| 1 |
C $Header: /u/gcmpack/MITgcm/model/src/calc_phi_hyd.F,v 1.44 2014/04/04 20:54:11 jmc Exp $ |
| 2 |
C $Name: $ |
| 3 |
|
| 4 |
#include "PACKAGES_CONFIG.h" |
| 5 |
#include "CPP_OPTIONS.h" |
| 6 |
#ifdef ALLOW_AUTODIFF |
| 7 |
# include "AUTODIFF_OPTIONS.h" |
| 8 |
#endif |
| 9 |
|
| 10 |
CBOP |
| 11 |
C !ROUTINE: CALC_PHI_HYD |
| 12 |
C !INTERFACE: |
| 13 |
SUBROUTINE CALC_PHI_HYD( |
| 14 |
I bi, bj, iMin, iMax, jMin, jMax, k, |
| 15 |
I tFld, sFld, |
| 16 |
U phiHydF, |
| 17 |
O phiHydC, dPhiHydX, dPhiHydY, |
| 18 |
I myTime, myIter, myThid ) |
| 19 |
C !DESCRIPTION: \bv |
| 20 |
C *==========================================================* |
| 21 |
C | SUBROUTINE CALC_PHI_HYD | |
| 22 |
C | o Integrate the hydrostatic relation to find the Hydros. | |
| 23 |
C *==========================================================* |
| 24 |
C | Potential (ocean: Pressure/rho ; atmos = geopotential) |
| 25 |
C | On entry: |
| 26 |
C | tFld,sFld are the current thermodynamics quantities |
| 27 |
C | (unchanged on exit) |
| 28 |
C | phiHydF(i,j) is the hydrostatic Potential anomaly |
| 29 |
C | at middle between tracer points k-1,k |
| 30 |
C | On exit: |
| 31 |
C | phiHydC(i,j) is the hydrostatic Potential anomaly |
| 32 |
C | at cell centers (tracer points), level k |
| 33 |
C | phiHydF(i,j) is the hydrostatic Potential anomaly |
| 34 |
C | at middle between tracer points k,k+1 |
| 35 |
C | dPhiHydX,Y hydrostatic Potential gradient (X&Y dir) |
| 36 |
C | at cell centers (tracer points), level k |
| 37 |
C | integr_GeoPot allows to select one integration method |
| 38 |
C | 1= Finite volume form ; else= Finite difference form |
| 39 |
C *==========================================================* |
| 40 |
C \ev |
| 41 |
C !USES: |
| 42 |
IMPLICIT NONE |
| 43 |
C == Global variables == |
| 44 |
#include "SIZE.h" |
| 45 |
#include "GRID.h" |
| 46 |
#include "EEPARAMS.h" |
| 47 |
#include "PARAMS.h" |
| 48 |
#ifdef ALLOW_AUTODIFF |
| 49 |
#include "tamc.h" |
| 50 |
#include "tamc_keys.h" |
| 51 |
#endif /* ALLOW_AUTODIFF */ |
| 52 |
#include "SURFACE.h" |
| 53 |
#include "DYNVARS.h" |
| 54 |
|
| 55 |
C !INPUT/OUTPUT PARAMETERS: |
| 56 |
C == Routine arguments == |
| 57 |
C bi, bj, k :: tile and level indices |
| 58 |
C iMin,iMax,jMin,jMax :: computational domain |
| 59 |
C tFld :: potential temperature |
| 60 |
C sFld :: salinity |
| 61 |
C phiHydF :: hydrostatic potential anomaly at middle between |
| 62 |
C 2 centers (entry: Interf_k ; output: Interf_k+1) |
| 63 |
C phiHydC :: hydrostatic potential anomaly at cell center |
| 64 |
C dPhiHydX,Y :: gradient (X & Y dir.) of hydrostatic potential anom. |
| 65 |
C myTime :: current time |
| 66 |
C myIter :: current iteration number |
| 67 |
C myThid :: thread number for this instance of the routine. |
| 68 |
INTEGER bi,bj,iMin,iMax,jMin,jMax,k |
| 69 |
_RL tFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy) |
| 70 |
_RL sFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy) |
| 71 |
_RL phiHydF(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 72 |
_RL phiHydC(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 73 |
_RL dPhiHydX(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 74 |
_RL dPhiHydY(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 75 |
_RL myTime |
| 76 |
INTEGER myIter, myThid |
| 77 |
|
| 78 |
#ifdef INCLUDE_PHIHYD_CALCULATION_CODE |
| 79 |
|
| 80 |
C !LOCAL VARIABLES: |
| 81 |
C == Local variables == |
| 82 |
C phiHydU :: hydrostatic potential anomaly at interface k+1 (Upper k) |
| 83 |
C pKappaF :: (p/Po)^kappa at interface k |
| 84 |
C pKappaU :: (p/Po)^kappa at interface k+1 (Upper k) |
| 85 |
C pKappaC :: (p/Po)^kappa at cell center k |
| 86 |
INTEGER i,j |
| 87 |
_RL alphaRho(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 88 |
#ifndef DISABLE_SIGMA_CODE |
| 89 |
_RL phiHydU (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 90 |
_RL pKappaF (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 91 |
_RL pKappaU (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 92 |
_RL pKappaC, locDepth, fullDepth |
| 93 |
#endif /* DISABLE_SIGMA_CODE */ |
| 94 |
_RL thetaRef, locAlpha |
| 95 |
_RL dRlocM,dRlocP, ddRloc |
| 96 |
_RL ddPIm, ddPIp, rec_dRm, rec_dRp |
| 97 |
_RL surfPhiFac |
| 98 |
LOGICAL useDiagPhiRlow, addSurfPhiAnom |
| 99 |
LOGICAL useFVgradPhi |
| 100 |
CEOP |
| 101 |
useDiagPhiRlow = .TRUE. |
| 102 |
addSurfPhiAnom = select_rStar.EQ.0 .AND. nonlinFreeSurf.GE.4 |
| 103 |
useFVgradPhi = selectSigmaCoord.NE.0 |
| 104 |
|
| 105 |
surfPhiFac = 0. |
| 106 |
IF (addSurfPhiAnom) surfPhiFac = 1. |
| 107 |
|
| 108 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
| 109 |
C Atmosphere: |
| 110 |
C integr_GeoPot => select one option for the integration of the Geopotential: |
| 111 |
C = 0 : Energy Conserving Form, accurate with Topo full cell; |
| 112 |
C = 1 : Finite Volume Form, with Part-Cell, linear in P by Half level; |
| 113 |
C =2,3: Finite Difference Form, with Part-Cell, |
| 114 |
C linear in P between 2 Tracer levels. |
| 115 |
C can handle both cases: Tracer lev at the middle of InterFace_W |
| 116 |
C and InterFace_W at the middle of Tracer lev; |
| 117 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
| 118 |
|
| 119 |
#ifdef ALLOW_AUTODIFF_TAMC |
| 120 |
act1 = bi - myBxLo(myThid) |
| 121 |
max1 = myBxHi(myThid) - myBxLo(myThid) + 1 |
| 122 |
|
| 123 |
act2 = bj - myByLo(myThid) |
| 124 |
max2 = myByHi(myThid) - myByLo(myThid) + 1 |
| 125 |
|
| 126 |
act3 = myThid - 1 |
| 127 |
max3 = nTx*nTy |
| 128 |
|
| 129 |
act4 = ikey_dynamics - 1 |
| 130 |
|
| 131 |
ikey = (act1 + 1) + act2*max1 |
| 132 |
& + act3*max1*max2 |
| 133 |
& + act4*max1*max2*max3 |
| 134 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 135 |
|
| 136 |
C-- Initialize phiHydF to zero : |
| 137 |
C note: atmospheric_loading or Phi_topo anomaly are incorporated |
| 138 |
C later in S/R calc_grad_phi_hyd |
| 139 |
IF (k.EQ.1) THEN |
| 140 |
DO j=1-OLy,sNy+OLy |
| 141 |
DO i=1-OLx,sNx+OLx |
| 142 |
phiHydF(i,j) = 0. |
| 143 |
ENDDO |
| 144 |
ENDDO |
| 145 |
ENDIF |
| 146 |
|
| 147 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
| 148 |
IF ( buoyancyRelation .EQ. 'OCEANIC' ) THEN |
| 149 |
C This is the hydrostatic pressure calculation for the Ocean |
| 150 |
C which uses the FIND_RHO() routine to calculate density |
| 151 |
C before integrating g*rho over the current layer/interface |
| 152 |
#ifdef ALLOW_AUTODIFF_TAMC |
| 153 |
CADJ GENERAL |
| 154 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 155 |
|
| 156 |
IF ( implicitIntGravWave .OR. myIter.LT.0 ) THEN |
| 157 |
C--- Calculate density |
| 158 |
#ifdef ALLOW_AUTODIFF_TAMC |
| 159 |
kkey = (ikey-1)*Nr + k |
| 160 |
CADJ STORE tFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte, |
| 161 |
CADJ & kind = isbyte |
| 162 |
CADJ STORE sFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte, |
| 163 |
CADJ & kind = isbyte |
| 164 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 165 |
CALL FIND_RHO_2D( |
| 166 |
I iMin, iMax, jMin, jMax, k, |
| 167 |
I tFld(1-OLx,1-OLy,k,bi,bj), |
| 168 |
I sFld(1-OLx,1-OLy,k,bi,bj), |
| 169 |
O alphaRho, |
| 170 |
I k, bi, bj, myThid ) |
| 171 |
ELSE |
| 172 |
DO j=jMin,jMax |
| 173 |
DO i=iMin,iMax |
| 174 |
alphaRho(i,j) = rhoInSitu(i,j,k,bi,bj) |
| 175 |
ENDDO |
| 176 |
ENDDO |
| 177 |
ENDIF |
| 178 |
|
| 179 |
#ifdef ALLOW_SHELFICE |
| 180 |
C mask rho, so that there is no contribution of phiHyd from |
| 181 |
C overlying shelfice (whose density we do not know) |
| 182 |
IF ( useShelfIce .AND. useDOWN_SLOPE ) THEN |
| 183 |
C- note: does not work for down_slope pkg which needs rho below the bottom. |
| 184 |
C setting rho=0 above the ice-shelf base is enough (and works in both cases) |
| 185 |
C but might be slower (--> keep original masking if not using down_slope pkg) |
| 186 |
DO j=jMin,jMax |
| 187 |
DO i=iMin,iMax |
| 188 |
IF ( k.LT.kSurfC(i,j,bi,bj) ) alphaRho(i,j) = 0. _d 0 |
| 189 |
ENDDO |
| 190 |
ENDDO |
| 191 |
ELSEIF ( useShelfIce ) THEN |
| 192 |
DO j=jMin,jMax |
| 193 |
DO i=iMin,iMax |
| 194 |
alphaRho(i,j) = alphaRho(i,j)*maskC(i,j,k,bi,bj) |
| 195 |
ENDDO |
| 196 |
ENDDO |
| 197 |
ENDIF |
| 198 |
#endif /* ALLOW_SHELFICE */ |
| 199 |
|
| 200 |
#ifdef ALLOW_MOM_COMMON |
| 201 |
C-- Quasi-hydrostatic terms are added in as if they modify the buoyancy |
| 202 |
IF (quasiHydrostatic) THEN |
| 203 |
CALL MOM_QUASIHYDROSTATIC(bi,bj,k,uVel,vVel,alphaRho,myThid) |
| 204 |
ENDIF |
| 205 |
#endif /* ALLOW_MOM_COMMON */ |
| 206 |
|
| 207 |
#ifdef NONLIN_FRSURF |
| 208 |
IF ( addSurfPhiAnom .AND. |
| 209 |
& uniformFreeSurfLev .AND. k.EQ.1 ) THEN |
| 210 |
DO j=jMin,jMax |
| 211 |
DO i=iMin,iMax |
| 212 |
phiHydF(i,j) = surfPhiFac*etaH(i,j,bi,bj) |
| 213 |
& *gravity*alphaRho(i,j)*recip_rhoConst |
| 214 |
ENDDO |
| 215 |
ENDDO |
| 216 |
ENDIF |
| 217 |
#endif /* NONLIN_FRSURF */ |
| 218 |
|
| 219 |
C---- Hydrostatic pressure at cell centers |
| 220 |
|
| 221 |
IF (integr_GeoPot.EQ.1) THEN |
| 222 |
C -- Finite Volume Form |
| 223 |
|
| 224 |
C---------- This discretization is the "finite volume" form |
| 225 |
C which has not been used to date since it does not |
| 226 |
C conserve KE+PE exactly even though it is more natural |
| 227 |
|
| 228 |
IF ( uniformFreeSurfLev ) THEN |
| 229 |
DO j=jMin,jMax |
| 230 |
DO i=iMin,iMax |
| 231 |
phiHydC(i,j) = phiHydF(i,j) |
| 232 |
& + halfRL*drF(k)*gravity*alphaRho(i,j)*recip_rhoConst |
| 233 |
phiHydF(i,j) = phiHydF(i,j) |
| 234 |
& + drF(k)*gravity*alphaRho(i,j)*recip_rhoConst |
| 235 |
ENDDO |
| 236 |
ENDDO |
| 237 |
ELSE |
| 238 |
DO j=jMin,jMax |
| 239 |
DO i=iMin,iMax |
| 240 |
IF (k.EQ.kSurfC(i,j,bi,bj)) THEN |
| 241 |
ddRloc = Ro_surf(i,j,bi,bj)-rC(k) |
| 242 |
#ifdef NONLIN_FRSURF |
| 243 |
ddRloc = ddRloc + surfPhiFac*etaH(i,j,bi,bj) |
| 244 |
#endif |
| 245 |
phiHydC(i,j) = ddRloc*gravity*alphaRho(i,j)*recip_rhoConst |
| 246 |
ELSE |
| 247 |
phiHydC(i,j) = phiHydF(i,j) |
| 248 |
& + halfRL*drF(k)*gravity*alphaRho(i,j)*recip_rhoConst |
| 249 |
ENDIF |
| 250 |
phiHydF(i,j) = phiHydC(i,j) |
| 251 |
& + halfRL*drF(k)*gravity*alphaRho(i,j)*recip_rhoConst |
| 252 |
ENDDO |
| 253 |
ENDDO |
| 254 |
ENDIF |
| 255 |
|
| 256 |
ELSE |
| 257 |
C -- Finite Difference Form |
| 258 |
|
| 259 |
C---------- This discretization is the "energy conserving" form |
| 260 |
C which has been used since at least Adcroft et al., MWR 1997 |
| 261 |
|
| 262 |
dRlocM = halfRL*drC(k) |
| 263 |
IF (k.EQ.1) dRlocM=rF(k)-rC(k) |
| 264 |
IF (k.EQ.Nr) THEN |
| 265 |
dRlocP=rC(k)-rF(k+1) |
| 266 |
ELSE |
| 267 |
dRlocP=halfRL*drC(k+1) |
| 268 |
ENDIF |
| 269 |
IF ( uniformFreeSurfLev ) THEN |
| 270 |
DO j=jMin,jMax |
| 271 |
DO i=iMin,iMax |
| 272 |
phiHydC(i,j) = phiHydF(i,j) |
| 273 |
& +dRlocM*gravity*alphaRho(i,j)*recip_rhoConst |
| 274 |
phiHydF(i,j) = phiHydC(i,j) |
| 275 |
& +dRlocP*gravity*alphaRho(i,j)*recip_rhoConst |
| 276 |
ENDDO |
| 277 |
ENDDO |
| 278 |
ELSE |
| 279 |
rec_dRm = oneRL/(rF(k)-rC(k)) |
| 280 |
rec_dRp = oneRL/(rC(k)-rF(k+1)) |
| 281 |
DO j=jMin,jMax |
| 282 |
DO i=iMin,iMax |
| 283 |
IF (k.EQ.kSurfC(i,j,bi,bj)) THEN |
| 284 |
ddRloc = Ro_surf(i,j,bi,bj)-rC(k) |
| 285 |
#ifdef NONLIN_FRSURF |
| 286 |
ddRloc = ddRloc + surfPhiFac*etaH(i,j,bi,bj) |
| 287 |
#endif |
| 288 |
phiHydC(i,j) =( MAX(zeroRL,ddRloc)*rec_dRm*dRlocM |
| 289 |
& +MIN(zeroRL,ddRloc)*rec_dRp*dRlocP |
| 290 |
& )*gravity*alphaRho(i,j)*recip_rhoConst |
| 291 |
ELSE |
| 292 |
phiHydC(i,j) = phiHydF(i,j) |
| 293 |
& +dRlocM*gravity*alphaRho(i,j)*recip_rhoConst |
| 294 |
ENDIF |
| 295 |
phiHydF(i,j) = phiHydC(i,j) |
| 296 |
& +dRlocP*gravity*alphaRho(i,j)*recip_rhoConst |
| 297 |
ENDDO |
| 298 |
ENDDO |
| 299 |
ENDIF |
| 300 |
|
| 301 |
C -- end if integr_GeoPot = ... |
| 302 |
ENDIF |
| 303 |
|
| 304 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
| 305 |
ELSEIF ( buoyancyRelation .EQ. 'OCEANICP' ) THEN |
| 306 |
C This is the hydrostatic pressure calculation for the Ocean |
| 307 |
C which uses the FIND_RHO() routine to calculate density before |
| 308 |
C integrating (1/rho)_prime*dp over the current layer/interface |
| 309 |
#ifdef ALLOW_AUTODIFF_TAMC |
| 310 |
CADJ GENERAL |
| 311 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 312 |
|
| 313 |
IF ( implicitIntGravWave .OR. myIter.LT.0 ) THEN |
| 314 |
C-- Calculate density |
| 315 |
#ifdef ALLOW_AUTODIFF_TAMC |
| 316 |
kkey = (ikey-1)*Nr + k |
| 317 |
CADJ STORE tFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte, |
| 318 |
CADJ & kind = isbyte |
| 319 |
CADJ STORE sFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte, |
| 320 |
CADJ & kind = isbyte |
| 321 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 322 |
CALL FIND_RHO_2D( |
| 323 |
I iMin, iMax, jMin, jMax, k, |
| 324 |
I tFld(1-OLx,1-OLy,k,bi,bj), |
| 325 |
I sFld(1-OLx,1-OLy,k,bi,bj), |
| 326 |
O alphaRho, |
| 327 |
I k, bi, bj, myThid ) |
| 328 |
#ifdef ALLOW_AUTODIFF_TAMC |
| 329 |
CADJ STORE alphaRho (:,:) = comlev1_bibj_k, key=kkey, byte=isbyte, |
| 330 |
CADJ & kind = isbyte |
| 331 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 332 |
ELSE |
| 333 |
DO j=jMin,jMax |
| 334 |
DO i=iMin,iMax |
| 335 |
alphaRho(i,j) = rhoInSitu(i,j,k,bi,bj) |
| 336 |
ENDDO |
| 337 |
ENDDO |
| 338 |
ENDIF |
| 339 |
|
| 340 |
C-- Calculate specific volume anomaly : alpha_prime = 1/rho - alpha_Cst |
| 341 |
DO j=jMin,jMax |
| 342 |
DO i=iMin,iMax |
| 343 |
locAlpha=alphaRho(i,j)+rhoConst |
| 344 |
alphaRho(i,j)=maskC(i,j,k,bi,bj)* |
| 345 |
& (oneRL/locAlpha - recip_rhoConst) |
| 346 |
ENDDO |
| 347 |
ENDDO |
| 348 |
|
| 349 |
#ifdef ALLOW_MOM_COMMON |
| 350 |
C-- Quasi-hydrostatic terms are added as if they modify the specific-volume |
| 351 |
IF (quasiHydrostatic) THEN |
| 352 |
CALL MOM_QUASIHYDROSTATIC(bi,bj,k,uVel,vVel,alphaRho,myThid) |
| 353 |
ENDIF |
| 354 |
#endif /* ALLOW_MOM_COMMON */ |
| 355 |
|
| 356 |
C---- Hydrostatic pressure at cell centers |
| 357 |
|
| 358 |
IF (integr_GeoPot.EQ.1) THEN |
| 359 |
C -- Finite Volume Form |
| 360 |
|
| 361 |
DO j=jMin,jMax |
| 362 |
DO i=iMin,iMax |
| 363 |
|
| 364 |
C---------- This discretization is the "finite volume" form |
| 365 |
C which has not been used to date since it does not |
| 366 |
C conserve KE+PE exactly even though it is more natural |
| 367 |
|
| 368 |
IF (k.EQ.kSurfC(i,j,bi,bj)) THEN |
| 369 |
ddRloc = Ro_surf(i,j,bi,bj)-rC(k) |
| 370 |
#ifdef NONLIN_FRSURF |
| 371 |
ddRloc = ddRloc + surfPhiFac*etaH(i,j,bi,bj) |
| 372 |
#endif |
| 373 |
phiHydC(i,j) = ddRloc*alphaRho(i,j) |
| 374 |
c--to reproduce results of c48d_post: uncomment those 4+1 lines |
| 375 |
c phiHydC(i,j)=phiHydF(i,j) |
| 376 |
c & +(hFacC(i,j,k,bi,bj)-halfRL)*drF(k)*alphaRho(i,j) |
| 377 |
c phiHydF(i,j)=phiHydF(i,j) |
| 378 |
c & + hFacC(i,j,k,bi,bj)*drF(k)*alphaRho(i,j) |
| 379 |
ELSE |
| 380 |
phiHydC(i,j) = phiHydF(i,j) + halfRL*drF(k)*alphaRho(i,j) |
| 381 |
c phiHydF(i,j) = phiHydF(i,j) + drF(k)*alphaRho(i,j) |
| 382 |
ENDIF |
| 383 |
c-- and comment this last one: |
| 384 |
phiHydF(i,j) = phiHydC(i,j) + halfRL*drF(k)*alphaRho(i,j) |
| 385 |
c----- |
| 386 |
ENDDO |
| 387 |
ENDDO |
| 388 |
|
| 389 |
ELSE |
| 390 |
C -- Finite Difference Form, with Part-Cell Bathy |
| 391 |
|
| 392 |
dRlocM = halfRL*drC(k) |
| 393 |
IF (k.EQ.1) dRlocM=rF(k)-rC(k) |
| 394 |
IF (k.EQ.Nr) THEN |
| 395 |
dRlocP=rC(k)-rF(k+1) |
| 396 |
ELSE |
| 397 |
dRlocP=halfRL*drC(k+1) |
| 398 |
ENDIF |
| 399 |
rec_dRm = oneRL/(rF(k)-rC(k)) |
| 400 |
rec_dRp = oneRL/(rC(k)-rF(k+1)) |
| 401 |
|
| 402 |
DO j=jMin,jMax |
| 403 |
DO i=iMin,iMax |
| 404 |
|
| 405 |
C---------- This discretization is the "energy conserving" form |
| 406 |
|
| 407 |
IF (k.EQ.kSurfC(i,j,bi,bj)) THEN |
| 408 |
ddRloc = Ro_surf(i,j,bi,bj)-rC(k) |
| 409 |
#ifdef NONLIN_FRSURF |
| 410 |
ddRloc = ddRloc + surfPhiFac*etaH(i,j,bi,bj) |
| 411 |
#endif |
| 412 |
phiHydC(i,j) =( MAX(zeroRL,ddRloc)*rec_dRm*dRlocM |
| 413 |
& +MIN(zeroRL,ddRloc)*rec_dRp*dRlocP |
| 414 |
& )*alphaRho(i,j) |
| 415 |
ELSE |
| 416 |
phiHydC(i,j) = phiHydF(i,j) + dRlocM*alphaRho(i,j) |
| 417 |
ENDIF |
| 418 |
phiHydF(i,j) = phiHydC(i,j) + dRlocP*alphaRho(i,j) |
| 419 |
ENDDO |
| 420 |
ENDDO |
| 421 |
|
| 422 |
C -- end if integr_GeoPot = ... |
| 423 |
ENDIF |
| 424 |
|
| 425 |
ELSEIF ( buoyancyRelation .EQ. 'ATMOSPHERIC' ) THEN |
| 426 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
| 427 |
C This is the hydrostatic geopotential calculation for the Atmosphere |
| 428 |
C The ideal gas law is used implicitly here rather than calculating |
| 429 |
C the specific volume, analogous to the oceanic case. |
| 430 |
|
| 431 |
C-- virtual potential temperature anomaly (including water vapour effect) |
| 432 |
IF ( select_rStar.GE.1 .OR. selectSigmaCoord.GE.1 ) THEN |
| 433 |
C- isothermal (theta=const) reference state |
| 434 |
thetaRef = thetaConst |
| 435 |
ELSE |
| 436 |
C- horizontally uniform (tRef) reference state |
| 437 |
thetaRef = tRef(k) |
| 438 |
ENDIF |
| 439 |
DO j=jMin,jMax |
| 440 |
DO i=iMin,iMax |
| 441 |
alphaRho(i,j) = ( tFld(i,j,k,bi,bj) |
| 442 |
& *( sFld(i,j,k,bi,bj)*atm_Rq + oneRL ) |
| 443 |
& - thetaRef )*maskC(i,j,k,bi,bj) |
| 444 |
ENDDO |
| 445 |
ENDDO |
| 446 |
|
| 447 |
#ifdef ALLOW_MOM_COMMON |
| 448 |
C-- Quasi-hydrostatic terms are added in as if they modify the Pot.Temp |
| 449 |
IF (quasiHydrostatic) THEN |
| 450 |
CALL MOM_QUASIHYDROSTATIC(bi,bj,k,uVel,vVel,alphaRho,myThid) |
| 451 |
ENDIF |
| 452 |
#endif /* ALLOW_MOM_COMMON */ |
| 453 |
|
| 454 |
C--- Integrate d Phi / d pi |
| 455 |
|
| 456 |
#ifndef DISABLE_SIGMA_CODE |
| 457 |
C -- Finite Volume Form, integrated to r-level (cell center & upper interface) |
| 458 |
IF ( useFVgradPhi ) THEN |
| 459 |
|
| 460 |
fullDepth = rF(1)-rF(Nr+1) |
| 461 |
DO j=jMin,jMax |
| 462 |
DO i=iMin,iMax |
| 463 |
locDepth = Ro_surf(i,j,bi,bj) - R_low(i,j,bi,bj) |
| 464 |
#ifdef NONLIN_FRSURF |
| 465 |
locDepth = locDepth + surfPhiFac*etaH(i,j,bi,bj) |
| 466 |
#endif |
| 467 |
pKappaF(i,j) = ( |
| 468 |
& ( R_low(i,j,bi,bj) + aHybSigmF( k )*fullDepth |
| 469 |
& + bHybSigmF( k )*locDepth |
| 470 |
& )/atm_Po )**atm_kappa |
| 471 |
pKappaC = ( |
| 472 |
& ( R_low(i,j,bi,bj) + aHybSigmC( k )*fullDepth |
| 473 |
& + bHybSigmC( k )*locDepth |
| 474 |
& )/atm_Po )**atm_kappa |
| 475 |
pKappaU(i,j) = ( |
| 476 |
& ( R_low(i,j,bi,bj)+ aHybSigmF(k+1)*fullDepth |
| 477 |
& + bHybSigmF(k+1)*locDepth |
| 478 |
& )/atm_Po )**atm_kappa |
| 479 |
phiHydC(i,j) = phiHydF(i,j) |
| 480 |
& + atm_Cp*( pKappaF(i,j) - pKappaC )*alphaRho(i,j) |
| 481 |
phiHydU(i,j) = phiHydF(i,j) |
| 482 |
& + atm_Cp*( pKappaF(i,j) - pKappaU(i,j) )*alphaRho(i,j) |
| 483 |
ENDDO |
| 484 |
ENDDO |
| 485 |
C end: Finite Volume Form, integrated to r-level. |
| 486 |
|
| 487 |
ELSEIF (integr_GeoPot.EQ.0) THEN |
| 488 |
#else /* DISABLE_SIGMA_CODE */ |
| 489 |
IF (integr_GeoPot.EQ.0) THEN |
| 490 |
#endif /* DISABLE_SIGMA_CODE */ |
| 491 |
C -- Energy Conserving Form, accurate with Full cell topo -- |
| 492 |
C------------ The integration for the first level phi(k=1) is the same |
| 493 |
C for both the "finite volume" and energy conserving methods. |
| 494 |
C *NOTE* o Working with geopotential Anomaly, the geopotential boundary |
| 495 |
C condition is simply Phi-prime(Ro_surf)=0. |
| 496 |
C o convention ddPI > 0 (same as drF & drC) |
| 497 |
C----------------------------------------------------------------------- |
| 498 |
IF (k.EQ.1) THEN |
| 499 |
ddPIm=atm_Cp*( ((rF( k )/atm_Po)**atm_kappa) |
| 500 |
& -((rC( k )/atm_Po)**atm_kappa) ) |
| 501 |
ELSE |
| 502 |
ddPIm=atm_Cp*( ((rC(k-1)/atm_Po)**atm_kappa) |
| 503 |
& -((rC( k )/atm_Po)**atm_kappa) )*halfRL |
| 504 |
ENDIF |
| 505 |
IF (k.EQ.Nr) THEN |
| 506 |
ddPIp=atm_Cp*( ((rC( k )/atm_Po)**atm_kappa) |
| 507 |
& -((rF(k+1)/atm_Po)**atm_kappa) ) |
| 508 |
ELSE |
| 509 |
ddPIp=atm_Cp*( ((rC( k )/atm_Po)**atm_kappa) |
| 510 |
& -((rC(k+1)/atm_Po)**atm_kappa) )*halfRL |
| 511 |
ENDIF |
| 512 |
C-------- This discretization is the energy conserving form |
| 513 |
DO j=jMin,jMax |
| 514 |
DO i=iMin,iMax |
| 515 |
phiHydC(i,j) = phiHydF(i,j) +ddPIm*alphaRho(i,j) |
| 516 |
phiHydF(i,j) = phiHydC(i,j) +ddPIp*alphaRho(i,j) |
| 517 |
ENDDO |
| 518 |
ENDDO |
| 519 |
C end: Energy Conserving Form, No hFac -- |
| 520 |
C----------------------------------------------------------------------- |
| 521 |
|
| 522 |
ELSEIF (integr_GeoPot.EQ.1) THEN |
| 523 |
C -- Finite Volume Form, with Part-Cell Topo, linear in P by Half level |
| 524 |
C--------- |
| 525 |
C Finite Volume formulation consistent with Partial Cell, linear in p by piece |
| 526 |
C Note: a true Finite Volume form should be linear between 2 Interf_W : |
| 527 |
C phi_C = (phi_W_k+ phi_W_k+1)/2 ; but not accurate in Stratosphere (low p) |
| 528 |
C also: if Interface_W at the middle between tracer levels, this form |
| 529 |
C is close to the Energy Cons. form in the Interior, except for the |
| 530 |
C non-linearity in PI(p) |
| 531 |
C--------- |
| 532 |
ddPIm=atm_Cp*( ((rF( k )/atm_Po)**atm_kappa) |
| 533 |
& -((rC( k )/atm_Po)**atm_kappa) ) |
| 534 |
ddPIp=atm_Cp*( ((rC( k )/atm_Po)**atm_kappa) |
| 535 |
& -((rF(k+1)/atm_Po)**atm_kappa) ) |
| 536 |
DO j=jMin,jMax |
| 537 |
DO i=iMin,iMax |
| 538 |
IF (k.EQ.kSurfC(i,j,bi,bj)) THEN |
| 539 |
ddRloc = Ro_surf(i,j,bi,bj)-rC(k) |
| 540 |
#ifdef NONLIN_FRSURF |
| 541 |
ddRloc = ddRloc + surfPhiFac*etaH(i,j,bi,bj) |
| 542 |
#endif |
| 543 |
phiHydC(i,j) = ddRloc*recip_drF(k)*2. _d 0 |
| 544 |
& *ddPIm*alphaRho(i,j) |
| 545 |
ELSE |
| 546 |
phiHydC(i,j) = phiHydF(i,j) +ddPIm*alphaRho(i,j) |
| 547 |
ENDIF |
| 548 |
phiHydF(i,j) = phiHydC(i,j) +ddPIp*alphaRho(i,j) |
| 549 |
ENDDO |
| 550 |
ENDDO |
| 551 |
C end: Finite Volume Form, with Part-Cell Topo, linear in P by Half level |
| 552 |
C----------------------------------------------------------------------- |
| 553 |
|
| 554 |
ELSEIF ( integr_GeoPot.EQ.2 |
| 555 |
& .OR. integr_GeoPot.EQ.3 ) THEN |
| 556 |
C -- Finite Difference Form, with Part-Cell Topo, |
| 557 |
C works with Interface_W at the middle between 2.Tracer_Level |
| 558 |
C and with Tracer_Level at the middle between 2.Interface_W. |
| 559 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
| 560 |
C Finite Difference formulation consistent with Partial Cell, |
| 561 |
C Valid & accurate if Interface_W at middle between tracer levels |
| 562 |
C linear in p between 2 Tracer levels ; conserve energy in the Interior |
| 563 |
C--------- |
| 564 |
IF (k.EQ.1) THEN |
| 565 |
ddPIm=atm_Cp*( ((rF( k )/atm_Po)**atm_kappa) |
| 566 |
& -((rC( k )/atm_Po)**atm_kappa) ) |
| 567 |
ELSE |
| 568 |
ddPIm=atm_Cp*( ((rC(k-1)/atm_Po)**atm_kappa) |
| 569 |
& -((rC( k )/atm_Po)**atm_kappa) )*halfRL |
| 570 |
ENDIF |
| 571 |
IF (k.EQ.Nr) THEN |
| 572 |
ddPIp=atm_Cp*( ((rC( k )/atm_Po)**atm_kappa) |
| 573 |
& -((rF(k+1)/atm_Po)**atm_kappa) ) |
| 574 |
ELSE |
| 575 |
ddPIp=atm_Cp*( ((rC( k )/atm_Po)**atm_kappa) |
| 576 |
& -((rC(k+1)/atm_Po)**atm_kappa) )*halfRL |
| 577 |
ENDIF |
| 578 |
rec_dRm = oneRL/(rF(k)-rC(k)) |
| 579 |
rec_dRp = oneRL/(rC(k)-rF(k+1)) |
| 580 |
DO j=jMin,jMax |
| 581 |
DO i=iMin,iMax |
| 582 |
IF (k.EQ.kSurfC(i,j,bi,bj)) THEN |
| 583 |
ddRloc = Ro_surf(i,j,bi,bj)-rC(k) |
| 584 |
#ifdef NONLIN_FRSURF |
| 585 |
ddRloc = ddRloc + surfPhiFac*etaH(i,j,bi,bj) |
| 586 |
#endif |
| 587 |
phiHydC(i,j) =( MAX(zeroRL,ddRloc)*rec_dRm*ddPIm |
| 588 |
& +MIN(zeroRL,ddRloc)*rec_dRp*ddPIp |
| 589 |
& )*alphaRho(i,j) |
| 590 |
ELSE |
| 591 |
phiHydC(i,j) = phiHydF(i,j) +ddPIm*alphaRho(i,j) |
| 592 |
ENDIF |
| 593 |
phiHydF(i,j) = phiHydC(i,j) +ddPIp*alphaRho(i,j) |
| 594 |
ENDDO |
| 595 |
ENDDO |
| 596 |
C end: Finite Difference Form, with Part-Cell Topo |
| 597 |
C----------------------------------------------------------------------- |
| 598 |
|
| 599 |
ELSE |
| 600 |
STOP 'CALC_PHI_HYD: Bad integr_GeoPot option !' |
| 601 |
ENDIF |
| 602 |
|
| 603 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
| 604 |
ELSE |
| 605 |
STOP 'CALC_PHI_HYD: Bad value of buoyancyRelation !' |
| 606 |
ENDIF |
| 607 |
|
| 608 |
IF ( .NOT. useFVgradPhi ) THEN |
| 609 |
C-- r-coordinate and r*-coordinate cases: |
| 610 |
|
| 611 |
IF ( momPressureForcing ) THEN |
| 612 |
CALL CALC_GRAD_PHI_HYD( |
| 613 |
I k, bi, bj, iMin,iMax, jMin,jMax, |
| 614 |
I phiHydC, alphaRho, tFld, sFld, |
| 615 |
O dPhiHydX, dPhiHydY, |
| 616 |
I myTime, myIter, myThid) |
| 617 |
ENDIF |
| 618 |
|
| 619 |
#ifndef DISABLE_SIGMA_CODE |
| 620 |
ELSE |
| 621 |
C-- else (SigmaCoords part) |
| 622 |
|
| 623 |
IF ( fluidIsWater ) THEN |
| 624 |
STOP 'CALC_PHI_HYD: missing code for SigmaCoord' |
| 625 |
ENDIF |
| 626 |
IF ( momPressureForcing ) THEN |
| 627 |
CALL CALC_GRAD_PHI_FV( |
| 628 |
I k, bi, bj, iMin,iMax, jMin,jMax, |
| 629 |
I phiHydF, phiHydU, pKappaF, pKappaU, |
| 630 |
O dPhiHydX, dPhiHydY, |
| 631 |
I myTime, myIter, myThid) |
| 632 |
ENDIF |
| 633 |
DO j=jMin,jMax |
| 634 |
DO i=iMin,iMax |
| 635 |
phiHydF(i,j) = phiHydU(i,j) |
| 636 |
ENDDO |
| 637 |
ENDDO |
| 638 |
|
| 639 |
#endif /* DISABLE_SIGMA_CODE */ |
| 640 |
C-- end if-not/else useFVgradPhi |
| 641 |
ENDIF |
| 642 |
|
| 643 |
C--- Diagnose Phi at boundary r=R_low : |
| 644 |
C = Ocean bottom pressure (Ocean, Z-coord.) |
| 645 |
C = Sea-surface height (Ocean, P-coord.) |
| 646 |
C = Top atmosphere height (Atmos, P-coord.) |
| 647 |
IF (useDiagPhiRlow) THEN |
| 648 |
CALL DIAGS_PHI_RLOW( |
| 649 |
I k, bi, bj, iMin,iMax, jMin,jMax, |
| 650 |
I phiHydF, phiHydC, alphaRho, tFld, sFld, |
| 651 |
I myTime, myIter, myThid) |
| 652 |
ENDIF |
| 653 |
|
| 654 |
C--- Diagnose Full Hydrostatic Potential at cell center level |
| 655 |
CALL DIAGS_PHI_HYD( |
| 656 |
I k, bi, bj, iMin,iMax, jMin,jMax, |
| 657 |
I phiHydC, |
| 658 |
I myTime, myIter, myThid) |
| 659 |
|
| 660 |
#endif /* INCLUDE_PHIHYD_CALCULATION_CODE */ |
| 661 |
|
| 662 |
RETURN |
| 663 |
END |