| 1 |
cnh |
1.12 |
C $Header: /u/gcmpack/models/MITgcmUV/model/src/cg3d.F,v 1.11 2001/06/29 17:14:49 adcroft Exp $ |
| 2 |
adcroft |
1.10 |
C $Name: $ |
| 3 |
adcroft |
1.1 |
|
| 4 |
|
|
#include "CPP_OPTIONS.h" |
| 5 |
|
|
|
| 6 |
|
|
#define VERBOSE |
| 7 |
|
|
|
| 8 |
cnh |
1.12 |
CBOP |
| 9 |
|
|
C !ROUTINE: CG3D |
| 10 |
|
|
C !INTERFACE: |
| 11 |
adcroft |
1.1 |
SUBROUTINE CG3D( |
| 12 |
adcroft |
1.11 |
I cg3d_b, |
| 13 |
|
|
U cg3d_x, |
| 14 |
|
|
O firstResidual, |
| 15 |
|
|
O lastResidual, |
| 16 |
|
|
U numIters, |
| 17 |
adcroft |
1.1 |
I myThid ) |
| 18 |
cnh |
1.12 |
C !DESCRIPTION: \bv |
| 19 |
|
|
C *==========================================================* |
| 20 |
|
|
C | SUBROUTINE CG3D |
| 21 |
|
|
C | o Three-dimensional grid problem conjugate-gradient |
| 22 |
|
|
C | inverter (with preconditioner). |
| 23 |
|
|
C *==========================================================* |
| 24 |
|
|
C | Con. grad is an iterative procedure for solving Ax = b. |
| 25 |
|
|
C | It requires the A be symmetric. |
| 26 |
|
|
C | This implementation assumes A is a seven-diagonal |
| 27 |
|
|
C | matrix of the form that arises in the discrete |
| 28 |
|
|
C | representation of the del^2 operator in a |
| 29 |
|
|
C | three-dimensional space. |
| 30 |
|
|
C | Notes: |
| 31 |
|
|
C | ====== |
| 32 |
|
|
C | This implementation can support shared-memory |
| 33 |
|
|
C | multi-threaded execution. In order to do this COMMON |
| 34 |
|
|
C | blocks are used for many of the arrays - even ones that |
| 35 |
|
|
C | are only used for intermedaite results. This design is |
| 36 |
|
|
C | OK if you want to all the threads to collaborate on |
| 37 |
|
|
C | solving the same problem. On the other hand if you want |
| 38 |
|
|
C | the threads to solve several different problems |
| 39 |
|
|
C | concurrently this implementation will not work. |
| 40 |
|
|
C *==========================================================* |
| 41 |
|
|
C \ev |
| 42 |
|
|
|
| 43 |
|
|
C !USES: |
| 44 |
adcroft |
1.1 |
IMPLICIT NONE |
| 45 |
|
|
C === Global data === |
| 46 |
|
|
#include "SIZE.h" |
| 47 |
|
|
#include "EEPARAMS.h" |
| 48 |
|
|
#include "PARAMS.h" |
| 49 |
|
|
#include "GRID.h" |
| 50 |
|
|
#include "CG3D.h" |
| 51 |
|
|
|
| 52 |
cnh |
1.12 |
C !INPUT/OUTPUT PARAMETERS: |
| 53 |
adcroft |
1.1 |
C === Routine arguments === |
| 54 |
adcroft |
1.11 |
C myThid - Thread on which I am working. |
| 55 |
|
|
C cg2d_b - The source term or "right hand side" |
| 56 |
|
|
C cg2d_x - The solution |
| 57 |
|
|
C firstResidual - the initial residual before any iterations |
| 58 |
|
|
C lastResidual - the actual residual reached |
| 59 |
|
|
C numIters - Entry: the maximum number of iterations allowed |
| 60 |
|
|
C Exit: the actual number of iterations used |
| 61 |
|
|
_RL cg3d_b(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy) |
| 62 |
|
|
_RL cg3d_x(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy) |
| 63 |
|
|
_RL firstResidual |
| 64 |
|
|
_RL lastResidual |
| 65 |
|
|
INTEGER numIters |
| 66 |
adcroft |
1.1 |
INTEGER myThid |
| 67 |
|
|
|
| 68 |
adcroft |
1.11 |
|
| 69 |
adcroft |
1.4 |
#ifdef ALLOW_NONHYDROSTATIC |
| 70 |
|
|
|
| 71 |
cnh |
1.12 |
C !LOCAL VARIABLES: |
| 72 |
adcroft |
1.1 |
C === Local variables ==== |
| 73 |
|
|
C actualIts - Number of iterations taken |
| 74 |
|
|
C actualResidual - residual |
| 75 |
|
|
C bi - Block index in X and Y. |
| 76 |
|
|
C bj |
| 77 |
jmc |
1.6 |
C eta_qrN - Used in computing search directions |
| 78 |
|
|
C eta_qrNM1 suffix N and NM1 denote current and |
| 79 |
adcroft |
1.1 |
C cgBeta previous iterations respectively. |
| 80 |
|
|
C alpha |
| 81 |
|
|
C sumRHS - Sum of right-hand-side. Sometimes this is a |
| 82 |
|
|
C useful debuggin/trouble shooting diagnostic. |
| 83 |
|
|
C For neumann problems sumRHS needs to be ~0. |
| 84 |
|
|
C or they converge at a non-zero residual. |
| 85 |
|
|
C err - Measure of residual of Ax - b, usually the norm. |
| 86 |
|
|
C I, J, N - Loop counters ( N counts CG iterations ) |
| 87 |
|
|
INTEGER actualIts |
| 88 |
|
|
_RL actualResidual |
| 89 |
|
|
INTEGER bi, bj |
| 90 |
|
|
INTEGER I, J, K, it3d |
| 91 |
|
|
INTEGER KM1, KP1 |
| 92 |
|
|
_RL err |
| 93 |
jmc |
1.6 |
_RL eta_qrN |
| 94 |
|
|
_RL eta_qrNM1 |
| 95 |
adcroft |
1.1 |
_RL cgBeta |
| 96 |
|
|
_RL alpha |
| 97 |
|
|
_RL sumRHS |
| 98 |
|
|
_RL rhsMax |
| 99 |
|
|
_RL rhsNorm |
| 100 |
|
|
|
| 101 |
|
|
INTEGER OLw |
| 102 |
|
|
INTEGER OLe |
| 103 |
|
|
INTEGER OLn |
| 104 |
|
|
INTEGER OLs |
| 105 |
|
|
INTEGER exchWidthX |
| 106 |
|
|
INTEGER exchWidthY |
| 107 |
|
|
INTEGER myNz |
| 108 |
jmc |
1.7 |
_RL topLevTerm |
| 109 |
cnh |
1.12 |
CEOP |
| 110 |
adcroft |
1.1 |
|
| 111 |
|
|
C-- Initialise inverter |
| 112 |
jmc |
1.6 |
eta_qrNM1 = 1. D0 |
| 113 |
adcroft |
1.1 |
|
| 114 |
|
|
C-- Normalise RHS |
| 115 |
|
|
rhsMax = 0. _d 0 |
| 116 |
|
|
DO bj=myByLo(myThid),myByHi(myThid) |
| 117 |
|
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
| 118 |
|
|
DO K=1,Nr |
| 119 |
|
|
DO J=1,sNy |
| 120 |
|
|
DO I=1,sNx |
| 121 |
|
|
cg3d_b(I,J,K,bi,bj) = cg3d_b(I,J,K,bi,bj)*cg3dNorm |
| 122 |
|
|
rhsMax = MAX(ABS(cg3d_b(I,J,K,bi,bj)),rhsMax) |
| 123 |
|
|
ENDDO |
| 124 |
|
|
ENDDO |
| 125 |
|
|
ENDDO |
| 126 |
|
|
ENDDO |
| 127 |
|
|
ENDDO |
| 128 |
adcroft |
1.2 |
_GLOBAL_MAX_R8( rhsMax, myThid ) |
| 129 |
adcroft |
1.1 |
rhsNorm = 1. _d 0 |
| 130 |
|
|
IF ( rhsMax .NE. 0. ) rhsNorm = 1. _d 0 / rhsMax |
| 131 |
|
|
DO bj=myByLo(myThid),myByHi(myThid) |
| 132 |
|
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
| 133 |
|
|
DO K=1,Nr |
| 134 |
|
|
DO J=1,sNy |
| 135 |
|
|
DO I=1,sNx |
| 136 |
|
|
cg3d_b(I,J,K,bi,bj) = cg3d_b(I,J,K,bi,bj)*rhsNorm |
| 137 |
|
|
cg3d_x(I,J,K,bi,bj) = cg3d_x(I,J,K,bi,bj)*rhsNorm |
| 138 |
|
|
ENDDO |
| 139 |
|
|
ENDDO |
| 140 |
|
|
ENDDO |
| 141 |
|
|
ENDDO |
| 142 |
|
|
ENDDO |
| 143 |
|
|
|
| 144 |
|
|
C-- Update overlaps |
| 145 |
|
|
_EXCH_XYZ_R8( cg3d_b, myThid ) |
| 146 |
|
|
_EXCH_XYZ_R8( cg3d_x, myThid ) |
| 147 |
|
|
|
| 148 |
jmc |
1.7 |
C-- Initial residual calculation (with free-Surface term) |
| 149 |
adcroft |
1.1 |
err = 0. _d 0 |
| 150 |
|
|
sumRHS = 0. _d 0 |
| 151 |
|
|
DO bj=myByLo(myThid),myByHi(myThid) |
| 152 |
|
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
| 153 |
|
|
DO K=1,Nr |
| 154 |
|
|
KM1 = K-1 |
| 155 |
|
|
IF ( K .EQ. 1 ) KM1 = 1 |
| 156 |
|
|
KP1 = K+1 |
| 157 |
|
|
IF ( K .EQ. Nr ) KP1 = 1 |
| 158 |
jmc |
1.7 |
topLevTerm = 0. |
| 159 |
|
|
IF ( K .EQ. 1) topLevTerm = freeSurfFac*cg3dNorm* |
| 160 |
|
|
& (horiVertRatio/gravity)/deltaTMom/deltaTMom |
| 161 |
adcroft |
1.1 |
DO J=1,sNy |
| 162 |
|
|
DO I=1,sNx |
| 163 |
|
|
cg3d_s(I,J,K,bi,bj) = 0. |
| 164 |
|
|
cg3d_r(I,J,K,bi,bj) = cg3d_b(I,J,K,bi,bj) -( 0. |
| 165 |
|
|
& +aW3d(I ,J ,K ,bi,bj)*cg3d_x(I-1,J ,K ,bi,bj) |
| 166 |
|
|
& +aW3d(I+1,J ,K ,bi,bj)*cg3d_x(I+1,J ,K ,bi,bj) |
| 167 |
|
|
& +aS3d(I ,J ,K ,bi,bj)*cg3d_x(I ,J-1,K ,bi,bj) |
| 168 |
|
|
& +aS3d(I ,J+1,K ,bi,bj)*cg3d_x(I ,J+1,K ,bi,bj) |
| 169 |
|
|
& +aV3d(I ,J ,K ,bi,bj)*cg3d_x(I ,J ,KM1,bi,bj) |
| 170 |
|
|
& +aV3d(I ,J ,KP1,bi,bj)*cg3d_x(I ,J ,KP1,bi,bj) |
| 171 |
|
|
& -aW3d(I ,J ,K ,bi,bj)*cg3d_x(I ,J ,K ,bi,bj) |
| 172 |
|
|
& -aW3d(I+1,J ,K ,bi,bj)*cg3d_x(I ,J ,K ,bi,bj) |
| 173 |
|
|
& -aS3d(I ,J ,K ,bi,bj)*cg3d_x(I ,J ,K ,bi,bj) |
| 174 |
|
|
& -aS3d(I ,J+1,K ,bi,bj)*cg3d_x(I ,J ,K ,bi,bj) |
| 175 |
|
|
& -aV3d(I ,J ,K ,bi,bj)*cg3d_x(I ,J ,K ,bi,bj) |
| 176 |
|
|
& -aV3d(I ,J ,KP1,bi,bj)*cg3d_x(I ,J ,K ,bi,bj) |
| 177 |
jmc |
1.7 |
& -topLevTerm*_rA(I,J,bi,bj)*cg3d_x(I,J,K,bi,bj) |
| 178 |
adcroft |
1.1 |
& ) |
| 179 |
|
|
err = err |
| 180 |
|
|
& +cg3d_r(I,J,K,bi,bj)*cg3d_r(I,J,K,bi,bj) |
| 181 |
|
|
sumRHS = sumRHS |
| 182 |
|
|
& +cg3d_b(I,J,K,bi,bj) |
| 183 |
|
|
ENDDO |
| 184 |
|
|
ENDDO |
| 185 |
|
|
ENDDO |
| 186 |
|
|
ENDDO |
| 187 |
|
|
ENDDO |
| 188 |
|
|
C _EXCH_XYZ_R8( cg3d_r, myThid ) |
| 189 |
|
|
OLw = 1 |
| 190 |
|
|
OLe = 1 |
| 191 |
|
|
OLn = 1 |
| 192 |
|
|
OLs = 1 |
| 193 |
|
|
exchWidthX = 1 |
| 194 |
|
|
exchWidthY = 1 |
| 195 |
|
|
myNz = Nr |
| 196 |
|
|
CALL EXCH_RL( cg3d_r, |
| 197 |
adcroft |
1.10 |
I OLw, OLe, OLs, OLn, myNz, |
| 198 |
adcroft |
1.1 |
I exchWidthX, exchWidthY, |
| 199 |
|
|
I FORWARD_SIMULATION, EXCH_IGNORE_CORNERS, myThid ) |
| 200 |
|
|
C _EXCH_XYZ_R8( cg3d_s, myThid ) |
| 201 |
|
|
OLw = 1 |
| 202 |
|
|
OLe = 1 |
| 203 |
|
|
OLn = 1 |
| 204 |
|
|
OLs = 1 |
| 205 |
|
|
exchWidthX = 1 |
| 206 |
|
|
exchWidthY = 1 |
| 207 |
|
|
myNz = Nr |
| 208 |
|
|
CALL EXCH_RL( cg3d_s, |
| 209 |
adcroft |
1.10 |
I OLw, OLe, OLs, OLn, myNz, |
| 210 |
adcroft |
1.1 |
I exchWidthX, exchWidthY, |
| 211 |
|
|
I FORWARD_SIMULATION, EXCH_IGNORE_CORNERS, myThid ) |
| 212 |
adcroft |
1.2 |
_GLOBAL_SUM_R8( sumRHS, myThid ) |
| 213 |
|
|
_GLOBAL_SUM_R8( err , myThid ) |
| 214 |
adcroft |
1.1 |
|
| 215 |
|
|
_BEGIN_MASTER( myThid ) |
| 216 |
adcroft |
1.11 |
write(*,'(A,1P2E22.14)') |
| 217 |
|
|
& ' cg3d: Sum(rhs),rhsMax = ',sumRHS,rhsMax |
| 218 |
adcroft |
1.1 |
_END_MASTER( ) |
| 219 |
|
|
|
| 220 |
|
|
actualIts = 0 |
| 221 |
|
|
actualResidual = SQRT(err) |
| 222 |
|
|
C _BARRIER |
| 223 |
adcroft |
1.11 |
c _BEGIN_MASTER( myThid ) |
| 224 |
|
|
c WRITE(*,'(A,I6,1PE30.14)') ' CG3D iters, err = ', |
| 225 |
|
|
c & actualIts, actualResidual |
| 226 |
|
|
c _END_MASTER( ) |
| 227 |
|
|
firstResidual=actualResidual |
| 228 |
adcroft |
1.1 |
|
| 229 |
|
|
C >>>>>>>>>>>>>>> BEGIN SOLVER <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< |
| 230 |
|
|
DO 10 it3d=1, cg3dMaxIters |
| 231 |
|
|
|
| 232 |
|
|
CcnhDebugStarts |
| 233 |
|
|
#ifdef VERBOSE |
| 234 |
adcroft |
1.11 |
c IF ( mod(it3d-1,10).EQ.0) |
| 235 |
|
|
c & WRITE(*,*) ' CG3D: Iteration ',it3d-1, |
| 236 |
|
|
c & ' residual = ',actualResidual |
| 237 |
adcroft |
1.1 |
#endif |
| 238 |
|
|
CcnhDebugEnds |
| 239 |
|
|
IF ( actualResidual .LT. cg3dTargetResidual ) GOTO 11 |
| 240 |
|
|
C-- Solve preconditioning equation and update |
| 241 |
|
|
C-- conjugate direction vector "s". |
| 242 |
|
|
C Note. On the next to loops over all tiles the inner loop ranges |
| 243 |
|
|
C in sNx and sNy are expanded by 1 to avoid a communication |
| 244 |
|
|
C step. However this entails a bit of gynamastics because we only |
| 245 |
jmc |
1.6 |
C want eta_qrN for the interior points. |
| 246 |
|
|
eta_qrN = 0. _d 0 |
| 247 |
adcroft |
1.1 |
DO bj=myByLo(myThid),myByHi(myThid) |
| 248 |
|
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
| 249 |
|
|
DO K=1,1 |
| 250 |
|
|
DO J=1-1,sNy+1 |
| 251 |
|
|
DO I=1-1,sNx+1 |
| 252 |
|
|
cg3d_q(I,J,K,bi,bj) = |
| 253 |
|
|
& zMC(I ,J ,K,bi,bj)*cg3d_r(I ,J ,K,bi,bj) |
| 254 |
|
|
ENDDO |
| 255 |
|
|
ENDDO |
| 256 |
|
|
ENDDO |
| 257 |
|
|
DO K=2,Nr |
| 258 |
|
|
DO J=1-1,sNy+1 |
| 259 |
|
|
DO I=1-1,sNx+1 |
| 260 |
|
|
cg3d_q(I,J,K,bi,bj) = |
| 261 |
|
|
& zMC(I,J,K,bi,bj)*(cg3d_r(I,J,K ,bi,bj) |
| 262 |
|
|
& -zML(I,J,K,bi,bj)*cg3d_q(I,J,K-1,bi,bj)) |
| 263 |
|
|
ENDDO |
| 264 |
|
|
ENDDO |
| 265 |
|
|
ENDDO |
| 266 |
|
|
DO K=Nr,Nr |
| 267 |
|
|
caja IF (Nr .GT. 1) THEN |
| 268 |
|
|
caja DO J=1-1,sNy+1 |
| 269 |
|
|
caja DO I=1-1,sNx+1 |
| 270 |
|
|
caja cg3d_q(I,J,K,bi,bj) = |
| 271 |
|
|
caja & zMC(i,j,k,bi,bj)*(cg3d_r(i,j,k ,bi,bj) |
| 272 |
|
|
caja & -zML(i,j,k,bi,bj)*cg3d_q(i,j,k-1,bi,bj)) |
| 273 |
|
|
caja ENDDO |
| 274 |
|
|
caja ENDDO |
| 275 |
|
|
caja ENDIF |
| 276 |
|
|
DO J=1,sNy |
| 277 |
|
|
DO I=1,sNx |
| 278 |
jmc |
1.6 |
eta_qrN = eta_qrN |
| 279 |
adcroft |
1.1 |
& +cg3d_q(I,J,K,bi,bj)*cg3d_r(I,J,K,bi,bj) |
| 280 |
|
|
ENDDO |
| 281 |
|
|
ENDDO |
| 282 |
|
|
ENDDO |
| 283 |
|
|
DO K=Nr-1,1,-1 |
| 284 |
|
|
DO J=1-1,sNy+1 |
| 285 |
|
|
DO I=1-1,sNx+1 |
| 286 |
|
|
cg3d_q(I,J,K,bi,bj) = |
| 287 |
|
|
& cg3d_q(I,J,K,bi,bj) |
| 288 |
|
|
& -zMU(I,J,K,bi,bj)*cg3d_q(I,J,K+1,bi,bj) |
| 289 |
|
|
ENDDO |
| 290 |
|
|
ENDDO |
| 291 |
|
|
DO J=1,sNy |
| 292 |
|
|
DO I=1,sNx |
| 293 |
jmc |
1.6 |
eta_qrN = eta_qrN |
| 294 |
adcroft |
1.1 |
& +cg3d_q(I,J,K,bi,bj)*cg3d_r(I,J,K,bi,bj) |
| 295 |
|
|
ENDDO |
| 296 |
|
|
ENDDO |
| 297 |
|
|
ENDDO |
| 298 |
|
|
ENDDO |
| 299 |
|
|
ENDDO |
| 300 |
|
|
caja |
| 301 |
jmc |
1.6 |
caja eta_qrN=0. |
| 302 |
adcroft |
1.1 |
caja DO bj=myByLo(myThid),myByHi(myThid) |
| 303 |
|
|
caja DO bi=myBxLo(myThid),myBxHi(myThid) |
| 304 |
|
|
caja DO K=1,Nr |
| 305 |
|
|
caja DO J=1,sNy |
| 306 |
|
|
caja DO I=1,sNx |
| 307 |
jmc |
1.6 |
caja eta_qrN = eta_qrN |
| 308 |
adcroft |
1.1 |
caja & +cg3d_q(I,J,K,bi,bj)*cg3d_r(I,J,K,bi,bj) |
| 309 |
|
|
caja ENDDO |
| 310 |
|
|
caja ENDDO |
| 311 |
|
|
caja ENDDO |
| 312 |
|
|
caja ENDDO |
| 313 |
|
|
caja ENDDO |
| 314 |
|
|
caja |
| 315 |
|
|
|
| 316 |
jmc |
1.6 |
_GLOBAL_SUM_R8(eta_qrN, myThid) |
| 317 |
adcroft |
1.1 |
CcnhDebugStarts |
| 318 |
heimbach |
1.8 |
C WRITE(*,*) ' CG3D: Iteration ',it3d-1,' eta_qrN = ',eta_qrN |
| 319 |
adcroft |
1.1 |
CcnhDebugEnds |
| 320 |
jmc |
1.6 |
cgBeta = eta_qrN/eta_qrNM1 |
| 321 |
adcroft |
1.1 |
CcnhDebugStarts |
| 322 |
heimbach |
1.8 |
C WRITE(*,*) ' CG3D: Iteration ',it3d-1,' beta = ',cgBeta |
| 323 |
adcroft |
1.1 |
CcnhDebugEnds |
| 324 |
jmc |
1.6 |
eta_qrNM1 = eta_qrN |
| 325 |
adcroft |
1.1 |
|
| 326 |
|
|
DO bj=myByLo(myThid),myByHi(myThid) |
| 327 |
|
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
| 328 |
|
|
DO K=1,Nr |
| 329 |
|
|
DO J=1-1,sNy+1 |
| 330 |
|
|
DO I=1-1,sNx+1 |
| 331 |
|
|
cg3d_s(I,J,K,bi,bj) = cg3d_q(I,J,K,bi,bj) |
| 332 |
|
|
& + cgBeta*cg3d_s(I,J,K,bi,bj) |
| 333 |
|
|
ENDDO |
| 334 |
|
|
ENDDO |
| 335 |
|
|
ENDDO |
| 336 |
|
|
ENDDO |
| 337 |
|
|
ENDDO |
| 338 |
|
|
|
| 339 |
|
|
C== Evaluate laplace operator on conjugate gradient vector |
| 340 |
|
|
C== q = A.s |
| 341 |
|
|
alpha = 0. _d 0 |
| 342 |
jmc |
1.7 |
topLevTerm = freeSurfFac*cg3dNorm* |
| 343 |
|
|
& (horiVertRatio/gravity)/deltaTMom/deltaTMom |
| 344 |
adcroft |
1.1 |
DO bj=myByLo(myThid),myByHi(myThid) |
| 345 |
|
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
| 346 |
|
|
IF ( Nr .GT. 1 ) THEN |
| 347 |
|
|
DO K=1,1 |
| 348 |
|
|
DO J=1,sNy |
| 349 |
|
|
DO I=1,sNx |
| 350 |
|
|
cg3d_q(I,J,K,bi,bj) = |
| 351 |
|
|
& aW3d(I ,J ,K ,bi,bj)*cg3d_s(I-1,J ,K ,bi,bj) |
| 352 |
|
|
& +aW3d(I+1,J ,K ,bi,bj)*cg3d_s(I+1,J ,K ,bi,bj) |
| 353 |
|
|
& +aS3d(I ,J ,K ,bi,bj)*cg3d_s(I ,J-1,K ,bi,bj) |
| 354 |
|
|
& +aS3d(I ,J+1,K ,bi,bj)*cg3d_s(I ,J+1,K ,bi,bj) |
| 355 |
|
|
& +aV3d(I ,J ,K+1,bi,bj)*cg3d_s(I ,J ,K+1,bi,bj) |
| 356 |
|
|
& -aW3d(I ,J ,K ,bi,bj)*cg3d_s(I ,J ,K ,bi,bj) |
| 357 |
|
|
& -aW3d(I+1,J ,K ,bi,bj)*cg3d_s(I ,J ,K ,bi,bj) |
| 358 |
|
|
& -aS3d(I ,J ,K ,bi,bj)*cg3d_s(I ,J ,K ,bi,bj) |
| 359 |
|
|
& -aS3d(I ,J+1,K ,bi,bj)*cg3d_s(I ,J ,K ,bi,bj) |
| 360 |
|
|
& -aV3d(I ,J ,K+1,bi,bj)*cg3d_s(I ,J ,K ,bi,bj) |
| 361 |
jmc |
1.7 |
& -topLevTerm*_rA(I,J,bi,bj)*cg3d_s(I,J,K,bi,bj) |
| 362 |
adcroft |
1.1 |
alpha = alpha+cg3d_s(I,J,K,bi,bj)*cg3d_q(I,J,K,bi,bj) |
| 363 |
|
|
ENDDO |
| 364 |
|
|
ENDDO |
| 365 |
|
|
ENDDO |
| 366 |
|
|
ELSE |
| 367 |
|
|
DO K=1,1 |
| 368 |
|
|
DO J=1,sNy |
| 369 |
|
|
DO I=1,sNx |
| 370 |
|
|
cg3d_q(I,J,K,bi,bj) = |
| 371 |
|
|
& aW3d(I ,J ,K ,bi,bj)*cg3d_s(I-1,J ,K ,bi,bj) |
| 372 |
|
|
& +aW3d(I+1,J ,K ,bi,bj)*cg3d_s(I+1,J ,K ,bi,bj) |
| 373 |
|
|
& +aS3d(I ,J ,K ,bi,bj)*cg3d_s(I ,J-1,K ,bi,bj) |
| 374 |
|
|
& +aS3d(I ,J+1,K ,bi,bj)*cg3d_s(I ,J+1,K ,bi,bj) |
| 375 |
|
|
& -aW3d(I ,J ,K ,bi,bj)*cg3d_s(I ,J ,K ,bi,bj) |
| 376 |
|
|
& -aW3d(I+1,J ,K ,bi,bj)*cg3d_s(I ,J ,K ,bi,bj) |
| 377 |
|
|
& -aS3d(I ,J ,K ,bi,bj)*cg3d_s(I ,J ,K ,bi,bj) |
| 378 |
|
|
& -aS3d(I ,J+1,K ,bi,bj)*cg3d_s(I ,J ,K ,bi,bj) |
| 379 |
jmc |
1.7 |
& -topLevTerm*_rA(I,J,bi,bj)*cg3d_s(I,J,K,bi,bj) |
| 380 |
adcroft |
1.1 |
alpha = alpha+cg3d_s(I,J,K,bi,bj)*cg3d_q(I,J,K,bi,bj) |
| 381 |
|
|
ENDDO |
| 382 |
|
|
ENDDO |
| 383 |
|
|
ENDDO |
| 384 |
|
|
ENDIF |
| 385 |
|
|
DO K=2,Nr-1 |
| 386 |
|
|
DO J=1,sNy |
| 387 |
|
|
DO I=1,sNx |
| 388 |
|
|
cg3d_q(I,J,K,bi,bj) = |
| 389 |
|
|
& aW3d(I ,J ,K ,bi,bj)*cg3d_s(I-1,J ,K ,bi,bj) |
| 390 |
|
|
& +aW3d(I+1,J ,K ,bi,bj)*cg3d_s(I+1,J ,K ,bi,bj) |
| 391 |
|
|
& +aS3d(I ,J ,K ,bi,bj)*cg3d_s(I ,J-1,K ,bi,bj) |
| 392 |
|
|
& +aS3d(I ,J+1,K ,bi,bj)*cg3d_s(I ,J+1,K ,bi,bj) |
| 393 |
|
|
& +aV3d(I ,J ,K ,bi,bj)*cg3d_s(I ,J ,K-1,bi,bj) |
| 394 |
|
|
& +aV3d(I ,J ,K+1,bi,bj)*cg3d_s(I ,J ,K+1,bi,bj) |
| 395 |
|
|
& -aW3d(I ,J ,K ,bi,bj)*cg3d_s(I ,J ,K ,bi,bj) |
| 396 |
|
|
& -aW3d(I+1,J ,K ,bi,bj)*cg3d_s(I ,J ,K ,bi,bj) |
| 397 |
|
|
& -aS3d(I ,J ,K ,bi,bj)*cg3d_s(I ,J ,K ,bi,bj) |
| 398 |
|
|
& -aS3d(I ,J+1,K ,bi,bj)*cg3d_s(I ,J ,K ,bi,bj) |
| 399 |
|
|
& -aV3d(I ,J ,K ,bi,bj)*cg3d_s(I ,J ,K ,bi,bj) |
| 400 |
|
|
& -aV3d(I ,J ,K+1,bi,bj)*cg3d_s(I ,J ,K ,bi,bj) |
| 401 |
|
|
alpha = alpha+cg3d_s(I,J,K,bi,bj)*cg3d_q(I,J,K,bi,bj) |
| 402 |
|
|
ENDDO |
| 403 |
|
|
ENDDO |
| 404 |
|
|
ENDDO |
| 405 |
|
|
IF ( Nr .GT. 1 ) THEN |
| 406 |
|
|
DO K=Nr,Nr |
| 407 |
|
|
DO J=1,sNy |
| 408 |
|
|
DO I=1,sNx |
| 409 |
|
|
cg3d_q(I,J,K,bi,bj) = |
| 410 |
|
|
& aW3d(I ,J ,K ,bi,bj)*cg3d_s(I-1,J ,K ,bi,bj) |
| 411 |
|
|
& +aW3d(I+1,J ,K ,bi,bj)*cg3d_s(I+1,J ,K ,bi,bj) |
| 412 |
|
|
& +aS3d(I ,J ,K ,bi,bj)*cg3d_s(I ,J-1,K ,bi,bj) |
| 413 |
|
|
& +aS3d(I ,J+1,K ,bi,bj)*cg3d_s(I ,J+1,K ,bi,bj) |
| 414 |
|
|
& +aV3d(I ,J ,K ,bi,bj)*cg3d_s(I ,J ,K-1,bi,bj) |
| 415 |
|
|
& -aW3d(I ,J ,K ,bi,bj)*cg3d_s(I ,J ,K ,bi,bj) |
| 416 |
|
|
& -aW3d(I+1,J ,K ,bi,bj)*cg3d_s(I ,J ,K ,bi,bj) |
| 417 |
|
|
& -aS3d(I ,J ,K ,bi,bj)*cg3d_s(I ,J ,K ,bi,bj) |
| 418 |
|
|
& -aS3d(I ,J+1,K ,bi,bj)*cg3d_s(I ,J ,K ,bi,bj) |
| 419 |
|
|
& -aV3d(I ,J ,K ,bi,bj)*cg3d_s(I ,J ,K ,bi,bj) |
| 420 |
|
|
alpha = alpha+cg3d_s(I,J,K,bi,bj)*cg3d_q(I,J,K,bi,bj) |
| 421 |
|
|
ENDDO |
| 422 |
|
|
ENDDO |
| 423 |
|
|
ENDDO |
| 424 |
|
|
ENDIF |
| 425 |
|
|
ENDDO |
| 426 |
|
|
ENDDO |
| 427 |
adcroft |
1.2 |
_GLOBAL_SUM_R8(alpha,myThid) |
| 428 |
adcroft |
1.1 |
CcnhDebugStarts |
| 429 |
heimbach |
1.8 |
C WRITE(*,*) ' CG3D: Iteration ',it3d-1,' SUM(s*q)= ',alpha |
| 430 |
adcroft |
1.1 |
CcnhDebugEnds |
| 431 |
jmc |
1.6 |
alpha = eta_qrN/alpha |
| 432 |
adcroft |
1.1 |
CcnhDebugStarts |
| 433 |
heimbach |
1.8 |
C WRITE(*,*) ' CG3D: Iteration ',it3d-1,' alpha= ',alpha |
| 434 |
adcroft |
1.1 |
CcnhDebugEnds |
| 435 |
|
|
|
| 436 |
|
|
C== Update solution and residual vectors |
| 437 |
|
|
C Now compute "interior" points. |
| 438 |
|
|
err = 0. _d 0 |
| 439 |
|
|
DO bj=myByLo(myThid),myByHi(myThid) |
| 440 |
|
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
| 441 |
|
|
DO K=1,Nr |
| 442 |
|
|
DO J=1,sNy |
| 443 |
|
|
DO I=1,sNx |
| 444 |
|
|
cg3d_x(I,J,K,bi,bj)=cg3d_x(I,J,K,bi,bj) |
| 445 |
|
|
& +alpha*cg3d_s(I,J,K,bi,bj) |
| 446 |
|
|
cg3d_r(I,J,K,bi,bj)=cg3d_r(I,J,K,bi,bj) |
| 447 |
|
|
& -alpha*cg3d_q(I,J,K,bi,bj) |
| 448 |
|
|
err = err+cg3d_r(I,J,K,bi,bj)*cg3d_r(I,J,K,bi,bj) |
| 449 |
|
|
ENDDO |
| 450 |
|
|
ENDDO |
| 451 |
|
|
ENDDO |
| 452 |
|
|
ENDDO |
| 453 |
|
|
ENDDO |
| 454 |
|
|
|
| 455 |
adcroft |
1.2 |
_GLOBAL_SUM_R8( err , myThid ) |
| 456 |
adcroft |
1.1 |
err = SQRT(err) |
| 457 |
|
|
actualIts = it3d |
| 458 |
|
|
actualResidual = err |
| 459 |
|
|
IF ( actualResidual .LT. cg3dTargetResidual ) GOTO 11 |
| 460 |
|
|
C _EXCH_XYZ_R8(cg3d_r, myThid ) |
| 461 |
|
|
OLw = 1 |
| 462 |
|
|
OLe = 1 |
| 463 |
|
|
OLn = 1 |
| 464 |
|
|
OLs = 1 |
| 465 |
|
|
exchWidthX = 1 |
| 466 |
|
|
exchWidthY = 1 |
| 467 |
|
|
myNz = Nr |
| 468 |
|
|
CALL EXCH_RL( cg3d_r, |
| 469 |
adcroft |
1.10 |
I OLw, OLe, OLs, OLn, myNz, |
| 470 |
adcroft |
1.1 |
I exchWidthX, exchWidthY, |
| 471 |
|
|
I FORWARD_SIMULATION, EXCH_IGNORE_CORNERS, myThid ) |
| 472 |
|
|
|
| 473 |
|
|
10 CONTINUE |
| 474 |
|
|
11 CONTINUE |
| 475 |
|
|
|
| 476 |
|
|
C-- Un-normalise the answer |
| 477 |
|
|
DO bj=myByLo(myThid),myByHi(myThid) |
| 478 |
|
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
| 479 |
|
|
DO K=1,Nr |
| 480 |
|
|
DO J=1,sNy |
| 481 |
|
|
DO I=1,sNx |
| 482 |
|
|
cg3d_x(I,J,K,bi,bj) = cg3d_x(I,J,K,bi,bj)/rhsNorm |
| 483 |
|
|
ENDDO |
| 484 |
|
|
ENDDO |
| 485 |
|
|
ENDDO |
| 486 |
|
|
ENDDO |
| 487 |
|
|
ENDDO |
| 488 |
|
|
|
| 489 |
adcroft |
1.3 |
Cadj _EXCH_XYZ_R8(cg3d_x, myThid ) |
| 490 |
adcroft |
1.11 |
c _BEGIN_MASTER( myThid ) |
| 491 |
|
|
c WRITE(*,'(A,I6,1PE30.14)') ' CG3D iters, err = ', |
| 492 |
|
|
c & actualIts, actualResidual |
| 493 |
|
|
c _END_MASTER( ) |
| 494 |
|
|
lastResidual=actualResidual |
| 495 |
|
|
numIters=actualIts |
| 496 |
adcroft |
1.1 |
|
| 497 |
|
|
#endif /* ALLOW_NONHYDROSTATIC */ |
| 498 |
|
|
|
| 499 |
|
|
RETURN |
| 500 |
|
|
END |