/[MITgcm]/MITgcm/model/src/calc_phi_hyd.F
ViewVC logotype

Diff of /MITgcm/model/src/calc_phi_hyd.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.24 by jmc, Tue Dec 10 02:55:47 2002 UTC revision 1.34 by jmc, Mon Mar 20 14:22:26 2006 UTC
# Line 1  Line 1 
1  C $Header$  C $Header$
2  C $Name$  C $Name$
3    
4    #include "PACKAGES_CONFIG.h"
5  #include "CPP_OPTIONS.h"  #include "CPP_OPTIONS.h"
6    
7  CBOP  CBOP
8  C     !ROUTINE: CALC_PHI_HYD  C     !ROUTINE: CALC_PHI_HYD
9  C     !INTERFACE:  C     !INTERFACE:
10        SUBROUTINE CALC_PHI_HYD(        SUBROUTINE CALC_PHI_HYD(
11       I                         bi, bj, iMin, iMax, jMin, jMax, K,       I                         bi, bj, iMin, iMax, jMin, jMax, k,
12       I                         tFld, sFld,       I                         tFld, sFld,
13       U                         phiHyd,       U                         phiHydF,
14       I                         myThid)       O                         phiHydC, dPhiHydX, dPhiHydY,
15         I                         myTime, myIter, myThid)
16  C     !DESCRIPTION: \bv  C     !DESCRIPTION: \bv
17  C     *==========================================================*  C     *==========================================================*
18  C     | SUBROUTINE CALC_PHI_HYD                                  |  C     | SUBROUTINE CALC_PHI_HYD                                  |
19  C     | o Integrate the hydrostatic relation to find the Hydros. |  C     | o Integrate the hydrostatic relation to find the Hydros. |
20  C     *==========================================================*  C     *==========================================================*
21  C     |    Potential (ocean: Pressure/rho ; atmos = geopotential)|  C     |    Potential (ocean: Pressure/rho ; atmos = geopotential)
22  C     | On entry:                                                |  C     | On entry:
23  C     |   tFld,sFld     are the current thermodynamics quantities|  C     |   tFld,sFld     are the current thermodynamics quantities
24  C     |                 (unchanged on exit)                      |  C     |                 (unchanged on exit)
25  C     |   phiHyd(i,j,1:k-1) is the hydrostatic Potential         |  C     |   phiHydF(i,j) is the hydrostatic Potential anomaly
26  C     |                 at cell centers (tracer points)          |  C     |                at middle between tracer points k-1,k
27  C     |                 - 1:k-1 layers are valid                 |  C     | On exit:
28  C     |                 - k:Nr layers are invalid                |  C     |   phiHydC(i,j) is the hydrostatic Potential anomaly
29  C     |   phiHyd(i,j,k) is the hydrostatic Potential             |  C     |                at cell centers (tracer points), level k
30  C     |  (ocean only_^) at cell the interface k (w point above)  |  C     |   phiHydF(i,j) is the hydrostatic Potential anomaly
31  C     | On exit:                                                 |  C     |                at middle between tracer points k,k+1
32  C     |   phiHyd(i,j,1:k) is the hydrostatic Potential           |  C     |   dPhiHydX,Y   hydrostatic Potential gradient (X&Y dir)
33  C     |                 at cell centers (tracer points)          |  C     |                at cell centers (tracer points), level k
34  C     |                 - 1:k layers are valid                   |  C     | integr_GeoPot allows to select one integration method
35  C     |                 - k+1:Nr layers are invalid              |  C     |    1= Finite volume form ; else= Finite difference form
 C     |   phiHyd(i,j,k+1) is the hydrostatic Potential (P/rho)   |  
 C     |  (ocean only-^) at cell the interface k+1 (w point below)|  
 C     | Atmosphere:                                              |  
 C     |   integr_GeoPot allows to select one integration method  |  
 C     |    (see the list below)                                  |  
36  C     *==========================================================*  C     *==========================================================*
37  C     \ev  C     \ev
38  C     !USES:  C     !USES:
# Line 45  C     == Global variables == Line 42  C     == Global variables ==
42  #include "GRID.h"  #include "GRID.h"
43  #include "EEPARAMS.h"  #include "EEPARAMS.h"
44  #include "PARAMS.h"  #include "PARAMS.h"
 c #include "FFIELDS.h"  
45  #ifdef ALLOW_AUTODIFF_TAMC  #ifdef ALLOW_AUTODIFF_TAMC
46  #include "tamc.h"  #include "tamc.h"
47  #include "tamc_keys.h"  #include "tamc_keys.h"
# Line 55  c #include "FFIELDS.h" Line 51  c #include "FFIELDS.h"
51    
52  C     !INPUT/OUTPUT PARAMETERS:  C     !INPUT/OUTPUT PARAMETERS:
53  C     == Routine arguments ==  C     == Routine arguments ==
54        INTEGER bi,bj,iMin,iMax,jMin,jMax,K  C     bi, bj, k  :: tile and level indices
55    C     iMin,iMax,jMin,jMax :: computational domain
56    C     tFld       :: potential temperature
57    C     sFld       :: salinity
58    C     phiHydF    :: hydrostatic potential anomaly at middle between
59    C                   2 centers (entry: Interf_k ; output: Interf_k+1)
60    C     phiHydC    :: hydrostatic potential anomaly at cell center
61    C     dPhiHydX,Y :: gradient (X & Y dir.) of hydrostatic potential anom.
62    C     myTime     :: current time
63    C     myIter     :: current iteration number
64    C     myThid     :: thread number for this instance of the routine.
65          INTEGER bi,bj,iMin,iMax,jMin,jMax,k
66        _RL tFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)        _RL tFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
67        _RL sFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)        _RL sFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
68        _RL phiHyd(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)  c     _RL phiHyd(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
69        INTEGER myThid        _RL phiHydF(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
70          _RL phiHydC(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
71          _RL dPhiHydX(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
72          _RL dPhiHydY(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
73          _RL myTime
74          INTEGER myIter, myThid
75                
76  #ifdef INCLUDE_PHIHYD_CALCULATION_CODE  #ifdef INCLUDE_PHIHYD_CALCULATION_CODE
77    
78  C     !LOCAL VARIABLES:  C     !LOCAL VARIABLES:
79  C     == Local variables ==  C     == Local variables ==
80        INTEGER i,j, Kp1        INTEGER i,j
81        _RL zero, one, half        _RL zero, one, half
82        _RL alphaRho(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL alphaRho(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
83        _RL dRloc,dRlocKp1,locAlpha        _RL dRlocM,dRlocP, ddRloc, locAlpha
84        _RL ddPI, ddPIm, ddPIp, ratioRp, ratioRm        _RL ddPIm, ddPIp, rec_dRm, rec_dRp
85          _RL surfPhiFac
86          INTEGER iMnLoc,jMnLoc
87          PARAMETER ( zero= 0. _d 0 , one= 1. _d 0 , half= .5 _d 0 )
88          LOGICAL useDiagPhiRlow, addSurfPhiAnom
89  CEOP  CEOP
90          useDiagPhiRlow = .TRUE.
91        zero = 0. _d 0        addSurfPhiAnom = select_rStar.EQ.0 .AND. nonlinFreeSurf.GT.3
92        one  = 1. _d 0        surfPhiFac = 0.
93        half = .5 _d 0        IF (addSurfPhiAnom) surfPhiFac = 1.
94    
95  C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|  C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
96  C  Atmosphere:    C  Atmosphere:  
97  C integr_GeoPot => select one option for the integration of the Geopotential:  C integr_GeoPot => select one option for the integration of the Geopotential:
98  C   = 0 : Energy Conserving Form, No hFac ;  C   = 0 : Energy Conserving Form, accurate with Topo full cell;
99  C   = 1 : Finite Volume Form, with hFac, linear in P by Half level;  C   = 1 : Finite Volume Form, with Part-Cell, linear in P by Half level;
100  C   =2,3: Finite Difference Form, with hFac, linear in P between 2 Tracer levels  C   =2,3: Finite Difference Form, with Part-Cell,
101  C     2 : case Tracer level at the middle of InterFace_W;  C         linear in P between 2 Tracer levels.
102  C     3 : case InterFace_W  at the middle of Tracer levels;  C       can handle both cases: Tracer lev at the middle of InterFace_W
103    C                          and InterFace_W at the middle of Tracer lev;
104  C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|  C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
105    
106  #ifdef ALLOW_AUTODIFF_TAMC  #ifdef ALLOW_AUTODIFF_TAMC
# Line 103  C---+----1----+----2----+----3----+----4 Line 120  C---+----1----+----2----+----3----+----4
120       &                      + act4*max1*max2*max3       &                      + act4*max1*max2*max3
121  #endif /* ALLOW_AUTODIFF_TAMC */  #endif /* ALLOW_AUTODIFF_TAMC */
122    
123        IF ( buoyancyRelation .eq. 'OCEANIC' ) THEN  C--   Initialize phiHydF to zero :
124    C     note: atmospheric_loading or Phi_topo anomaly are incorporated
125    C           later in S/R calc_grad_phi_hyd
126          IF (k.EQ.1) THEN
127            DO j=1-Oly,sNy+Oly
128             DO i=1-Olx,sNx+Olx
129               phiHydF(i,j) = 0.
130             ENDDO
131            ENDDO
132          ENDIF
133    
134    C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
135          IF ( buoyancyRelation .EQ. 'OCEANIC' ) THEN
136  C       This is the hydrostatic pressure calculation for the Ocean  C       This is the hydrostatic pressure calculation for the Ocean
137  C       which uses the FIND_RHO() routine to calculate density  C       which uses the FIND_RHO() routine to calculate density
138  C       before integrating g*rho over the current layer/interface  C       before integrating g*rho over the current layer/interface
139    #ifdef      ALLOW_AUTODIFF_TAMC
140    CADJ GENERAL
141    #endif      /* ALLOW_AUTODIFF_TAMC */
142    
143          dRloc=drC(k)  C---    Calculate density
         IF (k.EQ.1) dRloc=drF(1)  
         IF (k.EQ.Nr) THEN  
           dRlocKp1=0.  
         ELSE  
           dRlocKp1=drC(k+1)  
         ENDIF  
   
 C--     If this is the top layer we impose the boundary condition  
 C       P(z=eta) = P(atmospheric_loading)  
         IF (k.EQ.1) THEN  
           DO j=jMin,jMax  
             DO i=iMin,iMax  
               phiHyd(i,j,k) = phi0surf(i,j,bi,bj)  
             ENDDO  
           ENDDO  
         ENDIF  
   
 C       Calculate density  
144  #ifdef ALLOW_AUTODIFF_TAMC  #ifdef ALLOW_AUTODIFF_TAMC
145          kkey = (ikey-1)*Nr + k          kkey = (ikey-1)*Nr + k
146  CADJ STORE tFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte  CADJ STORE tFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
# Line 135  CADJ STORE sFld (:,:,k,bi,bj) = comlev1_ Line 149  CADJ STORE sFld (:,:,k,bi,bj) = comlev1_
149          CALL FIND_RHO( bi, bj, iMin, iMax, jMin, jMax, k, k,          CALL FIND_RHO( bi, bj, iMin, iMax, jMin, jMax, k, k,
150       &                 tFld, sFld,       &                 tFld, sFld,
151       &                 alphaRho, myThid)       &                 alphaRho, myThid)
152    #ifdef ALLOW_SHELFICE
153    C     mask rho, so that there is no contribution of phiHyd from
154    C     overlying shelfice (whose density we do not know)
155            IF ( useShelfIce ) THEN
156             DO j=jMin,jMax
157              DO i=iMin,iMax
158               alphaRho(i,j) = alphaRho(i,j)*maskC(i,j,k,bi,bj)
159              ENDDO
160             ENDDO
161            ENDIF
162    #endif /* ALLOW_SHELFICE */
163    
164    #ifdef ALLOW_DIAGNOSTICS
165            IF ( useDiagnostics )
166         &   CALL DIAGNOSTICS_FILL(alphaRho,'RHOAnoma',k,1,2,bi,bj,myThid)
167    #endif
168    
169    #ifdef ALLOW_MOM_COMMON
170  C Quasi-hydrostatic terms are added in as if they modify the buoyancy  C Quasi-hydrostatic terms are added in as if they modify the buoyancy
171          IF (quasiHydrostatic) THEN          IF (quasiHydrostatic) THEN
172           CALL QUASIHYDROSTATICTERMS(bi,bj,k,alphaRho,myThid)           CALL MOM_QUASIHYDROSTATIC(bi,bj,k,uVel,vVel,alphaRho,myThid)
173          ENDIF          ENDIF
174    #endif /* ALLOW_MOM_COMMON */
175    
176  C       Hydrostatic pressure at cell centers  #ifdef NONLIN_FRSURF
177          DO j=jMin,jMax          IF (k.EQ.1 .AND. addSurfPhiAnom) THEN
178              DO j=jMin,jMax
179                DO i=iMin,iMax
180                  phiHydF(i,j) = surfPhiFac*etaH(i,j,bi,bj)
181         &                      *gravity*alphaRho(i,j)*recip_rhoConst
182                ENDDO
183              ENDDO
184            ENDIF
185    #endif /* NONLIN_FRSURF */
186    
187    C----  Hydrostatic pressure at cell centers
188    
189           IF (integr_GeoPot.EQ.1) THEN
190    C  --  Finite Volume Form
191    
192             DO j=jMin,jMax
193            DO i=iMin,iMax            DO i=iMin,iMax
 #ifdef      ALLOW_AUTODIFF_TAMC  
 c           Patrick, is this directive correct or even necessary in  
 c           this new code?  
 c           Yes, because of phiHyd(i,j,k+1)=phiHyd(i,j,k)+...  
 c           within the k-loop.  
 CADJ GENERAL  
 #endif      /* ALLOW_AUTODIFF_TAMC */  
194    
195  CmlC---------- This discretization is the "finite volume" form  C---------- This discretization is the "finite volume" form
196  CmlC           which has not been used to date since it does not  C           which has not been used to date since it does not
197  CmlC           conserve KE+PE exactly even though it is more natural  C           conserve KE+PE exactly even though it is more natural
198  CmlC  C
199  Cml          IF ( K .EQ. kLowC(i,j,bi,bj) ) THEN             phiHydC(i,j)=phiHydF(i,j)
200  Cml           phiHydLow(i,j,bi,bj) = phiHyd(i,j,k)       &       + half*drF(k)*gravity*alphaRho(i,j)*recip_rhoConst
201  Cml     &          + hFacC(i,j,k,bi,bj)             phiHydF(i,j)=phiHydF(i,j)
202  Cml     &            *drF(K)*gravity*alphaRho(i,j)*recip_rhoConst       &            + drF(k)*gravity*alphaRho(i,j)*recip_rhoConst
203  Cml     &          + gravity*etaN(i,j,bi,bj)            ENDDO
204  Cml          ENDIF           ENDDO
205  Cml           IF (k.LT.Nr) phiHyd(i,j,k+1)=phiHyd(i,j,k)+  
206  Cml     &         drF(K)*gravity*alphaRho(i,j)*recip_rhoConst         ELSE
207  Cml           phiHyd(i,j,k)=phiHyd(i,j,k)+  C  --  Finite Difference Form
208  Cml     &          0.5*drF(K)*gravity*alphaRho(i,j)*recip_rhoConst  
209  CmlC-----------------------------------------------------------------------           dRlocM=half*drC(k)
210             IF (k.EQ.1) dRlocM=rF(k)-rC(k)
211             IF (k.EQ.Nr) THEN
212               dRlocP=rC(k)-rF(k+1)
213             ELSE
214               dRlocP=half*drC(k+1)
215             ENDIF
216    
217             DO j=jMin,jMax
218              DO i=iMin,iMax
219    
220  C---------- This discretization is the "energy conserving" form  C---------- This discretization is the "energy conserving" form
221  C           which has been used since at least Adcroft et al., MWR 1997  C           which has been used since at least Adcroft et al., MWR 1997
222  C  C
223                            phiHydC(i,j)=phiHydF(i,j)
224              phiHyd(i,j,k)=phiHyd(i,j,k)+       &        +dRlocM*gravity*alphaRho(i,j)*recip_rhoConst
225       &          0.5*dRloc*gravity*alphaRho(i,j)*recip_rhoConst              phiHydF(i,j)=phiHydC(i,j)
226              IF (k.LT.Nr) phiHyd(i,j,k+1)=phiHyd(i,j,k)+       &        +dRlocP*gravity*alphaRho(i,j)*recip_rhoConst
      &          0.5*dRlocKp1*gravity*alphaRho(i,j)*recip_rhoConst  
 C-----------------------------------------------------------------------  
   
 C---------- Compute bottom pressure deviation from gravity*rho0*H  
 C           This has to be done starting from phiHyd at the current  
 C           tracer point and .5 of the cell's thickness has to be  
 C           substracted from hFacC  
             IF ( K .EQ. kLowC(i,j,bi,bj) ) THEN  
              phiHydLow(i,j,bi,bj) = phiHyd(i,j,k)  
      &              + (hFacC(i,j,k,bi,bj)-.5)*drF(K)  
      &                   *gravity*alphaRho(i,j)*recip_rhoConst  
      &              + gravity*etaN(i,j,bi,bj)  
             ENDIF  
 C-----------------------------------------------------------------------  
   
227            ENDDO            ENDDO
228          ENDDO           ENDDO
229    
230    C  --  end if integr_GeoPot = ...
231           ENDIF
232                    
233        ELSEIF ( buoyancyRelation .eq. 'OCEANICP' ) THEN  C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
234          ELSEIF ( buoyancyRelation .EQ. 'OCEANICP' ) THEN
235  C       This is the hydrostatic pressure calculation for the Ocean  C       This is the hydrostatic pressure calculation for the Ocean
236  C       which uses the FIND_RHO() routine to calculate density  C       which uses the FIND_RHO() routine to calculate density
237  C       before integrating g*rho over the current layer/interface  C       before integrating (1/rho)'*dp over the current layer/interface
238  #ifdef      ALLOW_AUTODIFF_TAMC  #ifdef      ALLOW_AUTODIFF_TAMC
239  CADJ GENERAL  CADJ GENERAL
240  #endif      /* ALLOW_AUTODIFF_TAMC */  #endif      /* ALLOW_AUTODIFF_TAMC */
241    
242          dRloc=drC(k)  C--     Calculate density
         IF (k.EQ.1) dRloc=drF(1)  
         IF (k.EQ.Nr) THEN  
           dRlocKp1=0.  
         ELSE  
           dRlocKp1=drC(k+1)  
         ENDIF  
   
         IF (k.EQ.1) THEN  
           DO j=jMin,jMax  
             DO i=iMin,iMax  
               phiHyd(i,j,k) = phi0surf(i,j,bi,bj)  
             ENDDO  
           ENDDO  
         ENDIF  
   
 C       Calculate density  
243  #ifdef ALLOW_AUTODIFF_TAMC  #ifdef ALLOW_AUTODIFF_TAMC
244              kkey = (ikey-1)*Nr + k              kkey = (ikey-1)*Nr + k
245  CADJ STORE tFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte  CADJ STORE tFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
# Line 230  CADJ STORE sFld (:,:,k,bi,bj) = comlev1_ Line 252  CADJ STORE sFld (:,:,k,bi,bj) = comlev1_
252  CADJ STORE alphaRho (:,:) = comlev1_bibj_k, key=kkey, byte=isbyte  CADJ STORE alphaRho (:,:) = comlev1_bibj_k, key=kkey, byte=isbyte
253  #endif /* ALLOW_AUTODIFF_TAMC */  #endif /* ALLOW_AUTODIFF_TAMC */
254    
255    #ifdef ALLOW_DIAGNOSTICS
256            IF ( useDiagnostics )
257         &   CALL DIAGNOSTICS_FILL(alphaRho,'RHOAnoma',k,1,2,bi,bj,myThid)
258    #endif
259    
260  C       Hydrostatic pressure at cell centers  C--     Calculate specific volume anomaly : alpha' = 1/rho - alpha_Cst
261          DO j=jMin,jMax          DO j=jMin,jMax
262            DO i=iMin,iMax            DO i=iMin,iMax
263              locAlpha=alphaRho(i,j)+rhoConst              locAlpha=alphaRho(i,j)+rhoConst
264              IF (locAlpha.NE.0.) locAlpha=maskC(i,j,k,bi,bj)/locAlpha              alphaRho(i,j)=maskC(i,j,k,bi,bj)*
265         &              (one/locAlpha - recip_rhoConst)
266              ENDDO
267            ENDDO
268    
269  CmlC---------- This discretization is the "finite volume" form  C----  Hydrostatic pressure at cell centers
 CmlC           which has not been used to date since it does not  
 CmlC           conserve KE+PE exactly even though it is more natural  
 CmlC  
 Cml            IF ( K .EQ. kLowC(i,j,bi,bj) ) THEN  
 Cml             phiHydLow(i,j,bi,bj) = phiHyd(i,j,k)  
 Cml     &          + hFacC(i,j,k,bi,bj)*drF(K)*locAlpha  
 Cml     &          + Bo_surf(i,j,bi,bj)*etaN(i,j,bi,bj)  
 Cml            ENDIF  
 Cml            IF (k.LT.Nr) phiHyd(i,j,k+1)=phiHyd(i,j,k)+  
 Cml     &           drF(K)*locAlpha  
 Cml            phiHyd(i,j,k)=phiHyd(i,j,k)+  
 Cml     &           0.5*drF(K)*locAlpha  
 CmlC-----------------------------------------------------------------------  
270    
271  C---------- This discretization is the "energy conserving" form         IF (integr_GeoPot.EQ.1) THEN
272  C           which has been used since at least Adcroft et al., MWR 1997  C  --  Finite Volume Form
 C  
273    
274              phiHyd(i,j,k)=phiHyd(i,j,k)+           DO j=jMin,jMax
275       &          0.5*dRloc*locAlpha            DO i=iMin,iMax
             IF (k.LT.Nr) phiHyd(i,j,k+1)=phiHyd(i,j,k)+  
      &          0.5*dRlocKp1*locAlpha  
276    
277  C-----------------------------------------------------------------------  C---------- This discretization is the "finite volume" form
278    C           which has not been used to date since it does not
279    C           conserve KE+PE exactly even though it is more natural
280    C
281               IF (k.EQ.ksurfC(i,j,bi,bj)) THEN
282                 ddRloc = Ro_surf(i,j,bi,bj)-rC(k)
283    #ifdef NONLIN_FRSURF
284                 ddRloc = ddRloc + surfPhiFac*etaH(i,j,bi,bj)
285    #endif
286                 phiHydC(i,j) = ddRloc*alphaRho(i,j)
287    c--to reproduce results of c48d_post: uncomment those 4+1 lines
288    c            phiHydC(i,j)=phiHydF(i,j)
289    c    &          +(hFacC(i,j,k,bi,bj)-half)*drF(k)*alphaRho(i,j)
290    c            phiHydF(i,j)=phiHydF(i,j)
291    c    &          + hFacC(i,j,k,bi,bj)*drF(k)*alphaRho(i,j)
292               ELSE
293                 phiHydC(i,j) = phiHydF(i,j) + half*drF(k)*alphaRho(i,j)
294    c            phiHydF(i,j) = phiHydF(i,j) +      drF(k)*alphaRho(i,j)
295               ENDIF
296    c-- and comment this last one:
297                 phiHydF(i,j) = phiHydC(i,j) + half*drF(k)*alphaRho(i,j)
298    c-----
299              ENDDO
300             ENDDO
301    
302           ELSE
303    C  --  Finite Difference Form, with Part-Cell Bathy
304    
305             dRlocM=half*drC(k)
306             IF (k.EQ.1) dRlocM=rF(k)-rC(k)
307             IF (k.EQ.Nr) THEN
308               dRlocP=rC(k)-rF(k+1)
309             ELSE
310               dRlocP=half*drC(k+1)
311             ENDIF
312             rec_dRm = one/(rF(k)-rC(k))
313             rec_dRp = one/(rC(k)-rF(k+1))
314    
315  C---------- Compute gravity*(sea surface elevation) first           DO j=jMin,jMax
316  C           This has to be done starting from phiHyd at the current            DO i=iMin,iMax
317  C           tracer point and .5 of the cell's thickness has to be  
318  C           substracted from hFacC  C---------- This discretization is the "energy conserving" form
             IF ( K .EQ. kLowC(i,j,bi,bj) ) THEN  
              phiHydLow(i,j,bi,bj) = phiHyd(i,j,k)  
      &              + (hFacC(i,j,k,bi,bj)-0.5)*drF(k)*locAlpha  
      &              + Bo_surf(i,j,bi,bj)*etaN(i,j,bi,bj)  
             ENDIF  
 C-----------------------------------------------------------------------  
319    
320               IF (k.EQ.ksurfC(i,j,bi,bj)) THEN
321                 ddRloc = Ro_surf(i,j,bi,bj)-rC(k)
322    #ifdef NONLIN_FRSURF
323                 ddRloc = ddRloc + surfPhiFac*etaH(i,j,bi,bj)
324    #endif
325                 phiHydC(i,j) =( MAX(zero,ddRloc)*rec_dRm*dRlocM
326         &                      +MIN(zero,ddRloc)*rec_dRp*dRlocP
327         &                     )*alphaRho(i,j)
328               ELSE
329                 phiHydC(i,j) = phiHydF(i,j) + dRlocM*alphaRho(i,j)
330               ENDIF
331                 phiHydF(i,j) = phiHydC(i,j) + dRlocP*alphaRho(i,j)
332            ENDDO            ENDDO
333          ENDDO           ENDDO
334    
335    C  --  end if integr_GeoPot = ...
336           ENDIF
337    
338        ELSEIF ( buoyancyRelation .eq. 'ATMOSPHERIC' ) THEN        ELSEIF ( buoyancyRelation .EQ. 'ATMOSPHERIC' ) THEN
339  C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|  C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
340  C       This is the hydrostatic geopotential calculation for the Atmosphere  C       This is the hydrostatic geopotential calculation for the Atmosphere
341  C       The ideal gas law is used implicitly here rather than calculating  C       The ideal gas law is used implicitly here rather than calculating
342  C       the specific volume, analogous to the oceanic case.  C       the specific volume, analogous to the oceanic case.
343    
344  C       Integrate d Phi / d pi  C--     virtual potential temperature anomaly (including water vapour effect)
345            DO j=jMin,jMax
346             DO i=iMin,iMax
347              alphaRho(i,j)=maskC(i,j,k,bi,bj)
348         &             *( tFld(i,j,k,bi,bj)*(sFld(i,j,k,bi,bj)*atm_Rq+one)
349         &               -tRef(k) )
350             ENDDO
351            ENDDO
352    
353    C---    Integrate d Phi / d pi
354    
355        IF (integr_GeoPot.EQ.0) THEN         IF (integr_GeoPot.EQ.0) THEN
356  C  --  Energy Conserving Form, No hFac  --  C  --  Energy Conserving Form, accurate with Full cell topo  --
357  C------------ The integration for the first level phi(k=1) is the same  C------------ The integration for the first level phi(k=1) is the same
358  C             for both the "finite volume" and energy conserving methods.  C             for both the "finite volume" and energy conserving methods.
359  Ci    *NOTE* o Working with geopotential Anomaly, the geopotential boundary  C    *NOTE* o Working with geopotential Anomaly, the geopotential boundary
360  C             condition is simply Phi-prime(Ro_surf)=0.  C             condition is simply Phi-prime(Ro_surf)=0.
361  C           o convention ddPI > 0 (same as drF & drC)  C           o convention ddPI > 0 (same as drF & drC)
362  C-----------------------------------------------------------------------  C-----------------------------------------------------------------------
363          IF (K.EQ.1) THEN           IF (k.EQ.1) THEN
364            ddPIp=atm_Cp*( ((rF(K)/atm_Po)**atm_kappa)             ddPIm=atm_Cp*( ((rF( k )/atm_Po)**atm_kappa)
365       &                  -((rC(K)/atm_Po)**atm_kappa) )       &                   -((rC( k )/atm_Po)**atm_kappa) )
366            DO j=jMin,jMax           ELSE
367             DO i=iMin,iMax             ddPIm=atm_Cp*( ((rC(k-1)/atm_Po)**atm_kappa)
368               phiHyd(i,j,K)= phi0surf(i,j,bi,bj)       &                   -((rC( k )/atm_Po)**atm_kappa) )*half
369       &         +ddPIp*maskC(i,j,K,bi,bj)           ENDIF
370       &               *(tFld(I,J,K,bi,bj)-tRef(K))           IF (k.EQ.Nr) THEN
371             ENDDO             ddPIp=atm_Cp*( ((rC( k )/atm_Po)**atm_kappa)
372            ENDDO       &                   -((rF(k+1)/atm_Po)**atm_kappa) )
373          ELSE           ELSE
374               ddPIp=atm_Cp*( ((rC( k )/atm_Po)**atm_kappa)
375         &                   -((rC(k+1)/atm_Po)**atm_kappa) )*half
376             ENDIF
377  C-------- This discretization is the energy conserving form  C-------- This discretization is the energy conserving form
378            ddPI=atm_Cp*( ((rC(K-1)/atm_Po)**atm_kappa)           DO j=jMin,jMax
379       &                 -((rC( K )/atm_Po)**atm_kappa) )*0.5            DO i=iMin,iMax
380            DO j=jMin,jMax               phiHydC(i,j) = phiHydF(i,j) +ddPIm*alphaRho(i,j)
381             DO i=iMin,iMax               phiHydF(i,j) = phiHydC(i,j) +ddPIp*alphaRho(i,j)
               phiHyd(i,j,K)=phiHyd(i,j,K-1)  
      &           +ddPI*maskC(i,j,K-1,bi,bj)  
      &                *(tFld(I,J,K-1,bi,bj)-tRef(K-1))  
      &           +ddPI*maskC(i,j, K ,bi,bj)  
      &                *(tFld(I,J, K ,bi,bj)-tRef( K ))  
 C             Old code (atmos-exact) looked like this  
 Cold          phiHyd(i,j,K)=phiHyd(i,j,K-1) - ddPI*  
 Cold &      (tFld(I,J,K-1,bi,bj)+tFld(I,J,K,bi,bj)-2.*tRef(K))  
            ENDDO  
382            ENDDO            ENDDO
383          ENDIF           ENDDO
384  C end: Energy Conserving Form, No hFac  --  C end: Energy Conserving Form, No hFac  --
385  C-----------------------------------------------------------------------  C-----------------------------------------------------------------------
386    
387        ELSEIF (integr_GeoPot.EQ.1) THEN         ELSEIF (integr_GeoPot.EQ.1) THEN
388  C  --  Finite Volume Form, with hFac, linear in P by Half level  --  C  --  Finite Volume Form, with Part-Cell Topo, linear in P by Half level
389  C---------  C---------
390  C  Finite Volume formulation consistent with Partial Cell, linear in p by piece  C  Finite Volume formulation consistent with Partial Cell, linear in p by piece
391  C   Note: a true Finite Volume form should be linear between 2 Interf_W :  C   Note: a true Finite Volume form should be linear between 2 Interf_W :
# Line 333  C   also: if Interface_W at the middle b Line 394  C   also: if Interface_W at the middle b
394  C     is close to the Energy Cons. form in the Interior, except for the  C     is close to the Energy Cons. form in the Interior, except for the
395  C     non-linearity in PI(p)  C     non-linearity in PI(p)
396  C---------  C---------
397          IF (K.EQ.1) THEN             ddPIm=atm_Cp*( ((rF( k )/atm_Po)**atm_kappa)
398            ddPIp=atm_Cp*( ((rF(K)/atm_Po)**atm_kappa)       &                   -((rC( k )/atm_Po)**atm_kappa) )
399       &                  -((rC(K)/atm_Po)**atm_kappa) )             ddPIp=atm_Cp*( ((rC( k )/atm_Po)**atm_kappa)
400            DO j=jMin,jMax       &                   -((rF(k+1)/atm_Po)**atm_kappa) )
401             DO i=iMin,iMax           DO j=jMin,jMax
402               phiHyd(i,j,K)= phi0surf(i,j,bi,bj)            DO i=iMin,iMax
403       &         +ddPIp*_hFacC(I,J, K ,bi,bj)             IF (k.EQ.ksurfC(i,j,bi,bj)) THEN
404       &               *(tFld(I,J, K ,bi,bj)-tRef( K ))               ddRloc = Ro_surf(i,j,bi,bj)-rC(k)
405             ENDDO  #ifdef NONLIN_FRSURF
406            ENDDO               ddRloc = ddRloc + surfPhiFac*etaH(i,j,bi,bj)
407          ELSE  #endif
408            ddPIm=atm_Cp*( ((rC(K-1)/atm_Po)**atm_kappa)               phiHydC(i,j) = ddRloc*recip_drF(k)*2. _d 0
409       &                  -((rF( K )/atm_Po)**atm_kappa) )       &          *ddPIm*alphaRho(i,j)
410            ddPIp=atm_Cp*( ((rF( K )/atm_Po)**atm_kappa)             ELSE
411       &                  -((rC( K )/atm_Po)**atm_kappa) )               phiHydC(i,j) = phiHydF(i,j) +ddPIm*alphaRho(i,j)
412            DO j=jMin,jMax             ENDIF
413             DO i=iMin,iMax               phiHydF(i,j) = phiHydC(i,j) +ddPIp*alphaRho(i,j)
              phiHyd(i,j,K) = phiHyd(i,j,K-1)  
      &         +ddPIm*_hFacC(I,J,K-1,bi,bj)  
      &               *(tFld(I,J,K-1,bi,bj)-tRef(K-1))  
      &         +ddPIp*_hFacC(I,J, K ,bi,bj)  
      &               *(tFld(I,J, K ,bi,bj)-tRef( K ))  
            ENDDO  
           ENDDO  
         ENDIF  
 C end: Finite Volume Form, with hFac, linear in P by Half level  --  
 C-----------------------------------------------------------------------  
   
       ELSEIF (integr_GeoPot.EQ.2) THEN  
 C  --  Finite Difference Form, with hFac, Tracer Lev. = middle  --  
 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|  
 C  Finite Difference formulation consistent with Partial Cell,  
 C    case Tracer level at the middle of InterFace_W  
 C    linear between 2 Tracer levels ; conserve energy in the Interior  
 C---------  
         Kp1 = min(Nr,K+1)  
         IF (K.EQ.1) THEN  
           ddPIm=atm_Cp*( ((rF( K )/atm_Po)**atm_kappa)  
      &                  -((rC( K )/atm_Po)**atm_kappa) ) * 2. _d 0  
           ddPIp=atm_Cp*( ((rC( K )/atm_Po)**atm_kappa)  
      &                  -((rC(Kp1)/atm_Po)**atm_kappa) )    
           DO j=jMin,jMax  
            DO i=iMin,iMax  
              phiHyd(i,j,K)= phi0surf(i,j,bi,bj)  
      &       +( ddPIm*max(zero, _hFacC(i,j,K,bi,bj)-half)  
      &         +ddPIp*min(zero, _hFacC(i,j,K,bi,bj)-half) )  
      &               *(tFld(i,j, K ,bi,bj)-tRef( K ))  
      &               * maskC(i,j, K ,bi,bj)  
            ENDDO  
           ENDDO  
         ELSE  
           ddPIm=atm_Cp*( ((rC(K-1)/atm_Po)**atm_kappa)  
      &                  -((rC( K )/atm_Po)**atm_kappa) )  
           ddPIp=atm_Cp*( ((rC( K )/atm_Po)**atm_kappa)  
      &                  -((rC(Kp1)/atm_Po)**atm_kappa) )  
           DO j=jMin,jMax  
            DO i=iMin,iMax  
              phiHyd(i,j,K) = phiHyd(i,j,K-1)  
      &        + ddPIm*0.5  
      &               *(tFld(i,j,K-1,bi,bj)-tRef(K-1))  
      &               * maskC(i,j,K-1,bi,bj)  
      &        +(ddPIm*max(zero, _hFacC(i,j,K,bi,bj)-half)  
      &         +ddPIp*min(zero, _hFacC(i,j,K,bi,bj)-half) )  
      &               *(tFld(i,j, K ,bi,bj)-tRef( K ))  
      &               * maskC(i,j, K ,bi,bj)  
            ENDDO  
414            ENDDO            ENDDO
415          ENDIF           ENDDO
416  C end: Finite Difference Form, with hFac, Tracer Lev. = middle  --  C end: Finite Volume Form, with Part-Cell Topo, linear in P by Half level
417  C-----------------------------------------------------------------------  C-----------------------------------------------------------------------
418    
419        ELSEIF (integr_GeoPot.EQ.3) THEN         ELSEIF ( integr_GeoPot.EQ.2
420  C  --  Finite Difference Form, with hFac, Interface_W = middle  --       &     .OR. integr_GeoPot.EQ.3 ) THEN
421    C  --  Finite Difference Form, with Part-Cell Topo,
422    C       works with Interface_W  at the middle between 2.Tracer_Level
423    C        and  with Tracer_Level at the middle between 2.Interface_W.
424  C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|  C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
425  C  Finite Difference formulation consistent with Partial Cell,  C  Finite Difference formulation consistent with Partial Cell,
426  C   Valid & accurate if Interface_W at middle between tracer levels  C   Valid & accurate if Interface_W at middle between tracer levels
427  C   linear in p between 2 Tracer levels ; conserve energy in the Interior  C   linear in p between 2 Tracer levels ; conserve energy in the Interior
428  C---------  C---------
429          Kp1 = min(Nr,K+1)           IF (k.EQ.1) THEN
430          IF (K.EQ.1) THEN             ddPIm=atm_Cp*( ((rF( k )/atm_Po)**atm_kappa)
431            ratioRm=0.5*drF(K)/(rF(k)-rC(K))       &                   -((rC( k )/atm_Po)**atm_kappa) )
432            ratioRp=drF(K)*recip_drC(Kp1)           ELSE
433            ddPIm=atm_Cp*( ((rF( K )/atm_Po)**atm_kappa)             ddPIm=atm_Cp*( ((rC(k-1)/atm_Po)**atm_kappa)
434       &                  -((rC( K )/atm_Po)**atm_kappa) ) * 2. _d 0       &                   -((rC( k )/atm_Po)**atm_kappa) )*half
435            ddPIp=atm_Cp*( ((rC( K )/atm_Po)**atm_kappa)           ENDIF
436       &                  -((rC(Kp1)/atm_Po)**atm_kappa) )             IF (k.EQ.Nr) THEN
437            DO j=jMin,jMax             ddPIp=atm_Cp*( ((rC( k )/atm_Po)**atm_kappa)
438             DO i=iMin,iMax       &                   -((rF(k+1)/atm_Po)**atm_kappa) )
439               phiHyd(i,j,K)= phi0surf(i,j,bi,bj)           ELSE
440       &       +( ddPIm*max(zero,(_hFacC(i,j,K,bi,bj)-one)*ratioRm+half)             ddPIp=atm_Cp*( ((rC( k )/atm_Po)**atm_kappa)
441       &         +ddPIp*min(zero, _hFacC(i,j,K,bi,bj)*ratioRp     -half) )       &                   -((rC(k+1)/atm_Po)**atm_kappa) )*half
442       &               *(tFld(i,j, K ,bi,bj)-tRef( K ))           ENDIF
443       &               * maskC(i,j, K ,bi,bj)           rec_dRm = one/(rF(k)-rC(k))
444             ENDDO           rec_dRp = one/(rC(k)-rF(k+1))
445            ENDDO           DO j=jMin,jMax
446          ELSE            DO i=iMin,iMax
447            ratioRm=drF(K)*recip_drC(K)             IF (k.EQ.ksurfC(i,j,bi,bj)) THEN
448            ratioRp=drF(K)*recip_drC(Kp1)               ddRloc = Ro_surf(i,j,bi,bj)-rC(k)
449            ddPIm=atm_Cp*( ((rC(K-1)/atm_Po)**atm_kappa)  #ifdef NONLIN_FRSURF
450       &                  -((rC( K )/atm_Po)**atm_kappa) )               ddRloc = ddRloc + surfPhiFac*etaH(i,j,bi,bj)
451            ddPIp=atm_Cp*( ((rC( K )/atm_Po)**atm_kappa)  #endif
452       &                  -((rC(Kp1)/atm_Po)**atm_kappa) )               phiHydC(i,j) =( MAX(zero,ddRloc)*rec_dRm*ddPIm
453            DO j=jMin,jMax       &                      +MIN(zero,ddRloc)*rec_dRp*ddPIp )
454             DO i=iMin,iMax       &                    *alphaRho(i,j)
455               phiHyd(i,j,K) = phiHyd(i,j,K-1)             ELSE
456       &        + ddPIm*0.5               phiHydC(i,j) = phiHydF(i,j) +ddPIm*alphaRho(i,j)
457       &               *(tFld(i,j,K-1,bi,bj)-tRef(K-1))             ENDIF
458       &               * maskC(i,j,K-1,bi,bj)               phiHydF(i,j) = phiHydC(i,j) +ddPIp*alphaRho(i,j)
      &        +(ddPIm*max(zero,(_hFacC(i,j,K,bi,bj)-one)*ratioRm+half)  
      &         +ddPIp*min(zero, _hFacC(i,j,K,bi,bj)*ratioRp     -half) )  
      &               *(tFld(i,j, K ,bi,bj)-tRef( K ))  
      &               * maskC(i,j, K ,bi,bj)  
            ENDDO  
459            ENDDO            ENDDO
460          ENDIF           ENDDO
461  C end: Finite Difference Form, with hFac, Interface_W = middle  --  C end: Finite Difference Form, with Part-Cell Topo
462  C-----------------------------------------------------------------------  C-----------------------------------------------------------------------
463    
464        ELSE         ELSE
465          STOP 'CALC_PHI_HYD: Bad integr_GeoPot option !'           STOP 'CALC_PHI_HYD: Bad integr_GeoPot option !'
466        ENDIF         ENDIF
467    
468  C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|  C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
469        ELSE        ELSE
470          STOP 'CALC_PHI_HYD: Bad value of buoyancyRelation !'          STOP 'CALC_PHI_HYD: Bad value of buoyancyRelation !'
471        ENDIF        ENDIF
472    
473    C---   Diagnose Phi at boundary r=R_low :
474    C       = Ocean bottom pressure (Ocean, Z-coord.)
475    C       = Sea-surface height    (Ocean, P-coord.)
476    C       = Top atmosphere height (Atmos, P-coord.)
477          IF (useDiagPhiRlow) THEN
478            CALL DIAGS_PHI_RLOW(
479         I                      k, bi, bj, iMin,iMax, jMin,jMax,
480         I                      phiHydF, phiHydC, alphaRho, tFld, sFld,
481         I                      myTime, myIter, myThid)  
482          ENDIF
483    
484    C---   Diagnose Full Hydrostatic Potential at cell center level
485            CALL DIAGS_PHI_HYD(
486         I                      k, bi, bj, iMin,iMax, jMin,jMax,
487         I                      phiHydC,
488         I                      myTime, myIter, myThid)
489    
490          IF (momPressureForcing) THEN
491            iMnLoc = MAX(1-Olx+1,iMin)
492            jMnLoc = MAX(1-Oly+1,jMin)
493            CALL CALC_GRAD_PHI_HYD(
494         I                         k, bi, bj, iMnLoc,iMax, jMnLoc,jMax,
495         I                         phiHydC, alphaRho, tFld, sFld,
496         O                         dPhiHydX, dPhiHydY,
497         I                         myTime, myIter, myThid)  
498          ENDIF
499    
500  #endif /* INCLUDE_PHIHYD_CALCULATION_CODE */  #endif /* INCLUDE_PHIHYD_CALCULATION_CODE */
501    
502        RETURN        RETURN

Legend:
Removed from v.1.24  
changed lines
  Added in v.1.34

  ViewVC Help
Powered by ViewVC 1.1.22