of heat laterally ( m^2/s ) */') CALL WRITE_0D_RL( diffK4T, INDEX_NONE,'diffK4T =', &' /* Biharmonic diffusion of heat laterally ( m^4/s ) */') CALL WRITE_0D_RL( diffKhS, INDEX_NONE,'diffKhS =', &' /* Laplacian diffusion of salt laterally ( m^2/s ) */') CALL WRITE_0D_RL( diffK4S, INDEX_NONE,'diffK4S =', &' /* Biharmonic diffusion of salt laterally ( m^4/s ) */') CALL WRITE_1D_R8( diffKrNrT, Nr, INDEX_K,'diffKrNrT =', & ' /* vertical profile of vertical diffusion of Temp (' & //rUnits//'^2/s )*/') CALL WRITE_1D_R8( diffKrNrS, Nr, INDEX_K,'diffKrNrS =', & ' /* vertical profile of vertical diffusion of Salt (' & //rUnits//'^2/s )*/') CALL WRITE_0D_RL( diffKrBL79surf, INDEX_NONE,'diffKrBL79surf =', & ' /* Surface diffusion for Bryan and Lewis 79 ( m^2/s ) */') CALL WRITE_0D_RL( diffKrBL79deep, INDEX_NONE,'diffKrBL79deep =', & ' /* Deep diffusion for Bryan and Lewis 1979 ( m^2/s ) */') CALL WRITE_0D_RL( diffKrBL79scl, INDEX_NONE,'diffKrBL79scl =', & ' /* Depth scale for Bryan and Lewis 1979 ( m ) */') CALL WRITE_0D_RL( diffKrBL79Ho, INDEX_NONE,'diffKrBL79Ho =', & ' /* Turning depth for Bryan and Lewis 1979 ( m ) */') CALL WRITE_0D_RL( ivdc_kappa, INDEX_NONE,'ivdc_kappa =', & ' /* Implicit Vertical Diffusivity for Convection (' & //rUnits//'^2/s ) */') CALL WRITE_0D_RL( hMixCriteria, INDEX_NONE,'hMixCriteria=', & ' /* Criteria for mixed-layer diagnostic */') CALL WRITE_0D_RL( dRhoSmall, INDEX_NONE,'dRhoSmall=', & ' /* Parameter for mixed-layer diagnostic */') CALL WRITE_0D_RL( hMixSmooth, INDEX_NONE,'hMixSmooth=', & ' /* Smoothing parameter for mixed-layer diagnostic */') CALL WRITE_0D_C( eosType, 0, INDEX_NONE, 'eosType =', & ' /* Type of Equation of State */') CALL WRITE_0D_RL( tAlpha, INDEX_NONE,'tAlpha =', &' /* Linear EOS thermal expansion coefficient ( 1/oC ) */') CALL WRITE_0D_RL( sBeta, INDEX_NONE,'sBeta =', &' /* Linear EOS haline contraction coefficient ( 1/psu ) */') IF ( eosType .EQ. 'POLY3' ) THEN WRITE(msgBuf,'(A)') & '// Polynomial EQS parameters ( from POLY3.COEFFS ) ' DO K = 1, Nr WRITE(msgBuf,'(I3,13F8.3)') & K,eosRefT(K),eosRefS(K),eosSig0(K), (eosC(I,K),I=1,9) CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) ENDDO ENDIF IF ( fluidIsAir ) THEN CALL WRITE_0D_RL( atm_Rd, INDEX_NONE, 'atm_Rd =', & ' /* gas constant for dry air ( J/kg/K ) */') CALL WRITE_0D_RL( atm_Cp, INDEX_NONE, 'atm_Cp =', & ' /* specific heat (Cp) of dry air ( J/kg/K ) */') CALL WRITE_0D_RL( atm_kappa, INDEX_NONE, 'atm_kappa =', & ' /* kappa (=Rd/Cp ) of dry air */') CALL WRITE_0D_RL( atm_Rq, INDEX_NONE, 'atm_Rq =', & ' /* water vap. specific vol. anomaly relative to dry air */') CALL WRITE_0D_RL( atm_Po, INDEX_NONE, 'atm_Po =', & ' /* standard reference pressure ( Pa ) */') CALL WRITE_0D_I( integr_GeoPot, INDEX_NONE, 'integr_GeoPot =', & ' /* select how the geopotential is integrated */') CALL WRITE_0D_I( selectFindRoSurf, INDEX_NONE, & 'selectFindRoSurf=', & ' /* select how Surf.Ref. pressure is defined */') ENDIF CALL WRITE_0D_RL( rhonil, INDEX_NONE,'rhonil =', &' /* Reference density ( kg/m^3 ) */') CALL WRITE_0D_RL( rhoConst, INDEX_NONE,'rhoConst =', &' /* Reference density ( kg/m^3 ) */') CALL WRITE_1D_R8( rhoFacC, Nr, INDEX_K,'rhoFacC = ', & ' /* normalized Reference density @ cell-Center (-) */') CALL WRITE_1D_R8( rhoFacF, Nr+1, INDEX_K,'rhoFacF = ', & ' /* normalized Reference density @ W-Interface (-) */') CALL WRITE_0D_RL( rhoConstFresh, INDEX_NONE,'rhoConstFresh =', &' /* Reference density ( kg/m^3 ) */') CALL WRITE_0D_RL( gravity, INDEX_NONE,'gravity =', &' /* Gravitational acceleration ( m/s^2 ) */') CALL WRITE_0D_RL( gBaro, INDEX_NONE,'gBaro =', &' /* Barotropic gravity ( m/s^2 ) */') CALL WRITE_0D_RL(rotationPeriod,INDEX_NONE,'rotationPeriod =', &' /* Rotation Period ( s ) */') CALL WRITE_0D_RL( omega, INDEX_NONE,'omega =', &' /* Angular velocity ( rad/s ) */') CALL WRITE_0D_RL( f0, INDEX_NONE,'f0 =', &' /* Reference coriolis parameter ( 1/s ) */') CALL WRITE_0D_RL( beta, INDEX_NONE,'beta =', &' /* Beta ( 1/(m.s) ) */') CALL WRITE_0D_RL( freeSurfFac, INDEX_NONE,'freeSurfFac =', &' /* Implicit free surface factor */') CALL WRITE_0D_L( implicitFreeSurface, INDEX_NONE, & 'implicitFreeSurface =', &' /* Implicit free surface on/off flag */') CALL WRITE_0D_L( rigidLid, INDEX_NONE, & 'rigidLid =', &' /* Rigid lid on/off flag */') CALL WRITE_0D_RL( implicSurfPress, INDEX_NONE, &'implicSurfPress =', &' /* Surface Pressure implicit factor (0-1)*/') CALL WRITE_0D_RL( implicDiv2Dflow, INDEX_NONE, &'implicDiv2Dflow =', &' /* Barot. Flow Div. implicit factor (0-1)*/') CALL WRITE_0D_L( exactConserv, INDEX_NONE, &'exactConserv =', &' /* Exact Volume Conservation on/off flag*/') CALL WRITE_0D_L( linFSConserveTr, INDEX_NONE, &'linFSConserveTr =', &' /* Tracer correction for Lin Free Surface on/off flag*/') CALL WRITE_0D_L( uniformLin_PhiSurf, INDEX_NONE, &'uniformLin_PhiSurf =', &' /* use uniform Bo_surf on/off flag*/') CALL WRITE_0D_I( nonlinFreeSurf, INDEX_NONE, &'nonlinFreeSurf =', &' /* Non-linear Free Surf. options (-1,0,1,2,3)*/') WRITE(msgBuf,'(2A)') ' -1,0= Off ; 1,2,3= On,', & ' 2=+rescale gU,gV, 3=+update cg2d solv.' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) CALL WRITE_0D_RL( hFacInf, INDEX_NONE, &'hFacInf =', &' /* lower threshold for hFac (nonlinFreeSurf only)*/') CALL WRITE_0D_RL( hFacSup, INDEX_NONE, &'hFacSup =', &' /* upper threshold for hFac (nonlinFreeSurf only)*/') CALL WRITE_0D_I( select_rStar, INDEX_NONE, &'select_rStar =', &' /* r* Vertical coord. options (=0 r coord.; > 0 uses r*) */') CALL WRITE_0D_I( selectAddFluid, INDEX_NONE, &'selectAddFluid =', &' /* option for mass source/sink of fluid (=0: off) */') CALL WRITE_0D_L( useRealFreshWaterFlux, INDEX_NONE, &'useRealFreshWaterFlux =', &' /* Real Fresh Water Flux on/off flag*/') CALL WRITE_0D_RL( temp_EvPrRn, INDEX_NONE, &'temp_EvPrRn =', &' /* Temp. of Evap/Prec/R (UNSET=use local T)(oC)*/') CALL WRITE_0D_RL( salt_EvPrRn, INDEX_NONE, &'salt_EvPrRn =', &' /* Salin. of Evap/Prec/R (UNSET=use local S)(ppt)*/') IF ( .NOT.useRealFreshWaterFlux .OR. selectAddFluid.EQ.-1 & .OR. nonlinFreeSurf.LE.0 ) THEN CALL WRITE_0D_RL( convertFW2Salt, INDEX_NONE, &'convertFW2Salt =', &' /* convert F.W. Flux to Salt Flux (-1=use local S)(ppt)*/') ENDIF CALL WRITE_0D_L( use3Dsolver, INDEX_NONE, & 'use3Dsolver =', ' /* use 3-D pressure solver on/off flag */') CALL WRITE_0D_L( nonHydrostatic, INDEX_NONE, & 'nonHydrostatic =', ' /* Non-Hydrostatic on/off flag */') CALL WRITE_0D_RL( nh_Am2, INDEX_NONE, 'nh_Am2 =', & ' /* Non-Hydrostatic terms scaling factor */') CALL WRITE_0D_L( quasiHydrostatic, INDEX_NONE, & 'quasiHydrostatic =', ' /* Quasi-Hydrostatic on/off flag */') CALL WRITE_0D_L( momStepping, INDEX_NONE, & 'momStepping =', ' /* Momentum equation on/off flag */') CALL WRITE_0D_L( vectorInvariantMomentum, INDEX_NONE, & 'vectorInvariantMomentum=', & ' /* Vector-Invariant Momentum on/off */') CALL WRITE_0D_L( momAdvection, INDEX_NONE, & 'momAdvection =', ' /* Momentum advection on/off flag */') CALL WRITE_0D_L( momViscosity, INDEX_NONE, & 'momViscosity =', ' /* Momentum viscosity on/off flag */') CALL WRITE_0D_L( momImplVertAdv, INDEX_NONE, 'momImplVertAdv =', & '/* Momentum implicit vert. advection on/off*/') CALL WRITE_0D_L( implicitViscosity, INDEX_NONE, & 'implicitViscosity =', ' /* Implicit viscosity on/off flag */') CALL WRITE_0D_L( metricTerms, INDEX_NONE, 'metricTerms =', & ' /* metric-Terms on/off flag */') CALL WRITE_0D_L( useNHMTerms, INDEX_NONE, 'useNHMTerms =', & ' /* Non-Hydrostatic Metric-Terms on/off */') CALL WRITE_0D_L( useConstantF, INDEX_NONE, & 'useConstantF =', ' /* use Constant f0 Coriolis flag */') CALL WRITE_0D_L( useBetaPlaneF, INDEX_NONE, & 'useBetaPlaneF =', ' /* use Beta-Plane Coriolis flag */') CALL WRITE_0D_L( useSphereF, INDEX_NONE, & 'useSphereF =', ' /* use Spherical Coriolis flag */') CALL WRITE_0D_L( use3dCoriolis, INDEX_NONE, & 'use3dCoriolis =', ' /* 3-D Coriolis on/off flag */') CALL WRITE_0D_L( useCoriolis, INDEX_NONE, & 'useCoriolis =', ' /* Coriolis on/off flag */') CALL WRITE_0D_L( useCDscheme, INDEX_NONE, & 'useCDscheme =', ' /* CD scheme on/off flag */') CALL WRITE_0D_L( useJamartWetPoints, INDEX_NONE, & 'useJamartWetPoints=',' /* Coriolis WetPoints method flag */') CALL WRITE_0D_L( useJamartMomAdv, INDEX_NONE, & 'useJamartMomAdv=',' /* V.I. Non-linear terms Jamart flag */') CALL WRITE_0D_L( useAbsVorticity, INDEX_NONE, & 'useAbsVorticity=',' /* Work with f+zeta in Coriolis */') c CALL WRITE_0D_I( selectVortScheme, INDEX_NONE, c & 'selectVortScheme=',' /* Scheme selector for Vorticity-Term */') WRITE(msgBuf,'(2A)') & 'selectVortScheme=',' /* Scheme selector for Vorticity-Term */' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) CALL PRINT_LIST_I( selectVortScheme, 1, 1, INDEX_NONE, & .FALSE., .TRUE., ioUnit ) WRITE(msgBuf,'(2A)') ' = 0 : enstrophy (Shallow-Water Eq.)', & ' conserving scheme by Sadourny, JAS 75' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(2A)') ' = 1 : same as 0 with modified hFac' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(2A)') ' = 2 : energy conserving scheme', & ' (used by Sadourny in JAS 75 paper)' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(2A)') ' = 3 : energy (general)', & ' and enstrophy (2D, nonDiv.) conserving scheme' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(2A)') ' from Sadourny', & ' (Burridge & Haseler, ECMWF Rep.4, 1977)' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) c WRITE(msgBuf,'(2A)') ' = 4 : energy (general)', c & ' and enstrophy (2D, nonDiv.) conserving scheme' c CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) c WRITE(msgBuf,'(2A)') ' from Arakawa & Lamb, 77' c CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(A)') ' ; ' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) CALL WRITE_0D_L( upwindVorticity, INDEX_NONE, & 'upwindVorticity=',' /* Upwind bias vorticity flag */') CALL WRITE_0D_L( highOrderVorticity, INDEX_NONE, & 'highOrderVorticity=',' /* High order interp. of vort. flag */') CALL WRITE_0D_L( upwindShear, INDEX_NONE, & 'upwindShear=', ' /* Upwind vertical Shear advection flag */') CALL WRITE_0D_I( selectKEscheme, INDEX_NONE, & 'selectKEscheme=', ' /* Kinetic Energy scheme selector */') CALL WRITE_0D_L( momForcing, INDEX_NONE, & 'momForcing =', ' /* Momentum forcing on/off flag */') CALL WRITE_0D_L( momPressureForcing, INDEX_NONE, & 'momPressureForcing =', & ' /* Momentum pressure term on/off flag */') CALL WRITE_0D_L( implicitIntGravWave, INDEX_NONE, & 'implicitIntGravWave=', & ' /* Implicit Internal Gravity Wave flag */') CALL WRITE_0D_L( staggerTimeStep, INDEX_NONE, & 'staggerTimeStep =', &' /* Stagger time stepping on/off flag */') CALL WRITE_0D_L( multiDimAdvection, INDEX_NONE, & 'multiDimAdvection =', &' /* enable/disable Multi-Dim Advection */') CALL WRITE_0D_L( useMultiDimAdvec, INDEX_NONE, & 'useMultiDimAdvec =', &' /* Multi-Dim Advection is/is-not used */') CALL WRITE_0D_L( implicitDiffusion, INDEX_NONE, & 'implicitDiffusion =','/* Implicit Diffusion on/off flag */') CALL WRITE_0D_L( tempStepping, INDEX_NONE, & 'tempStepping =', ' /* Temperature equation on/off flag */') CALL WRITE_0D_L( tempAdvection, INDEX_NONE, & 'tempAdvection=', ' /* Temperature advection on/off flag */') CALL WRITE_0D_L( tempImplVertAdv,INDEX_NONE,'tempImplVertAdv =', & '/* Temp. implicit vert. advection on/off */') CALL WRITE_0D_L( tempForcing, INDEX_NONE, & 'tempForcing =', ' /* Temperature forcing on/off flag */') CALL WRITE_0D_L( tempIsActiveTr, INDEX_NONE, 'tempIsActiveTr =', & ' /* Temp. is a dynamically Active Tracer */') CALL WRITE_0D_L( saltStepping, INDEX_NONE, & 'saltStepping =', ' /* Salinity equation on/off flag */') CALL WRITE_0D_L( saltAdvection, INDEX_NONE, & 'saltAdvection=', ' /* Salinity advection on/off flag */') CALL WRITE_0D_L( saltImplVertAdv,INDEX_NONE,'saltImplVertAdv =', & '/* Sali. implicit vert. advection on/off */') CALL WRITE_0D_L( saltForcing, INDEX_NONE, & 'saltForcing =', ' /* Salinity forcing on/off flag */') CALL WRITE_0D_L( saltIsActiveTr, INDEX_NONE, 'saltIsActiveTr =', & ' /* Salt is a dynamically Active Tracer */') CALL WRITE_0D_I( readBinaryPrec, INDEX_NONE, ' readBinaryPrec =', & ' /* Precision used for reading binary files */') CALL WRITE_0D_I(writeBinaryPrec, INDEX_NONE, 'writeBinaryPrec =', & ' /* Precision used for writing binary files */') CALL WRITE_0D_L( globalFiles, INDEX_NONE, & ' globalFiles =',' /* write "global" (=not per tile) files */') CALL WRITE_0D_L( useSingleCpuIO, INDEX_NONE, & ' useSingleCpuIO =', ' /* only master MPI process does I/O */') CALL WRITE_0D_L( debugMode, INDEX_NONE, & ' debugMode =', ' /* Debug Mode on/off flag */') CALL WRITE_0D_I( debLevA, INDEX_NONE, & ' debLevA =', ' /* 1rst level of debugging */') CALL WRITE_0D_I( debLevB, INDEX_NONE, & ' debLevB =', ' /* 2nd level of debugging */') CALL WRITE_0D_I( debugLevel, INDEX_NONE, & ' debugLevel =', ' /* select debugging level */') WRITE(msgBuf,'(A)') '// ' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(A)') & '// Elliptic solver(s) paramters ( PARM02 in namelist ) ' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(A)') '// ' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) CALL WRITE_0D_I( cg2dMaxIters, INDEX_NONE,'cg2dMaxIters =', &' /* Upper limit on 2d con. grad iterations */') CALL WRITE_0D_I( cg2dChkResFreq, INDEX_NONE,'cg2dChkResFreq =', &' /* 2d con. grad convergence test frequency */') CALL WRITE_0D_RL( cg2dTargetResidual, INDEX_NONE, & 'cg2dTargetResidual =', &' /* 2d con. grad target residual */') CALL WRITE_0D_RL( cg2dTargetResWunit, INDEX_NONE, & 'cg2dTargetResWunit =', &' /* CG2d target residual [W units] */') CALL WRITE_0D_I( cg2dPreCondFreq, INDEX_NONE,'cg2dPreCondFreq =', &' /* Freq. for updating cg2d preconditioner */') WRITE(msgBuf,'(A)') '// ' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(A)') & '// Time stepping paramters ( PARM03 in namelist ) ' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(A)') '// ' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) CALL WRITE_0D_RL( deltaTmom, INDEX_NONE,'deltaTmom =', &' /* Momentum equation timestep ( s ) */') CALL WRITE_0D_RL( deltaTfreesurf,INDEX_NONE,'deltaTfreesurf =', &' /* FreeSurface equation timestep ( s ) */') CALL WRITE_1D_R8( dTtracerLev, Nr, INDEX_K, 'dTtracerLev =', &' /* Tracer equation timestep ( s ) */') CALL WRITE_0D_RL( deltaTClock, INDEX_NONE,'deltaTClock =', &' /* Model clock timestep ( s ) */') CALL WRITE_0D_RL( cAdjFreq, INDEX_NONE,'cAdjFreq =', &' /* Convective adjustment interval ( s ) */') CALL WRITE_0D_I( momForcingOutAB, INDEX_NONE, 'momForcingOutAB =', & ' /* =1: take Momentum Forcing out of Adams-Bash. stepping */') CALL WRITE_0D_I( tracForcingOutAB, INDEX_NONE, & 'tracForcingOutAB =', & ' /* =1: take T,S,pTr Forcing out of Adams-Bash. stepping */') CALL WRITE_0D_L( momDissip_In_AB,INDEX_NONE,'momDissip_In_AB =', & ' /* put Dissipation Tendency in Adams-Bash. stepping */') CALL WRITE_0D_L( doAB_onGtGs, INDEX_NONE, 'doAB_onGtGs =', & ' /* apply AB on Tendencies (rather than on T,S)*/') CALL WRITE_0D_RL( abEps, INDEX_NONE,'abEps =', &' /* Adams-Bashforth-2 stabilizing weight */') #ifdef ALLOW_ADAMSBASHFORTH_3 CALL WRITE_0D_RL( alph_AB, INDEX_NONE,'alph_AB =', &' /* Adams-Bashforth-3 primary factor */') CALL WRITE_0D_RL( beta_AB, INDEX_NONE,'beta_AB =', &' /* Adams-Bashforth-3 secondary factor */') CALL WRITE_0D_L( startFromPickupAB2, INDEX_NONE, & 'startFromPickupAB2=',' /* start from AB-2 pickup */') #endif IF (useCDscheme) THEN CALL WRITE_0D_RL( tauCD, INDEX_NONE,'tauCD =', &' /* CD coupling time-scale ( s ) */') CALL WRITE_0D_RL( rCD, INDEX_NONE,'rCD =', &' /* Normalised CD coupling parameter */') ENDIF I = ILNBLNK(pickupSuff) IF ( I.GT.0 ) THEN CALL WRITE_0D_C( pickupSuff, 0, INDEX_NONE, & 'pickupSuff =', ' /* Suffix of pickup-file to restart from */') ENDIF CALL WRITE_0D_L( pickupStrictlyMatch, INDEX_NONE, & 'pickupStrictlyMatch=', & ' /* stop if pickup do not strictly match */') CALL WRITE_0D_I( nIter0, INDEX_NONE,'nIter0 =', &' /* Run starting timestep number */') CALL WRITE_0D_I( nTimeSteps, INDEX_NONE,'nTimeSteps =', &' /* Number of timesteps */') CALL WRITE_0D_RL( baseTime, INDEX_NONE,'baseTime =', &' /* Model base time ( s ). */') CALL WRITE_0D_RL( startTime, INDEX_NONE,'startTime =', &' /* Run start time ( s ). */') CALL WRITE_0D_RL( endTime, INDEX_NONE,'endTime =', &' /* Integration ending time ( s ). */') CALL WRITE_0D_RL( pChkPtFreq, INDEX_NONE,'pChkPtFreq =', &' /* Permanent restart/checkpoint file interval ( s ). */') CALL WRITE_0D_RL( chkPtFreq, INDEX_NONE,'chkPtFreq =', &' /* Rolling restart/checkpoint file interval ( s ). */') CALL WRITE_0D_L(pickup_write_mdsio,INDEX_NONE, & 'pickup_write_mdsio =', ' /* Model IO flag. */') CALL WRITE_0D_L(pickup_read_mdsio,INDEX_NONE, & 'pickup_read_mdsio =', ' /* Model IO flag. */') #ifdef ALLOW_MNC CALL WRITE_0D_L(pickup_write_mnc,INDEX_NONE, & 'pickup_write_mnc =', ' /* Model IO flag. */') CALL WRITE_0D_L(pickup_read_mnc,INDEX_NONE, & 'pickup_read_mnc =', ' /* Model IO flag. */') #endif CALL WRITE_0D_L(pickup_write_immed,INDEX_NONE, & 'pickup_write_immed =',' /* Model IO flag. */') CALL WRITE_0D_L(writePickupAtEnd,INDEX_NONE, & 'writePickupAtEnd =',' /* Model IO flag. */') CALL WRITE_0D_RL( dumpFreq, INDEX_NONE,'dumpFreq =', &' /* Model state write out interval ( s ). */') CALL WRITE_0D_L(dumpInitAndLast,INDEX_NONE,'dumpInitAndLast=', & ' /* write out Initial & Last iter. model state */') CALL WRITE_0D_L(snapshot_mdsio,INDEX_NONE, & 'snapshot_mdsio =', ' /* Model IO flag. */') #ifdef ALLOW_MNC CALL WRITE_0D_L(snapshot_mnc,INDEX_NONE, & 'snapshot_mnc =', ' /* Model IO flag. */') #endif CALL WRITE_0D_RL( monitorFreq, INDEX_NONE,'monitorFreq =', &' /* Monitor output interval ( s ). */') CALL WRITE_0D_I( monitorSelect, INDEX_NONE, 'monitorSelect =', & ' /* select group of variables to monitor */') CALL WRITE_0D_L(monitor_stdio,INDEX_NONE, & 'monitor_stdio =', ' /* Model IO flag. */') #ifdef ALLOW_MNC CALL WRITE_0D_L(monitor_mnc,INDEX_NONE, & 'monitor_mnc =', ' /* Model IO flag. */') #endif CALL WRITE_0D_RL( externForcingPeriod, INDEX_NONE, & 'externForcingPeriod =', ' /* forcing period (s) */') CALL WRITE_0D_RL( externForcingCycle, INDEX_NONE, & 'externForcingCycle =', ' /* period of the cyle (s). */') CALL WRITE_0D_RL( tauThetaClimRelax, INDEX_NONE, & 'tauThetaClimRelax =', ' /* relaxation time scale (s) */') CALL WRITE_0D_RL( tauSaltClimRelax, INDEX_NONE, & 'tauSaltClimRelax =', ' /* relaxation time scale (s) */') CALL WRITE_0D_RL( latBandClimRelax, INDEX_NONE, & 'latBandClimRelax =', ' /* max. Lat. where relaxation */') WRITE(msgBuf,'(A)') '// ' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(A)') & '// Gridding paramters ( PARM04 in namelist ) ' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(A)') '// ' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) CALL WRITE_0D_L( usingCartesianGrid, INDEX_NONE, & 'usingCartesianGrid =', & ' /* Cartesian coordinates flag ( True/False ) */') CALL WRITE_0D_L( usingCylindricalGrid, INDEX_NONE, & 'usingCylindricalGrid =', & ' /* Cylindrical coordinates flag ( True/False ) */') CALL WRITE_0D_L( usingSphericalPolarGrid, INDEX_NONE, & 'usingSphericalPolarGrid =', & ' /* Spherical coordinates flag ( True/False ) */') CALL WRITE_0D_L( usingCurvilinearGrid, INDEX_NONE, & 'usingCurvilinearGrid =', & ' /* Curvilinear coordinates flag ( True/False ) */') CALL WRITE_0D_RL( Ro_SeaLevel, INDEX_NONE,'Ro_SeaLevel =', & ' /* r(1) ( units of r == '//rUnits//' ) */') CALL WRITE_0D_RL( rkSign, INDEX_NONE,'rkSign =', &' /* index orientation relative to vertical coordinate */') CALL WRITE_0D_RL( gravitySign, INDEX_NONE,'gravitySign =', & ' /* gravity orientation relative to vertical coordinate */') IF ( usingZCoords ) THEN CALL WRITE_0D_RL( mass2rUnit, INDEX_NONE,'mass2rUnit =', & ' /* convert mass per unit area [kg/m2] to r-units [m] */') CALL WRITE_0D_RL( rUnit2mass, INDEX_NONE,'rUnit2mass =', & ' /* convert r-units [m] to mass per unit area [kg/m2] */') ENDIF IF ( usingPCoords ) THEN CALL WRITE_0D_RL( mass2rUnit, INDEX_NONE,'mass2rUnit =', & ' /* convert mass per unit area [kg/m2] to r-units [Pa] */') CALL WRITE_0D_RL( rUnit2mass, INDEX_NONE,'rUnit2mass =', & ' /* convert r-units [Pa] to mass per unit area [kg/m2] */') ENDIF CALL WRITE_1D_R8( drC,Nr, INDEX_K,'drC = ', &' /* C spacing ( units of r ) */') CALL WRITE_1D_R8( drF,Nr, INDEX_K,'drF = ', &' /* W spacing ( units of r ) */') CALL WRITE_1D_R8( delX, Nx, INDEX_I,'delX = ', &' /* U spacing ( m - cartesian, degrees - spherical ) */') CALL WRITE_1D_R8( delY, Ny, INDEX_J,'delY = ', &' /* V spacing ( m - cartesian, degrees - spherical ) */') CALL WRITE_0D_RL( xgOrigin, INDEX_NONE,'xgOrigin = ', &'/* X-axis origin of West edge (cartesian: m, lat-lon: deg.) */') CALL WRITE_0D_RL( ygOrigin, INDEX_NONE,'ygOrigin = ', &'/* Y-axis origin of South edge (cartesian: m, lat-lon: deg.) */') CALL WRITE_0D_RL( rSphere, INDEX_NONE,'rSphere = ', & ' /* Radius ( ignored - cartesian, m - spherical ) */') CALL WRITE_0D_L(deepAtmosphere,INDEX_NONE, 'deepAtmosphere =', & ' /* Deep/Shallow Atmosphere flag (True/False) */') coordLine = 1 tileLine = 1 CALL WRITE_XY_XLINE_RS( xC, coordLine, tileLine, 'xC', I ': P-point X coord ( deg. or m if cartesian)') CALL WRITE_XY_YLINE_RS( yC, coordLine, tileLine, 'yC', I ': P-point Y coord ( deg. or m if cartesian)') DO K=1,Nr rcoord(K) = rC(K) ENDDO CALL WRITE_1D_R8( rcoord, Nr, INDEX_K,'rcoord = ', &' /* P-point R coordinate ( units of r ) */') DO K=1,Nr+1 rcoord(K) = rF(K) ENDDO CALL WRITE_1D_R8( rcoord, Nr+1, INDEX_K,'rF = ', &' /* W-Interf. R coordinate ( units of r ) */') CALL WRITE_1D_R8( deepFacC, Nr, INDEX_K,'deepFacC = ', & ' /* deep-model grid factor @ cell-Center (-) */') CALL WRITE_1D_R8( deepFacF, Nr+1, INDEX_K,'deepFacF = ', & ' /* deep-model grid factor @ W-Interface (-) */') CALL WRITE_1D_R8( rVel2wUnit, Nr+1, INDEX_K,'rVel2wUnit = ', & ' /* convert units: rVel -> wSpeed (=1 if z-coord)*/') CALL WRITE_1D_R8( wUnit2rVel, Nr+1, INDEX_K,'wUnit2rVel = ', & ' /* convert units: wSpeed -> rVel (=1 if z-coord)*/') CALL WRITE_1D_R8( dBdrRef, Nr, INDEX_K,'dBdrRef = ', & ' /* Vertical gradient of reference boyancy [(m/s/r)^2)] */') CALL WRITE_0D_L( rotateGrid, INDEX_NONE, & 'rotateGrid =',' /* use rotated grid ( True/False ) */') CALL WRITE_0D_RL( phiEuler, INDEX_NONE,'phiEuler =', &' /* Euler angle, rotation about original z-coordinate [rad] */') CALL WRITE_0D_RL( thetaEuler, INDEX_NONE,'thetaEuler =', & ' /* Euler angle, rotation about new x-coordinate [rad] */') CALL WRITE_0D_RL( psiEuler, INDEX_NONE,'psiEuler =', & ' /* Euler angle, rotation about new z-coordinate [rad] */') C Grid along selected grid lines coordLine = 1 tileLine = 1 CALL WRITE_XY_XLINE_RS( dxF, coordLine, tileLine, 'dxF', I '( units: m )' ) CALL WRITE_XY_YLINE_RS( dxF, coordLine, tileLine, 'dxF', I '( units: m )' ) CALL WRITE_XY_XLINE_RS( dyF, coordLine, tileLine, 'dyF', I '( units: m )' ) CALL WRITE_XY_YLINE_RS( dyF, coordLine, tileLine, 'dyF', I '( units: m )' ) CALL WRITE_XY_XLINE_RS( dxG, coordLine, tileLine, 'dxG', I '( units: m )' ) CALL WRITE_XY_YLINE_RS( dxG, coordLine, tileLine, 'dxG', I '( units: m )' ) CALL WRITE_XY_XLINE_RS( dyG, coordLine, tileLine, 'dyG', I '( units: m )' ) CALL WRITE_XY_YLINE_RS( dyG, coordLine, tileLine, 'dyG', I '( units: m )' ) CALL WRITE_XY_XLINE_RS( dxC, coordLine, tileLine, 'dxC', I '( units: m )' ) CALL WRITE_XY_YLINE_RS( dxC, coordLine, tileLine, 'dxC', I '( units: m )' ) CALL WRITE_XY_XLINE_RS( dyC, coordLine, tileLine, 'dyC', I '( units: m )' ) CALL WRITE_XY_YLINE_RS( dyC, coordLine, tileLine, 'dyC', I '( units: m )' ) CALL WRITE_XY_XLINE_RS( dxV, coordLine, tileLine, 'dxV', I '( units: m )' ) CALL WRITE_XY_YLINE_RS( dxV, coordLine, tileLine, 'dxV', I '( units: m )' ) CALL WRITE_XY_XLINE_RS( dyU, coordLine, tileLine, 'dyU', I '( units: m )' ) CALL WRITE_XY_YLINE_RS( dyU, coordLine, tileLine, 'dyU', I '( units: m )' ) CALL WRITE_XY_XLINE_RS( rA , coordLine, tileLine, 'rA ', I '( units: m^2 )' ) CALL WRITE_XY_YLINE_RS( rA , coordLine, tileLine, 'rA ', I '( units: m^2 )' ) CALL WRITE_XY_XLINE_RS( rAw, coordLine, tileLine, 'rAw', I '( units: m^2 )' ) CALL WRITE_XY_YLINE_RS( rAw, coordLine, tileLine, 'rAw', I '( units: m^2 )' ) CALL WRITE_XY_XLINE_RS( rAs, coordLine, tileLine, 'rAs', I '( units: m^2 )' ) CALL WRITE_XY_YLINE_RS( rAs, coordLine, tileLine, 'rAs', I '( units: m^2 )' ) CALL WRITE_0D_RL( globalArea, INDEX_NONE, 'globalArea =', & ' /* Integrated horizontal Area (m^2) */') I = ILNBLNK(the_run_name) IF ( I.GT.0 ) THEN CALL WRITE_0D_C( the_run_name, I, INDEX_NONE, & 'the_run_name = ', '/* Name of this simulation */' ) ENDIF WRITE(msgBuf,'(A)') &'// =======================================================' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(A)') '// End of Model config. summary' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(A)') &'// =======================================================' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(A)') ' ' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) _END_MASTER(myThid) _BARRIER RETURN END