/[MITgcm]/MITgcm/model/src/config_summary.F
ViewVC logotype

Contents of /MITgcm/model/src/config_summary.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.23 - (show annotations) (download)
Wed Jun 21 19:14:10 2000 UTC (23 years, 11 months ago) by adcroft
Branch: MAIN
CVS Tags: checkpoint29, branch-atmos-merge-start, checkpoint33, checkpoint32, checkpoint31, checkpoint30, checkpoint34, branch-atmos-merge-phase5, branch-atmos-merge-phase4, branch-atmos-merge-phase6, branch-atmos-merge-phase1, branch-atmos-merge-phase3, branch-atmos-merge-phase2
Branch point for: branch-atmos-merge
Changes since 1.22: +1 -11 lines
Removed GM/Redi parameters as part of packaging process.

1 C $Header: /u/gcmpack/models/MITgcmUV/model/src/config_summary.F,v 1.22 2000/06/09 02:45:04 heimbach Exp $
2
3 #include "CPP_OPTIONS.h"
4
5 CStartOfInterface
6 SUBROUTINE CONFIG_SUMMARY( myThid )
7 C /==========================================================
8 C | SUBROUTINE CONFIG_SUMMARY |
9 C | o Summarize model prognostic variables. |
10 C |==========================================================|
11 C | This routine writes a tabulated summary of the model |
12 C | configuration. |
13 C | Note |
14 C | 1. Under multi-process parallelism the summary |
15 C | is only given for the per-process data. |
16 C | 2. Under multi-threading the summary is produced by |
17 C | the master thread. This threads reads data managed by|
18 C | other threads. |
19 C \==========================================================/
20 IMPLICIT NONE
21
22 C === Global variables ===
23 #include "SIZE.h"
24 #include "EEPARAMS.h"
25 #include "PARAMS.h"
26 #include "GRID.h"
27 #include "DYNVARS.h"
28
29 C == Routine arguments ==
30 C myThid - Number of this instance of CONFIG_SUMMARY
31 INTEGER myThid
32 CEndOfInterface
33
34 C == Local variables ==
35 CHARACTER*(MAX_LEN_MBUF) msgBuf
36 INTEGER I,J,K
37 INTEGER bi, bj
38 _RL xcoord(Nx)
39 _RL ycoord(Ny)
40 _RL rcoord(Nr)
41
42
43 _BARRIER
44 _BEGIN_MASTER(myThid)
45
46 WRITE(msgBuf,'(A)')
47 &'// ======================================================='
48 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
49 & SQUEEZE_RIGHT , 1)
50 WRITE(msgBuf,'(A)') '// Model configuration'
51 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
52 & SQUEEZE_RIGHT , 1)
53 WRITE(msgBuf,'(A)')
54 &'// ======================================================='
55 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
56 & SQUEEZE_RIGHT , 1)
57
58 WRITE(msgBuf,'(A)') '// '
59 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
60 & SQUEEZE_RIGHT , 1)
61 WRITE(msgBuf,'(A)')
62 & '// "Physical" paramters ( PARM01 in namelist ) '
63 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
64 & SQUEEZE_RIGHT , 1)
65 WRITE(msgBuf,'(A)') '// '
66 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
67 & SQUEEZE_RIGHT , 1)
68 CALL WRITE_1D_R8( tRef, Nr, INDEX_K,'tRef =',
69 &' /* Reference temperature profile ( oC or oK ) */')
70 CALL WRITE_1D_R8( sRef, Nr, INDEX_K,'sRef =',
71 &' /* Reference salinity profile ( ppt ) */')
72 CALL WRITE_0D_R8( viscAh, INDEX_NONE,'viscAh =',
73 &' /* Lateral eddy viscosity ( m^2/s ) */')
74 CALL WRITE_0D_R8( viscA4, INDEX_NONE,'viscAh =',
75 &' /* Lateral biharmonic viscosity ( m^4/s ) */')
76 CALL WRITE_0D_L( no_slip_sides, INDEX_NONE,
77 & 'no_slip_sides =', ' /* Viscous BCs: No-slip sides */')
78 IF ( viscAz .NE. UNSET_RL ) THEN
79 CALL WRITE_0D_R8( viscAz, INDEX_NONE,'viscAz =',
80 & ' /* Vertical eddy viscosity ( m^2/s ) */')
81 ENDIF
82 IF ( viscAp .NE. UNSET_RL ) THEN
83 CALL WRITE_0D_R8( viscAp, INDEX_NONE,'viscAp =',
84 & ' /* Vertical eddy viscosity ( Pa^2/s ) */')
85 ENDIF
86 CALL WRITE_0D_R8( viscAr, INDEX_NONE,'viscAr =',
87 &' /* Vertical eddy viscosity ( units of r^2/s ) */')
88 CALL WRITE_0D_R8( diffKhT, INDEX_NONE,'diffKhT =',
89 &' /* Laplacian diffusion of heat laterally ( m^2/s ) */')
90 CALL WRITE_0D_R8( diffK4T, INDEX_NONE,'diffK4T =',
91 &' /* Bihaarmonic diffusion of heat laterally ( m^4/s ) */')
92 CALL WRITE_0D_R8( diffKzT, INDEX_NONE,'diffKzT =',
93 &' /* Laplacian diffusion of heat vertically ( m^2/s ) */')
94 CALL WRITE_0D_R8( diffKrT, INDEX_NONE,'diffKrT =',
95 &' /* Laplacian diffusion of heat vertically ( m^2/s ) */')
96 CALL WRITE_0D_R8( diffKhS, INDEX_NONE,'diffKhS =',
97 &' /* Laplacian diffusion of salt laterally ( m^2/s ) */')
98 CALL WRITE_0D_R8( diffK4S, INDEX_NONE,'diffK4S =',
99 &' /* Bihaarmonic diffusion of salt laterally ( m^4/s ) */')
100 CALL WRITE_0D_R8( diffKzS, INDEX_NONE,'diffKzS =',
101 &' /* Laplacian diffusion of salt vertically ( m^2/s ) */')
102 CALL WRITE_0D_R8( diffKrS, INDEX_NONE,'diffKrS =',
103 &' /* Laplacian diffusion of salt vertically ( m^2/s ) */')
104 CALL WRITE_0D_R8( tAlpha, INDEX_NONE,'tAlpha =',
105 &' /* Linear EOS thermal expansion coefficient ( 1/degree ) */')
106 CALL WRITE_0D_R8( sBeta, INDEX_NONE,'sBeta =',
107 &' /* Linear EOS haline contraction coefficient ( 1/ppt ) */')
108 IF ( eosType .EQ. 'POLY3' ) THEN
109 WRITE(msgBuf,'(A)')
110 & '// Polynomial EQS parameters ( from POLY3.COEFFS ) '
111 DO K = 1, Nr
112 WRITE(msgBuf,'(I3,13F8.3)')
113 & K,eosRefT(K),eosRefS(K),eosSig0(K), (eosC(I,K),I=1,9)
114 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
115 & SQUEEZE_RIGHT , 1)
116 ENDDO
117 ENDIF
118 CALL WRITE_0D_R8( rhonil, INDEX_NONE,'rhonil =',
119 &' /* Reference density ( kg/m^3 ) */')
120 CALL WRITE_0D_R8( rhoConst, INDEX_NONE,'rhoConst =',
121 &' /* Reference density ( kg/m^3 ) */')
122 CALL WRITE_0D_R8( gravity, INDEX_NONE,'gravity =',
123 &' /* Gravitational acceleration ( m/s^2 ) */')
124 CALL WRITE_0D_R8( gBaro, INDEX_NONE,'gBaro =',
125 &' /* Barotropic gravity ( m/s^2 ) */')
126 CALL WRITE_0D_R8( f0, INDEX_NONE,'f0 =',
127 &' /* Reference coriolis parameter ( 1/s ) */')
128 CALL WRITE_0D_R8( beta, INDEX_NONE,'beta =',
129 &' /* Beta ( 1/(m.s) ) */')
130 CALL WRITE_0D_R8( freeSurfFac, INDEX_NONE,'freeSurfFac =',
131 &' /* Implcit free surface factor */')
132 CALL WRITE_0D_L( implicitFreeSurface, INDEX_NONE,
133 & 'implicitFreeSurface =',
134 &' /* Implicit free surface on/off flag */')
135 CALL WRITE_0D_L( rigidLid, INDEX_NONE,
136 & 'rigidLid =',
137 &' /* Rigid lid on/off flag */')
138 CALL WRITE_0D_L( momStepping, INDEX_NONE,
139 & 'momStepping =', ' /* Momentum equation on/off flag */')
140 CALL WRITE_0D_L( momAdvection, INDEX_NONE,
141 & 'momAdvection =', ' /* Momentum advection on/off flag */')
142 CALL WRITE_0D_L( momViscosity, INDEX_NONE,
143 & 'momViscosity =', ' /* Momentum viscosity on/off flag */')
144 CALL WRITE_0D_L( useCoriolis, INDEX_NONE,
145 & 'useCoriolis =', ' /* Coriolis on/off flag */')
146 CALL WRITE_0D_L( momForcing, INDEX_NONE,
147 & 'momForcing =', ' /* Momentum forcing on/off flag */')
148 CALL WRITE_0D_L( momPressureForcing, INDEX_NONE,
149 & 'momPressureForcing =',
150 & ' /* Momentum pressure term on/off flag */')
151 CALL WRITE_0D_L( tempStepping, INDEX_NONE,
152 & 'tempStepping =', ' /* Temperature equation on/off flag */')
153 CALL WRITE_0D_L( openBoundaries, INDEX_NONE,
154 & 'openBoundaries =', ' /* OpenBoundaries on/off flag */')
155 CALL WRITE_0D_L( nonHydrostatic, INDEX_NONE,
156 & 'nonHydrostatic =', ' /* Non-Hydrostatic on/off flag */')
157 WRITE(msgBuf,'(A)') '// '
158 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
159 & SQUEEZE_RIGHT , 1)
160
161 WRITE(msgBuf,'(A)')
162 & '// Elliptic solver(s) paramters ( PARM02 in namelist ) '
163 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
164 & SQUEEZE_RIGHT , 1)
165 WRITE(msgBuf,'(A)') '// '
166 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
167 & SQUEEZE_RIGHT , 1)
168 CALL WRITE_0D_I( cg2dMaxIters, INDEX_NONE,'cg2dMaxIters =',
169 &' /* Upper limit on 2d con. grad iterations */')
170 CALL WRITE_0D_I( cg2dChkResFreq, INDEX_NONE,'cg2dChkResFreq =',
171 &' /* 2d con. grad convergence test frequency */')
172 CALL WRITE_0D_R8( cg2dTargetResidual, INDEX_NONE,
173 & 'cg2dTargetResidual =',
174 &' /* 2d con. grad target residual */')
175
176 WRITE(msgBuf,'(A)') '// '
177 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
178 & SQUEEZE_RIGHT , 1)
179 WRITE(msgBuf,'(A)')
180 & '// Time stepping paramters ( PARM03 in namelist ) '
181 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
182 & SQUEEZE_RIGHT , 1)
183 WRITE(msgBuf,'(A)') '// '
184 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
185 & SQUEEZE_RIGHT , 1)
186 CALL WRITE_0D_I( nIter0, INDEX_NONE,'nIter0 =',
187 &' /* Base timestep number */')
188 CALL WRITE_0D_I( nTimeSteps, INDEX_NONE,'nTimeSteps =',
189 &' /* Number of timesteps */')
190 CALL WRITE_0D_R8( deltaTmom, INDEX_NONE,'deltatTmom =',
191 &' /* Momentum equation timestep ( s ) */')
192 CALL WRITE_0D_R8( deltaTtracer, INDEX_NONE,'deltatTtracer =',
193 &' /* Tracer equation timestep ( s ) */')
194 CALL WRITE_0D_R8( deltaTClock, INDEX_NONE,'deltatTClock =',
195 &' /* Model clock timestep ( s ) */')
196 CALL WRITE_0D_R8( cAdjFreq, INDEX_NONE,'cAdjFreq =',
197 &' /* Convective adjustment interval ( s ) */')
198 CALL WRITE_0D_R8( abeps, INDEX_NONE,'abeps =',
199 &' /* Adams-Bashforth stabilizing weight */')
200 CALL WRITE_0D_R8( tauCD, INDEX_NONE,'tauCD =',
201 &' /* CD coupling time-scale ( s ) */')
202 CALL WRITE_0D_R8( rCD, INDEX_NONE,'rCD =',
203 &' /* Normalised CD coupling parameter */')
204 CALL WRITE_0D_R8( startTime, INDEX_NONE,'startTime =',
205 &' /* Run start time ( s ). */')
206 CALL WRITE_0D_R8( endTime, INDEX_NONE,'endTime =',
207 &' /* Integration ending time ( s ). */')
208 CALL WRITE_0D_R8( pChkPtFreq, INDEX_NONE,'pChkPtFreq =',
209 &' /* Permanent restart/checkpoint file interval ( s ). */')
210 CALL WRITE_0D_R8( chkPtFreq, INDEX_NONE,'chkPtFreq =',
211 &' /* Rolling restart/checkpoint file interval ( s ). */')
212 CALL WRITE_0D_R8( dumpFreq, INDEX_NONE,'dumpFreq =',
213 &' /* Model state write out interval ( s ). */')
214
215 WRITE(msgBuf,'(A)') '// '
216 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
217 & SQUEEZE_RIGHT , 1)
218 WRITE(msgBuf,'(A)')
219 & '// Gridding paramters ( PARM04 in namelist ) '
220 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
221 & SQUEEZE_RIGHT , 1)
222 WRITE(msgBuf,'(A)') '// '
223 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
224 & SQUEEZE_RIGHT , 1)
225 CALL WRITE_0D_L( usingCartesianGrid, INDEX_NONE,
226 & 'usingCartesianGrid =',
227 &' /* Cartesian coordinates flag ( True / False ) */')
228 CALL WRITE_0D_L( usingSphericalPolarGrid, INDEX_NONE,
229 & 'usingSphericalPolarGrid =',
230 &' /* Spherical coordinates flag ( True / False ) */')
231 CALL WRITE_1D_R8( delZ,Nr, INDEX_K,'delZ = ',
232 &' /* W spacing ( m ) */')
233 CALL WRITE_1D_R8( delP,Nr, INDEX_K,'delP = ',
234 &' /* W spacing ( Pa ) */')
235 CALL WRITE_1D_R8( delR,Nr, INDEX_K,'delR = ',
236 &' /* W spacing ( units of r ) */')
237 CALL WRITE_1D_R8( delX, Nx, INDEX_I,'delX = ',
238 &' /* U spacing ( m - cartesian, degrees - spherical ) */')
239 CALL WRITE_1D_R8( delY, Ny, INDEX_J,'delY = ',
240 &' /* V spacing ( m - cartesian, degrees - spherical ) */')
241 CALL WRITE_0D_R8( phiMin, INDEX_NONE,'phiMin = ',
242 &' /* South edge (ignored - cartesian, degrees - spherical ) */')
243 CALL WRITE_0D_R8( thetaMin, INDEX_NONE,'thetaMin = ',
244 &' /* West edge ( ignored - cartesian, degrees - spherical ) */')
245 CALL WRITE_0D_R8( rSphere, INDEX_NONE,'rSphere = ',
246 &' /* Radius ( ignored - cartesian, m - spherical ) */')
247 DO bi=1,nSx
248 DO I=1,sNx
249 xcoord((bi-1)*sNx+I) = xC(I,1,bi,1)
250 ENDDO
251 ENDDO
252 CALL WRITE_1D_R8( xcoord, sNx*nSx, INDEX_I,'xcoord = ',
253 &' /* P-point X coord ( m - cartesian, degrees - spherical ) */')
254 DO bj=1,nSy
255 DO J=1,sNy
256 ycoord((bj-1)*sNy+J) = yC(1,J,1,bj)
257 ENDDO
258 ENDDO
259 CALL WRITE_1D_R8( ycoord, sNy*nSy, INDEX_J,'ycoord = ',
260 &' /* P-point Y coord ( m - cartesian, degrees - spherical ) */')
261 DO K=1,Nr
262 rcoord(K) = rC(K)
263 ENDDO
264 CALL WRITE_1D_R8( rcoord, Nr, INDEX_K,'rcoord = ',
265 &' /* P-point R coordinate ( units of r ) */')
266
267
268
269 WRITE(msgBuf,'(A)') ' '
270 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
271 & SQUEEZE_RIGHT , 1)
272
273 _END_MASTER(myThid)
274 _BARRIER
275
276
277 RETURN
278 100 FORMAT(A,
279 &' '
280 &)
281 END
282

  ViewVC Help
Powered by ViewVC 1.1.22