/[MITgcm]/MITgcm/model/src/calc_phi_hyd.F
ViewVC logotype

Contents of /MITgcm/model/src/calc_phi_hyd.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.24 - (show annotations) (download)
Tue Dec 10 02:55:47 2002 UTC (21 years, 5 months ago) by jmc
Branch: MAIN
CVS Tags: checkpoint47e_post, checkpoint47c_post, checkpoint48b_post, checkpoint48c_pre, checkpoint47d_pre, checkpoint47i_post, checkpoint47d_post, checkpoint47g_post, checkpoint48a_post, checkpoint47j_post, branch-exfmods-tag, checkpoint48c_post, checkpoint47f_post, checkpoint48, checkpoint47h_post
Branch point for: branch-exfmods-curt
Changes since 1.23: +46 -53 lines
 * allows a more accurate definition of Ro_Surf (selectFindRoSurf=1)
   when using P-coordinate; only implemented for atmospheric config.

1 C $Header: /u/gcmpack/MITgcm/model/src/calc_phi_hyd.F,v 1.23 2002/11/15 03:01:21 heimbach Exp $
2 C $Name: $
3
4 #include "CPP_OPTIONS.h"
5
6 CBOP
7 C !ROUTINE: CALC_PHI_HYD
8 C !INTERFACE:
9 SUBROUTINE CALC_PHI_HYD(
10 I bi, bj, iMin, iMax, jMin, jMax, K,
11 I tFld, sFld,
12 U phiHyd,
13 I myThid)
14 C !DESCRIPTION: \bv
15 C *==========================================================*
16 C | SUBROUTINE CALC_PHI_HYD |
17 C | o Integrate the hydrostatic relation to find the Hydros. |
18 C *==========================================================*
19 C | Potential (ocean: Pressure/rho ; atmos = geopotential)|
20 C | On entry: |
21 C | tFld,sFld are the current thermodynamics quantities|
22 C | (unchanged on exit) |
23 C | phiHyd(i,j,1:k-1) is the hydrostatic Potential |
24 C | at cell centers (tracer points) |
25 C | - 1:k-1 layers are valid |
26 C | - k:Nr layers are invalid |
27 C | phiHyd(i,j,k) is the hydrostatic Potential |
28 C | (ocean only_^) at cell the interface k (w point above) |
29 C | On exit: |
30 C | phiHyd(i,j,1:k) is the hydrostatic Potential |
31 C | at cell centers (tracer points) |
32 C | - 1:k layers are valid |
33 C | - k+1:Nr layers are invalid |
34 C | phiHyd(i,j,k+1) is the hydrostatic Potential (P/rho) |
35 C | (ocean only-^) at cell the interface k+1 (w point below)|
36 C | Atmosphere: |
37 C | integr_GeoPot allows to select one integration method |
38 C | (see the list below) |
39 C *==========================================================*
40 C \ev
41 C !USES:
42 IMPLICIT NONE
43 C == Global variables ==
44 #include "SIZE.h"
45 #include "GRID.h"
46 #include "EEPARAMS.h"
47 #include "PARAMS.h"
48 c #include "FFIELDS.h"
49 #ifdef ALLOW_AUTODIFF_TAMC
50 #include "tamc.h"
51 #include "tamc_keys.h"
52 #endif /* ALLOW_AUTODIFF_TAMC */
53 #include "SURFACE.h"
54 #include "DYNVARS.h"
55
56 C !INPUT/OUTPUT PARAMETERS:
57 C == Routine arguments ==
58 INTEGER bi,bj,iMin,iMax,jMin,jMax,K
59 _RL tFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
60 _RL sFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
61 _RL phiHyd(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
62 INTEGER myThid
63
64 #ifdef INCLUDE_PHIHYD_CALCULATION_CODE
65
66 C !LOCAL VARIABLES:
67 C == Local variables ==
68 INTEGER i,j, Kp1
69 _RL zero, one, half
70 _RL alphaRho(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
71 _RL dRloc,dRlocKp1,locAlpha
72 _RL ddPI, ddPIm, ddPIp, ratioRp, ratioRm
73 CEOP
74
75 zero = 0. _d 0
76 one = 1. _d 0
77 half = .5 _d 0
78
79 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
80 C Atmosphere:
81 C integr_GeoPot => select one option for the integration of the Geopotential:
82 C = 0 : Energy Conserving Form, No hFac ;
83 C = 1 : Finite Volume Form, with hFac, linear in P by Half level;
84 C =2,3: Finite Difference Form, with hFac, linear in P between 2 Tracer levels
85 C 2 : case Tracer level at the middle of InterFace_W;
86 C 3 : case InterFace_W at the middle of Tracer levels;
87 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
88
89 #ifdef ALLOW_AUTODIFF_TAMC
90 act1 = bi - myBxLo(myThid)
91 max1 = myBxHi(myThid) - myBxLo(myThid) + 1
92
93 act2 = bj - myByLo(myThid)
94 max2 = myByHi(myThid) - myByLo(myThid) + 1
95
96 act3 = myThid - 1
97 max3 = nTx*nTy
98
99 act4 = ikey_dynamics - 1
100
101 ikey = (act1 + 1) + act2*max1
102 & + act3*max1*max2
103 & + act4*max1*max2*max3
104 #endif /* ALLOW_AUTODIFF_TAMC */
105
106 IF ( buoyancyRelation .eq. 'OCEANIC' ) THEN
107 C This is the hydrostatic pressure calculation for the Ocean
108 C which uses the FIND_RHO() routine to calculate density
109 C before integrating g*rho over the current layer/interface
110
111 dRloc=drC(k)
112 IF (k.EQ.1) dRloc=drF(1)
113 IF (k.EQ.Nr) THEN
114 dRlocKp1=0.
115 ELSE
116 dRlocKp1=drC(k+1)
117 ENDIF
118
119 C-- If this is the top layer we impose the boundary condition
120 C P(z=eta) = P(atmospheric_loading)
121 IF (k.EQ.1) THEN
122 DO j=jMin,jMax
123 DO i=iMin,iMax
124 phiHyd(i,j,k) = phi0surf(i,j,bi,bj)
125 ENDDO
126 ENDDO
127 ENDIF
128
129 C Calculate density
130 #ifdef ALLOW_AUTODIFF_TAMC
131 kkey = (ikey-1)*Nr + k
132 CADJ STORE tFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
133 CADJ STORE sFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
134 #endif /* ALLOW_AUTODIFF_TAMC */
135 CALL FIND_RHO( bi, bj, iMin, iMax, jMin, jMax, k, k,
136 & tFld, sFld,
137 & alphaRho, myThid)
138
139 C Quasi-hydrostatic terms are added in as if they modify the buoyancy
140 IF (quasiHydrostatic) THEN
141 CALL QUASIHYDROSTATICTERMS(bi,bj,k,alphaRho,myThid)
142 ENDIF
143
144 C Hydrostatic pressure at cell centers
145 DO j=jMin,jMax
146 DO i=iMin,iMax
147 #ifdef ALLOW_AUTODIFF_TAMC
148 c Patrick, is this directive correct or even necessary in
149 c this new code?
150 c Yes, because of phiHyd(i,j,k+1)=phiHyd(i,j,k)+...
151 c within the k-loop.
152 CADJ GENERAL
153 #endif /* ALLOW_AUTODIFF_TAMC */
154
155 CmlC---------- This discretization is the "finite volume" form
156 CmlC which has not been used to date since it does not
157 CmlC conserve KE+PE exactly even though it is more natural
158 CmlC
159 Cml IF ( K .EQ. kLowC(i,j,bi,bj) ) THEN
160 Cml phiHydLow(i,j,bi,bj) = phiHyd(i,j,k)
161 Cml & + hFacC(i,j,k,bi,bj)
162 Cml & *drF(K)*gravity*alphaRho(i,j)*recip_rhoConst
163 Cml & + gravity*etaN(i,j,bi,bj)
164 Cml ENDIF
165 Cml IF (k.LT.Nr) phiHyd(i,j,k+1)=phiHyd(i,j,k)+
166 Cml & drF(K)*gravity*alphaRho(i,j)*recip_rhoConst
167 Cml phiHyd(i,j,k)=phiHyd(i,j,k)+
168 Cml & 0.5*drF(K)*gravity*alphaRho(i,j)*recip_rhoConst
169 CmlC-----------------------------------------------------------------------
170
171 C---------- This discretization is the "energy conserving" form
172 C which has been used since at least Adcroft et al., MWR 1997
173 C
174
175 phiHyd(i,j,k)=phiHyd(i,j,k)+
176 & 0.5*dRloc*gravity*alphaRho(i,j)*recip_rhoConst
177 IF (k.LT.Nr) phiHyd(i,j,k+1)=phiHyd(i,j,k)+
178 & 0.5*dRlocKp1*gravity*alphaRho(i,j)*recip_rhoConst
179 C-----------------------------------------------------------------------
180
181 C---------- Compute bottom pressure deviation from gravity*rho0*H
182 C This has to be done starting from phiHyd at the current
183 C tracer point and .5 of the cell's thickness has to be
184 C substracted from hFacC
185 IF ( K .EQ. kLowC(i,j,bi,bj) ) THEN
186 phiHydLow(i,j,bi,bj) = phiHyd(i,j,k)
187 & + (hFacC(i,j,k,bi,bj)-.5)*drF(K)
188 & *gravity*alphaRho(i,j)*recip_rhoConst
189 & + gravity*etaN(i,j,bi,bj)
190 ENDIF
191 C-----------------------------------------------------------------------
192
193 ENDDO
194 ENDDO
195
196 ELSEIF ( buoyancyRelation .eq. 'OCEANICP' ) THEN
197 C This is the hydrostatic pressure calculation for the Ocean
198 C which uses the FIND_RHO() routine to calculate density
199 C before integrating g*rho over the current layer/interface
200 #ifdef ALLOW_AUTODIFF_TAMC
201 CADJ GENERAL
202 #endif /* ALLOW_AUTODIFF_TAMC */
203
204 dRloc=drC(k)
205 IF (k.EQ.1) dRloc=drF(1)
206 IF (k.EQ.Nr) THEN
207 dRlocKp1=0.
208 ELSE
209 dRlocKp1=drC(k+1)
210 ENDIF
211
212 IF (k.EQ.1) THEN
213 DO j=jMin,jMax
214 DO i=iMin,iMax
215 phiHyd(i,j,k) = phi0surf(i,j,bi,bj)
216 ENDDO
217 ENDDO
218 ENDIF
219
220 C Calculate density
221 #ifdef ALLOW_AUTODIFF_TAMC
222 kkey = (ikey-1)*Nr + k
223 CADJ STORE tFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
224 CADJ STORE sFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
225 #endif /* ALLOW_AUTODIFF_TAMC */
226 CALL FIND_RHO( bi, bj, iMin, iMax, jMin, jMax, k, k,
227 & tFld, sFld,
228 & alphaRho, myThid)
229 #ifdef ALLOW_AUTODIFF_TAMC
230 CADJ STORE alphaRho (:,:) = comlev1_bibj_k, key=kkey, byte=isbyte
231 #endif /* ALLOW_AUTODIFF_TAMC */
232
233
234 C Hydrostatic pressure at cell centers
235 DO j=jMin,jMax
236 DO i=iMin,iMax
237 locAlpha=alphaRho(i,j)+rhoConst
238 IF (locAlpha.NE.0.) locAlpha=maskC(i,j,k,bi,bj)/locAlpha
239
240 CmlC---------- This discretization is the "finite volume" form
241 CmlC which has not been used to date since it does not
242 CmlC conserve KE+PE exactly even though it is more natural
243 CmlC
244 Cml IF ( K .EQ. kLowC(i,j,bi,bj) ) THEN
245 Cml phiHydLow(i,j,bi,bj) = phiHyd(i,j,k)
246 Cml & + hFacC(i,j,k,bi,bj)*drF(K)*locAlpha
247 Cml & + Bo_surf(i,j,bi,bj)*etaN(i,j,bi,bj)
248 Cml ENDIF
249 Cml IF (k.LT.Nr) phiHyd(i,j,k+1)=phiHyd(i,j,k)+
250 Cml & drF(K)*locAlpha
251 Cml phiHyd(i,j,k)=phiHyd(i,j,k)+
252 Cml & 0.5*drF(K)*locAlpha
253 CmlC-----------------------------------------------------------------------
254
255 C---------- This discretization is the "energy conserving" form
256 C which has been used since at least Adcroft et al., MWR 1997
257 C
258
259 phiHyd(i,j,k)=phiHyd(i,j,k)+
260 & 0.5*dRloc*locAlpha
261 IF (k.LT.Nr) phiHyd(i,j,k+1)=phiHyd(i,j,k)+
262 & 0.5*dRlocKp1*locAlpha
263
264 C-----------------------------------------------------------------------
265
266 C---------- Compute gravity*(sea surface elevation) first
267 C This has to be done starting from phiHyd at the current
268 C tracer point and .5 of the cell's thickness has to be
269 C substracted from hFacC
270 IF ( K .EQ. kLowC(i,j,bi,bj) ) THEN
271 phiHydLow(i,j,bi,bj) = phiHyd(i,j,k)
272 & + (hFacC(i,j,k,bi,bj)-0.5)*drF(k)*locAlpha
273 & + Bo_surf(i,j,bi,bj)*etaN(i,j,bi,bj)
274 ENDIF
275 C-----------------------------------------------------------------------
276
277 ENDDO
278 ENDDO
279
280 ELSEIF ( buoyancyRelation .eq. 'ATMOSPHERIC' ) THEN
281 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
282 C This is the hydrostatic geopotential calculation for the Atmosphere
283 C The ideal gas law is used implicitly here rather than calculating
284 C the specific volume, analogous to the oceanic case.
285
286 C Integrate d Phi / d pi
287
288 IF (integr_GeoPot.EQ.0) THEN
289 C -- Energy Conserving Form, No hFac --
290 C------------ The integration for the first level phi(k=1) is the same
291 C for both the "finite volume" and energy conserving methods.
292 Ci *NOTE* o Working with geopotential Anomaly, the geopotential boundary
293 C condition is simply Phi-prime(Ro_surf)=0.
294 C o convention ddPI > 0 (same as drF & drC)
295 C-----------------------------------------------------------------------
296 IF (K.EQ.1) THEN
297 ddPIp=atm_Cp*( ((rF(K)/atm_Po)**atm_kappa)
298 & -((rC(K)/atm_Po)**atm_kappa) )
299 DO j=jMin,jMax
300 DO i=iMin,iMax
301 phiHyd(i,j,K)= phi0surf(i,j,bi,bj)
302 & +ddPIp*maskC(i,j,K,bi,bj)
303 & *(tFld(I,J,K,bi,bj)-tRef(K))
304 ENDDO
305 ENDDO
306 ELSE
307 C-------- This discretization is the energy conserving form
308 ddPI=atm_Cp*( ((rC(K-1)/atm_Po)**atm_kappa)
309 & -((rC( K )/atm_Po)**atm_kappa) )*0.5
310 DO j=jMin,jMax
311 DO i=iMin,iMax
312 phiHyd(i,j,K)=phiHyd(i,j,K-1)
313 & +ddPI*maskC(i,j,K-1,bi,bj)
314 & *(tFld(I,J,K-1,bi,bj)-tRef(K-1))
315 & +ddPI*maskC(i,j, K ,bi,bj)
316 & *(tFld(I,J, K ,bi,bj)-tRef( K ))
317 C Old code (atmos-exact) looked like this
318 Cold phiHyd(i,j,K)=phiHyd(i,j,K-1) - ddPI*
319 Cold & (tFld(I,J,K-1,bi,bj)+tFld(I,J,K,bi,bj)-2.*tRef(K))
320 ENDDO
321 ENDDO
322 ENDIF
323 C end: Energy Conserving Form, No hFac --
324 C-----------------------------------------------------------------------
325
326 ELSEIF (integr_GeoPot.EQ.1) THEN
327 C -- Finite Volume Form, with hFac, linear in P by Half level --
328 C---------
329 C Finite Volume formulation consistent with Partial Cell, linear in p by piece
330 C Note: a true Finite Volume form should be linear between 2 Interf_W :
331 C phi_C = (phi_W_k+ phi_W_k+1)/2 ; but not accurate in Stratosphere (low p)
332 C also: if Interface_W at the middle between tracer levels, this form
333 C is close to the Energy Cons. form in the Interior, except for the
334 C non-linearity in PI(p)
335 C---------
336 IF (K.EQ.1) THEN
337 ddPIp=atm_Cp*( ((rF(K)/atm_Po)**atm_kappa)
338 & -((rC(K)/atm_Po)**atm_kappa) )
339 DO j=jMin,jMax
340 DO i=iMin,iMax
341 phiHyd(i,j,K)= phi0surf(i,j,bi,bj)
342 & +ddPIp*_hFacC(I,J, K ,bi,bj)
343 & *(tFld(I,J, K ,bi,bj)-tRef( K ))
344 ENDDO
345 ENDDO
346 ELSE
347 ddPIm=atm_Cp*( ((rC(K-1)/atm_Po)**atm_kappa)
348 & -((rF( K )/atm_Po)**atm_kappa) )
349 ddPIp=atm_Cp*( ((rF( K )/atm_Po)**atm_kappa)
350 & -((rC( K )/atm_Po)**atm_kappa) )
351 DO j=jMin,jMax
352 DO i=iMin,iMax
353 phiHyd(i,j,K) = phiHyd(i,j,K-1)
354 & +ddPIm*_hFacC(I,J,K-1,bi,bj)
355 & *(tFld(I,J,K-1,bi,bj)-tRef(K-1))
356 & +ddPIp*_hFacC(I,J, K ,bi,bj)
357 & *(tFld(I,J, K ,bi,bj)-tRef( K ))
358 ENDDO
359 ENDDO
360 ENDIF
361 C end: Finite Volume Form, with hFac, linear in P by Half level --
362 C-----------------------------------------------------------------------
363
364 ELSEIF (integr_GeoPot.EQ.2) THEN
365 C -- Finite Difference Form, with hFac, Tracer Lev. = middle --
366 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
367 C Finite Difference formulation consistent with Partial Cell,
368 C case Tracer level at the middle of InterFace_W
369 C linear between 2 Tracer levels ; conserve energy in the Interior
370 C---------
371 Kp1 = min(Nr,K+1)
372 IF (K.EQ.1) THEN
373 ddPIm=atm_Cp*( ((rF( K )/atm_Po)**atm_kappa)
374 & -((rC( K )/atm_Po)**atm_kappa) ) * 2. _d 0
375 ddPIp=atm_Cp*( ((rC( K )/atm_Po)**atm_kappa)
376 & -((rC(Kp1)/atm_Po)**atm_kappa) )
377 DO j=jMin,jMax
378 DO i=iMin,iMax
379 phiHyd(i,j,K)= phi0surf(i,j,bi,bj)
380 & +( ddPIm*max(zero, _hFacC(i,j,K,bi,bj)-half)
381 & +ddPIp*min(zero, _hFacC(i,j,K,bi,bj)-half) )
382 & *(tFld(i,j, K ,bi,bj)-tRef( K ))
383 & * maskC(i,j, K ,bi,bj)
384 ENDDO
385 ENDDO
386 ELSE
387 ddPIm=atm_Cp*( ((rC(K-1)/atm_Po)**atm_kappa)
388 & -((rC( K )/atm_Po)**atm_kappa) )
389 ddPIp=atm_Cp*( ((rC( K )/atm_Po)**atm_kappa)
390 & -((rC(Kp1)/atm_Po)**atm_kappa) )
391 DO j=jMin,jMax
392 DO i=iMin,iMax
393 phiHyd(i,j,K) = phiHyd(i,j,K-1)
394 & + ddPIm*0.5
395 & *(tFld(i,j,K-1,bi,bj)-tRef(K-1))
396 & * maskC(i,j,K-1,bi,bj)
397 & +(ddPIm*max(zero, _hFacC(i,j,K,bi,bj)-half)
398 & +ddPIp*min(zero, _hFacC(i,j,K,bi,bj)-half) )
399 & *(tFld(i,j, K ,bi,bj)-tRef( K ))
400 & * maskC(i,j, K ,bi,bj)
401 ENDDO
402 ENDDO
403 ENDIF
404 C end: Finite Difference Form, with hFac, Tracer Lev. = middle --
405 C-----------------------------------------------------------------------
406
407 ELSEIF (integr_GeoPot.EQ.3) THEN
408 C -- Finite Difference Form, with hFac, Interface_W = middle --
409 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
410 C Finite Difference formulation consistent with Partial Cell,
411 C Valid & accurate if Interface_W at middle between tracer levels
412 C linear in p between 2 Tracer levels ; conserve energy in the Interior
413 C---------
414 Kp1 = min(Nr,K+1)
415 IF (K.EQ.1) THEN
416 ratioRm=0.5*drF(K)/(rF(k)-rC(K))
417 ratioRp=drF(K)*recip_drC(Kp1)
418 ddPIm=atm_Cp*( ((rF( K )/atm_Po)**atm_kappa)
419 & -((rC( K )/atm_Po)**atm_kappa) ) * 2. _d 0
420 ddPIp=atm_Cp*( ((rC( K )/atm_Po)**atm_kappa)
421 & -((rC(Kp1)/atm_Po)**atm_kappa) )
422 DO j=jMin,jMax
423 DO i=iMin,iMax
424 phiHyd(i,j,K)= phi0surf(i,j,bi,bj)
425 & +( ddPIm*max(zero,(_hFacC(i,j,K,bi,bj)-one)*ratioRm+half)
426 & +ddPIp*min(zero, _hFacC(i,j,K,bi,bj)*ratioRp -half) )
427 & *(tFld(i,j, K ,bi,bj)-tRef( K ))
428 & * maskC(i,j, K ,bi,bj)
429 ENDDO
430 ENDDO
431 ELSE
432 ratioRm=drF(K)*recip_drC(K)
433 ratioRp=drF(K)*recip_drC(Kp1)
434 ddPIm=atm_Cp*( ((rC(K-1)/atm_Po)**atm_kappa)
435 & -((rC( K )/atm_Po)**atm_kappa) )
436 ddPIp=atm_Cp*( ((rC( K )/atm_Po)**atm_kappa)
437 & -((rC(Kp1)/atm_Po)**atm_kappa) )
438 DO j=jMin,jMax
439 DO i=iMin,iMax
440 phiHyd(i,j,K) = phiHyd(i,j,K-1)
441 & + ddPIm*0.5
442 & *(tFld(i,j,K-1,bi,bj)-tRef(K-1))
443 & * maskC(i,j,K-1,bi,bj)
444 & +(ddPIm*max(zero,(_hFacC(i,j,K,bi,bj)-one)*ratioRm+half)
445 & +ddPIp*min(zero, _hFacC(i,j,K,bi,bj)*ratioRp -half) )
446 & *(tFld(i,j, K ,bi,bj)-tRef( K ))
447 & * maskC(i,j, K ,bi,bj)
448 ENDDO
449 ENDDO
450 ENDIF
451 C end: Finite Difference Form, with hFac, Interface_W = middle --
452 C-----------------------------------------------------------------------
453
454 ELSE
455 STOP 'CALC_PHI_HYD: Bad integr_GeoPot option !'
456 ENDIF
457
458 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
459 ELSE
460 STOP 'CALC_PHI_HYD: Bad value of buoyancyRelation !'
461 ENDIF
462
463 #endif /* INCLUDE_PHIHYD_CALCULATION_CODE */
464
465 RETURN
466 END

  ViewVC Help
Powered by ViewVC 1.1.22