C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/model/src/cg2d_nsa.F,v 1.3 2009/07/11 21:45:44 jmc Exp $ C $Name: $ #include "CPP_OPTIONS.h" #ifdef ALLOW_USE_MPI C HACK to avoid global_max # define ALLOW_CONST_RHSMAX #endif CML THIS DOES NOT WORK +++++ #undef ALLOW_LOOP_DIRECTIVE CBOP C !ROUTINE: CG2D_NSA C !INTERFACE: SUBROUTINE CG2D_NSA( I cg2d_b, U cg2d_x, O firstResidual, O lastResidual, U numIters, I myThid ) C !DESCRIPTION: \bv C *==========================================================* C | SUBROUTINE CG2D_NSA C | o Two-dimensional grid problem conjugate-gradient C | inverter (with preconditioner). C | o This version is used only in the case when the matrix C | operator is not "self-adjoint" (NSA). Any remaining C | residuals will immediately reported to the department C | of homeland security. C *==========================================================* C | Con. grad is an iterative procedure for solving Ax = b. C | It requires the A be symmetric. C | This implementation assumes A is a five-diagonal C | matrix of the form that arises in the discrete C | representation of the del^2 operator in a C | two-dimensional space. C | Notes: C | ====== C | This implementation can support shared-memory C | multi-threaded execution. In order to do this COMMON C | blocks are used for many of the arrays - even ones that C | are only used for intermedaite results. This design is C | OK if you want to all the threads to collaborate on C | solving the same problem. On the other hand if you want C | the threads to solve several different problems C | concurrently this implementation will not work. C *==========================================================* C \ev C !USES: IMPLICIT NONE C === Global data === #include "SIZE.h" #include "EEPARAMS.h" #include "PARAMS.h" #include "CG2D.h" c#include "GRID.h" c#include "SURFACE.h" #ifdef ALLOW_AUTODIFF_TAMC # include "tamc.h" # include "tamc_keys.h" #endif C !INPUT/OUTPUT PARAMETERS: C === Routine arguments === C cg2d_b :: The source term or "right hand side" C cg2d_x :: The solution C firstResidual :: the initial residual before any iterations C lastResidual :: the actual residual reached C numIters :: Entry: the maximum number of iterations allowed C Exit: the actual number of iterations used C myThid :: Thread on which I am working. _RL cg2d_b(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) _RL cg2d_x(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) _RL firstResidual _RL lastResidual INTEGER numIters INTEGER myThid #ifdef ALLOW_CG2D_NSA C !LOCAL VARIABLES: C === Local variables ==== C actualIts :: Number of iterations taken C actualResidual :: residual C bi, bj :: Block index in X and Y. C eta_qrN :: Used in computing search directions C eta_qrNM1 suffix N and NM1 denote current and C cgBeta previous iterations respectively. C recip_eta_qrNM1 :: reciprocal of eta_qrNM1 C alpha C alpha_aux :: to avoid the statement: alpha = 1./alpha (for TAMC/TAF) C sumRHS :: Sum of right-hand-side. Sometimes this is a C useful debuggin/trouble shooting diagnostic. C For neumann problems sumRHS needs to be ~0. C or they converge at a non-zero residual. C err :: Measure of residual of Ax - b, usually the norm. C err_sq :: square of err (for TAMC/TAF) C I, J, it2d :: Loop counters ( it2d counts CG iterations ) INTEGER actualIts _RL actualResidual INTEGER bi, bj INTEGER I, J, it2d _RL err _RL err_sq _RL eta_qrN _RL eta_qrNM1 _RL recip_eta_qrNM1 _RL cgBeta _RL alpha _RL alpha_aux _RL sumRHS _RL rhsMax, rhsMaxGlobal _RL rhsNorm _RL cg2dTolerance_sq CEOP #ifdef ALLOW_AUTODIFF_TAMC IF ( numIters .GT. numItersMax ) THEN WRITE(standardMessageUnit,'(A,I10)') & 'CG2D_NSA: numIters > numItersMax = ', numItersMax STOP 'NON-NORMAL in CG2D_NSA' ENDIF #endif /* ALLOW_AUTODIFF_TAMC */ CcnhDebugStarts C CHARACTER*(MAX_LEN_FNAM) suff CcnhDebugEnds #ifdef ALLOW_AUTODIFF_TAMC act1 = myThid - 1 max1 = nTx*nTy act2 = ikey_dynamics - 1 ikey = (act1 + 1) + act2*max1 #endif /* ALLOW_AUTODIFF_TAMC */ C-- Initialise inverter eta_qrNM1 = 1. _d 0 recip_eta_qrNM1 = 1./eta_qrNM1 CcnhDebugStarts C _EXCH_XY_RL( cg2d_b, myThid ) C CALL PLOT_FIELD_XYRL( cg2d_b, 'CG2D.0 CG2D_B' , 1, myThid ) C suff = 'unnormalised' C CALL WRITE_FLD_XY_RL ( 'cg2d_b.',suff, cg2d_b, 1, myThid) C STOP CcnhDebugEnds C-- Normalise RHS #ifdef ALLOW_AUTODIFF_TAMC CADJ STORE cg2d_b = comlev1_cg2d, key = ikey, byte = isbyte #endif /* ALLOW_AUTODIFF_TAMC */ rhsMax = 0. _d 0 DO bj=myByLo(myThid),myByHi(myThid) DO bi=myBxLo(myThid),myBxHi(myThid) DO J=1,sNy DO I=1,sNx cg2d_b(I,J,bi,bj) = cg2d_b(I,J,bi,bj)*cg2dNorm rhsMax = MAX(ABS(cg2d_b(I,J,bi,bj)),rhsMax) ENDDO ENDDO ENDDO ENDDO IF (cg2dNormaliseRHS) THEN C - Normalise RHS : #ifdef LETS_MAKE_JAM C _GLOBAL_MAX_RL( rhsMax, myThid ) rhsMaxGlobal=1. #else #ifdef ALLOW_CONST_RHSMAX rhsMaxGlobal=1. #else rhsMaxGlobal=rhsMax _GLOBAL_MAX_RL( rhsMaxGlobal, myThid ) #endif /* ALLOW_CONST_RHSMAX */ #endif #ifdef ALLOW_AUTODIFF_TAMC CADJ STORE rhsNorm = comlev1_cg2d, key = ikey, byte = isbyte #endif /* ALLOW_AUTODIFF_TAMC */ IF ( rhsMaxGlobal .NE. 0. ) THEN rhsNorm = 1. _d 0 / rhsMaxGlobal ELSE rhsNorm = 1. _d 0 ENDIF #ifdef ALLOW_AUTODIFF_TAMC CADJ STORE cg2d_b = comlev1_cg2d, key = ikey, byte = isbyte CADJ STORE cg2d_x = comlev1_cg2d, key = ikey, byte = isbyte #endif /* ALLOW_AUTODIFF_TAMC */ DO bj=myByLo(myThid),myByHi(myThid) DO bi=myBxLo(myThid),myBxHi(myThid) DO J=1,sNy DO I=1,sNx cg2d_b(I,J,bi,bj) = cg2d_b(I,J,bi,bj)*rhsNorm cg2d_x(I,J,bi,bj) = cg2d_x(I,J,bi,bj)*rhsNorm ENDDO ENDDO ENDDO ENDDO C- end Normalise RHS ENDIF C-- Update overlaps c CALL EXCH_XY_RL( cg2d_b, myThid ) CALL EXCH_XY_RL( cg2d_x, myThid ) CcnhDebugStarts C CALL PLOT_FIELD_XYRL( cg2d_b, 'CG2D.1 CG2D_B' , 1, myThid ) C suff = 'normalised' C CALL WRITE_FLD_XY_RL ( 'cg2d_b.',suff, cg2d_b, 1, myThid) CcnhDebugEnds C-- Initial residual calculation err = 0. _d 0 err_sq = 0. _d 0 sumRHS = 0. _d 0 #ifdef ALLOW_AUTODIFF_TAMC CADJ STORE cg2d_b = comlev1_cg2d, key = ikey, byte = isbyte CADJ STORE cg2d_x = comlev1_cg2d, key = ikey, byte = isbyte #endif /* ALLOW_AUTODIFF_TAMC */ DO bj=myByLo(myThid),myByHi(myThid) DO bi=myBxLo(myThid),myBxHi(myThid) DO J=1-1,sNy+1 DO I=1-1,sNx+1 cg2d_s(I,J,bi,bj) = 0. ENDDO ENDDO DO J=1,sNy DO I=1,sNx cg2d_r(I,J,bi,bj) = cg2d_b(I,J,bi,bj) - & (aW2d(I ,J ,bi,bj)*cg2d_x(I-1,J ,bi,bj) & +aW2d(I+1,J ,bi,bj)*cg2d_x(I+1,J ,bi,bj) & +aS2d(I ,J ,bi,bj)*cg2d_x(I ,J-1,bi,bj) & +aS2d(I ,J+1,bi,bj)*cg2d_x(I ,J+1,bi,bj) & +aC2d(I ,J ,bi,bj)*cg2d_x(I ,J ,bi,bj) & ) c & -aW2d(I ,J ,bi,bj)*cg2d_x(I ,J ,bi,bj) c & -aW2d(I+1,J ,bi,bj)*cg2d_x(I ,J ,bi,bj) c & -aS2d(I ,J ,bi,bj)*cg2d_x(I ,J ,bi,bj) c & -aS2d(I ,J+1,bi,bj)*cg2d_x(I ,J ,bi,bj) c & -freeSurfFac*_rA(i,j,bi,bj)*recip_Bo(i,j,bi,bj)* c & cg2d_x(I ,J ,bi,bj)/deltaTMom/deltaTfreesurf*cg2dNorm cML & cg2d_x(I ,J ,bi,bj)/deltaTMom/deltaTMom*cg2dNorm c & ) err_sq = err_sq + & cg2d_r(I,J,bi,bj)*cg2d_r(I,J,bi,bj) sumRHS = sumRHS + & cg2d_b(I,J,bi,bj) ENDDO ENDDO ENDDO ENDDO c CALL EXCH_S3D_RL( cg2d_r, 1, myThid ) CALL EXCH_XY_RL ( cg2d_r, myThid ) _GLOBAL_SUM_RL( sumRHS, myThid ) _GLOBAL_SUM_RL( err_sq, myThid ) IF ( err_sq .NE. 0. ) THEN err = SQRT(err_sq) ELSE err = 0. ENDIF actualIts = 0 actualResidual = err IF ( debugLevel .GE. debLevZero ) THEN _BEGIN_MASTER( myThid ) WRITE(standardmessageunit,'(A,1P2E22.14)') & ' cg2d: Sum(rhs),rhsMax = ', sumRHS,rhsMaxGlobal _END_MASTER( myThid ) ENDIF C _BARRIER c _BEGIN_MASTER( myThid ) c WRITE(*,'(A,I6,1PE30.14)') ' CG2D_NSA iters, err = ', c & actualIts, actualResidual c _END_MASTER( myThid ) firstResidual=actualResidual cg2dTolerance_sq = cg2dTolerance**2 C >>>>>>>>>>>>>>> BEGIN SOLVER <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< Cml begin main solver loop #if ((defined ALLOW_AUTODIFF_TAMC) && (defined ALLOW_LOOP_DIRECTIVE)) CADJ LOOP = iteration, cg2d_x = comlev_cg2d_iter #endif /* ALLOW_AUTODIFF_TAMC and ALLOW_LOOP_DIRECTIVE */ DO it2d=1, numIters #ifdef ALLOW_LOOP_DIRECTIVE CML it2d = 0 CML DO WHILE ( err_sq .GT. cg2dTolerance_sq .and. it2d .LT. numIters ) CML it2d = it2d+1 #endif /* ALLOW_LOOP_DIRECTIVE */ #ifdef ALLOW_AUTODIFF_TAMC icg2dkey = (ikey-1)*numItersMax + it2d CMLCADJ STORE err = comlev1_cg2d_iter, key = icg2dkey, byte = isbyte CADJ STORE err_sq = comlev1_cg2d_iter, key = icg2dkey, byte = isbyte #endif /* ALLOW_AUTODIFF_TAMC */ CML IF ( err .LT. cg2dTolerance ) THEN IF ( err_sq .LT. cg2dTolerance_sq ) THEN Cml DO NOTHING ELSE CcnhDebugStarts C WRITE(*,*) ' CG2D_NSA: Iteration ',it2d-1,' residual = ', C & actualResidual CcnhDebugEnds C-- Solve preconditioning equation and update C-- conjugate direction vector "s". eta_qrN = 0. _d 0 #ifdef ALLOW_AUTODIFF_TAMC CADJ STORE cg2d_r = comlev1_cg2d_iter, key = icg2dkey, byte = isbyte CADJ STORE cg2d_s = comlev1_cg2d_iter, key = icg2dkey, byte = isbyte #endif /* ALLOW_AUTODIFF_TAMC */ DO bj=myByLo(myThid),myByHi(myThid) DO bi=myBxLo(myThid),myBxHi(myThid) DO J=1,sNy DO I=1,sNx cg2d_z(I,J,bi,bj) = & pC(I ,J ,bi,bj)*cg2d_r(I ,J ,bi,bj) & +pW(I ,J ,bi,bj)*cg2d_r(I-1,J ,bi,bj) & +pW(I+1,J ,bi,bj)*cg2d_r(I+1,J ,bi,bj) & +pS(I ,J ,bi,bj)*cg2d_r(I ,J-1,bi,bj) & +pS(I ,J+1,bi,bj)*cg2d_r(I ,J+1,bi,bj) CcnhDebugStarts C cg2d_z(I,J,bi,bj) = cg2d_r(I ,J ,bi,bj) CcnhDebugEnds eta_qrN = eta_qrN & +cg2d_z(I,J,bi,bj)*cg2d_r(I,J,bi,bj) ENDDO ENDDO ENDDO ENDDO _GLOBAL_SUM_RL(eta_qrN, myThid) CcnhDebugStarts C WRITE(*,*) ' CG2D_NSA: Iteration ',it2d-1,' eta_qrN = ',eta_qrN CcnhDebugEnds #ifdef ALLOW_AUTODIFF_TAMC CMLCADJ STORE eta_qrNM1 = comlev1_cg2d_iter, key = icg2dkey, byte = isbyte CADJ STORE recip_eta_qrNM1 = comlev1_cg2d_iter, key = icg2dkey, byte = isbyte #endif /* ALLOW_AUTODIFF_TAMC */ CML cgBeta = eta_qrN/eta_qrNM1 cgBeta = eta_qrN*recip_eta_qrNM1 CcnhDebugStarts C WRITE(*,*) ' CG2D_NSA: Iteration ',it2d-1,' beta = ',cgBeta CcnhDebugEnds Cml store normalisation factor for the next interation Cml (in case there is one). CML store the inverse of the normalization factor for higher precision CML eta_qrNM1 = eta_qrN recip_eta_qrNM1 = 1./eta_qrN DO bj=myByLo(myThid),myByHi(myThid) DO bi=myBxLo(myThid),myBxHi(myThid) DO J=1,sNy DO I=1,sNx cg2d_s(I,J,bi,bj) = cg2d_z(I,J,bi,bj) & + cgBeta*cg2d_s(I,J,bi,bj) ENDDO ENDDO ENDDO ENDDO C-- Do exchanges that require messages i.e. between C-- processes. c CALL EXCH_S3D_RL( cg2d_s, 1, myThid ) CALL EXCH_XY_RL ( cg2d_s, myThid ) C== Evaluate laplace operator on conjugate gradient vector C== q = A.s alpha = 0. _d 0 alpha_aux = 0. _d 0 #ifdef ALLOW_AUTODIFF_TAMC #ifndef ALLOW_LOOP_DIRECTIVE CADJ STORE cg2d_s = comlev1_cg2d_iter, key = icg2dkey, byte = isbyte #endif /* not ALLOW_LOOP_DIRECTIVE */ #endif /* ALLOW_AUTODIFF_TAMC */ DO bj=myByLo(myThid),myByHi(myThid) DO bi=myBxLo(myThid),myBxHi(myThid) DO J=1,sNy DO I=1,sNx cg2d_q(I,J,bi,bj) = & aW2d(I ,J ,bi,bj)*cg2d_s(I-1,J ,bi,bj) & +aW2d(I+1,J ,bi,bj)*cg2d_s(I+1,J ,bi,bj) & +aS2d(I ,J ,bi,bj)*cg2d_s(I ,J-1,bi,bj) & +aS2d(I ,J+1,bi,bj)*cg2d_s(I ,J+1,bi,bj) & +aC2d(I ,J ,bi,bj)*cg2d_s(I ,J ,bi,bj) c & -aW2d(I ,J ,bi,bj)*cg2d_s(I ,J ,bi,bj) c & -aW2d(I+1,J ,bi,bj)*cg2d_s(I ,J ,bi,bj) c & -aS2d(I ,J ,bi,bj)*cg2d_s(I ,J ,bi,bj) c & -aS2d(I ,J+1,bi,bj)*cg2d_s(I ,J ,bi,bj) c & -freeSurfFac*_rA(i,j,bi,bj)*recip_Bo(i,j,bi,bj)* c & cg2d_s(I ,J ,bi,bj)/deltaTMom/deltaTfreesurf*cg2dNorm cML & cg2d_s(I ,J ,bi,bj)/deltaTMom/deltaTMom*cg2dNorm alpha_aux = alpha_aux+cg2d_s(I,J,bi,bj)*cg2d_q(I,J,bi,bj) ENDDO ENDDO ENDDO ENDDO _GLOBAL_SUM_RL(alpha_aux,myThid) CcnhDebugStarts C WRITE(*,*) ' CG2D_NSA: Iteration ',it2d-1,' SUM(s*q)= ',alpha_aux CcnhDebugEnds alpha = eta_qrN/alpha_aux CcnhDebugStarts C WRITE(*,*) ' CG2D_NSA: Iteration ',it2d-1,' alpha= ',alpha CcnhDebugEnds C== Update solution and residual vectors C Now compute "interior" points. err = 0. _d 0 err_sq = 0. _d 0 #ifdef ALLOW_AUTODIFF_TAMC #ifndef ALLOW_LOOP_DIRECTIVE CADJ STORE cg2d_r = comlev1_cg2d_iter, key = icg2dkey, byte = isbyte #endif /* ALLOW_LOOP_DIRECTIVE */ #endif /* ALLOW_AUTODIFF_TAMC */ DO bj=myByLo(myThid),myByHi(myThid) DO bi=myBxLo(myThid),myBxHi(myThid) DO J=1,sNy DO I=1,sNx cg2d_x(I,J,bi,bj)=cg2d_x(I,J,bi,bj)+alpha*cg2d_s(I,J,bi,bj) cg2d_r(I,J,bi,bj)=cg2d_r(I,J,bi,bj)-alpha*cg2d_q(I,J,bi,bj) err_sq = err_sq+cg2d_r(I,J,bi,bj)*cg2d_r(I,J,bi,bj) ENDDO ENDDO ENDDO ENDDO _GLOBAL_SUM_RL( err_sq , myThid ) if ( err_sq .ne. 0. ) then err = SQRT(err_sq) else err = 0. end if actualIts = it2d actualResidual = err c CALL EXCH_S3D_RL( cg2d_r, 1, myThid ) CALL EXCH_XY_RL ( cg2d_r, myThid ) Cml end of IF ( err .LT. cg2dTolerance ) THEN; ELSE ENDIF Cml end main solver loop ENDDO IF (cg2dNormaliseRHS) THEN #ifdef ALLOW_AUTODIFF_TAMC CADJ STORE rhsNorm = comlev1_cg2d, key = ikey, byte = isbyte CADJ STORE cg2d_x = comlev1_cg2d, key = ikey, byte = isbyte #endif /* ALLOW_AUTODIFF_TAMC */ C-- Un-normalise the answer DO bj=myByLo(myThid),myByHi(myThid) DO bi=myBxLo(myThid),myBxHi(myThid) DO J=1,sNy DO I=1,sNx cg2d_x(I ,J ,bi,bj) = cg2d_x(I ,J ,bi,bj)/rhsNorm ENDDO ENDDO ENDDO ENDDO ENDIF C The following exchange was moved up to solve_for_pressure C for compatibility with TAMC. C _EXCH_XY_RL(cg2d_x, myThid ) c _BEGIN_MASTER( myThid ) c WRITE(*,'(A,I6,1PE30.14)') ' CG2D_NSA iters, err = ', c & actualIts, actualResidual c _END_MASTER( ) C-- Return parameters to caller lastResidual=actualResidual numIters=actualIts #endif /* ALLOW_CG2D_NSA */ RETURN END # if ((defined ALLOW_AUTODIFF_TAMC) && (defined ALLOW_LOOP_DIRECTIVE)) C C These routines are routinely part of the TAMC/TAF library that is C not included in the MITcgm, therefore they are mimicked here. C subroutine adstore(chardum,int1,idow,int2,int3,icount) implicit none #include "SIZE.h" #include "tamc.h" character*(*) chardum integer int1, int2, int3, idow, icount C the length of this vector must be greater or equal C twice the number of timesteps integer nidow #ifdef ALLOW_TAMC_CHECKPOINTING parameter ( nidow = 2*nchklev_1*nchklev_2*nchklev_3 ) #else parameter ( nidow = 1000000 ) #endif /* ALLOW_TAMC_CHECKPOINTING */ integer istoreidow(nidow) common /istorecommon/ istoreidow print *, 'adstore: ', chardum, int1, idow, int2, int3, icount if ( icount .gt. nidow ) then print *, 'adstore: error: icount > nidow = ', nidow stop 'ABNORMAL STOP in adstore' endif istoreidow(icount) = idow return end subroutine adresto(chardum,int1,idow,int2,int3,icount) implicit none #include "SIZE.h" #include "tamc.h" character*(*) chardum integer int1, int2, int3, idow, icount C the length of this vector must be greater or equal C twice the number of timesteps integer nidow #ifdef ALLOW_TAMC_CHECKPOINTING parameter ( nidow = 2*nchklev_1*nchklev_2*nchklev_3 ) #else parameter ( nidow = 1000000 ) #endif /* ALLOW_TAMC_CHECKPOINTING */ integer istoreidow(nidow) common /istorecommon/ istoreidow print *, 'adresto: ', chardum, int1, idow, int2, int3, icount if ( icount .gt. nidow ) then print *, 'adstore: error: icount > nidow = ', nidow stop 'ABNORMAL STOP in adstore' endif idow = istoreidow(icount) return end # endif /* ALLOW_AUTODIFF_TAMC and ALLOW_LOOP_DIRECTIVE */