/[MITgcm]/MITgcm/model/src/calc_phi_hyd.F
ViewVC logotype

Contents of /MITgcm/model/src/calc_phi_hyd.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.41 - (show annotations) (download)
Wed Apr 11 04:02:05 2012 UTC (13 years, 3 months ago) by jmc
Branch: MAIN
CVS Tags: checkpoint64, checkpoint63p, checkpoint63q, checkpoint63r, checkpoint63s, checkpoint63m, checkpoint63n, checkpoint63o, checkpoint64a
Changes since 1.40: +69 -29 lines
implement partial cell near the surface also for Z-coordinates (for the
case where uniformFreeSurfLev=F)

1 C $Header: /u/gcmpack/MITgcm/model/src/calc_phi_hyd.F,v 1.40 2010/03/16 00:08:27 jmc Exp $
2 C $Name: $
3
4 #include "PACKAGES_CONFIG.h"
5 #include "CPP_OPTIONS.h"
6
7 CBOP
8 C !ROUTINE: CALC_PHI_HYD
9 C !INTERFACE:
10 SUBROUTINE CALC_PHI_HYD(
11 I bi, bj, iMin, iMax, jMin, jMax, k,
12 I tFld, sFld,
13 U phiHydF,
14 O phiHydC, dPhiHydX, dPhiHydY,
15 I myTime, myIter, myThid )
16 C !DESCRIPTION: \bv
17 C *==========================================================*
18 C | SUBROUTINE CALC_PHI_HYD |
19 C | o Integrate the hydrostatic relation to find the Hydros. |
20 C *==========================================================*
21 C | Potential (ocean: Pressure/rho ; atmos = geopotential)
22 C | On entry:
23 C | tFld,sFld are the current thermodynamics quantities
24 C | (unchanged on exit)
25 C | phiHydF(i,j) is the hydrostatic Potential anomaly
26 C | at middle between tracer points k-1,k
27 C | On exit:
28 C | phiHydC(i,j) is the hydrostatic Potential anomaly
29 C | at cell centers (tracer points), level k
30 C | phiHydF(i,j) is the hydrostatic Potential anomaly
31 C | at middle between tracer points k,k+1
32 C | dPhiHydX,Y hydrostatic Potential gradient (X&Y dir)
33 C | at cell centers (tracer points), level k
34 C | integr_GeoPot allows to select one integration method
35 C | 1= Finite volume form ; else= Finite difference form
36 C *==========================================================*
37 C \ev
38 C !USES:
39 IMPLICIT NONE
40 C == Global variables ==
41 #include "SIZE.h"
42 #include "GRID.h"
43 #include "EEPARAMS.h"
44 #include "PARAMS.h"
45 #ifdef ALLOW_AUTODIFF_TAMC
46 #include "tamc.h"
47 #include "tamc_keys.h"
48 #endif /* ALLOW_AUTODIFF_TAMC */
49 #include "SURFACE.h"
50 #include "DYNVARS.h"
51
52 C !INPUT/OUTPUT PARAMETERS:
53 C == Routine arguments ==
54 C bi, bj, k :: tile and level indices
55 C iMin,iMax,jMin,jMax :: computational domain
56 C tFld :: potential temperature
57 C sFld :: salinity
58 C phiHydF :: hydrostatic potential anomaly at middle between
59 C 2 centers (entry: Interf_k ; output: Interf_k+1)
60 C phiHydC :: hydrostatic potential anomaly at cell center
61 C dPhiHydX,Y :: gradient (X & Y dir.) of hydrostatic potential anom.
62 C myTime :: current time
63 C myIter :: current iteration number
64 C myThid :: thread number for this instance of the routine.
65 INTEGER bi,bj,iMin,iMax,jMin,jMax,k
66 _RL tFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
67 _RL sFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
68 c _RL phiHyd(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
69 _RL phiHydF(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
70 _RL phiHydC(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
71 _RL dPhiHydX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
72 _RL dPhiHydY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
73 _RL myTime
74 INTEGER myIter, myThid
75
76 #ifdef INCLUDE_PHIHYD_CALCULATION_CODE
77
78 C !LOCAL VARIABLES:
79 C == Local variables ==
80 INTEGER i,j
81 _RL zero, one, half
82 _RL alphaRho(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
83 _RL dRlocM,dRlocP, ddRloc, locAlpha
84 _RL ddPIm, ddPIp, rec_dRm, rec_dRp
85 _RL surfPhiFac
86 PARAMETER ( zero= 0. _d 0 , one= 1. _d 0 , half= .5 _d 0 )
87 LOGICAL useDiagPhiRlow, addSurfPhiAnom
88 CEOP
89 useDiagPhiRlow = .TRUE.
90 addSurfPhiAnom = select_rStar.EQ.0 .AND. nonlinFreeSurf.GE.4
91 surfPhiFac = 0.
92 IF (addSurfPhiAnom) surfPhiFac = 1.
93
94 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
95 C Atmosphere:
96 C integr_GeoPot => select one option for the integration of the Geopotential:
97 C = 0 : Energy Conserving Form, accurate with Topo full cell;
98 C = 1 : Finite Volume Form, with Part-Cell, linear in P by Half level;
99 C =2,3: Finite Difference Form, with Part-Cell,
100 C linear in P between 2 Tracer levels.
101 C can handle both cases: Tracer lev at the middle of InterFace_W
102 C and InterFace_W at the middle of Tracer lev;
103 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
104
105 #ifdef ALLOW_AUTODIFF_TAMC
106 act1 = bi - myBxLo(myThid)
107 max1 = myBxHi(myThid) - myBxLo(myThid) + 1
108
109 act2 = bj - myByLo(myThid)
110 max2 = myByHi(myThid) - myByLo(myThid) + 1
111
112 act3 = myThid - 1
113 max3 = nTx*nTy
114
115 act4 = ikey_dynamics - 1
116
117 ikey = (act1 + 1) + act2*max1
118 & + act3*max1*max2
119 & + act4*max1*max2*max3
120 #endif /* ALLOW_AUTODIFF_TAMC */
121
122 C-- Initialize phiHydF to zero :
123 C note: atmospheric_loading or Phi_topo anomaly are incorporated
124 C later in S/R calc_grad_phi_hyd
125 IF (k.EQ.1) THEN
126 DO j=1-OLy,sNy+OLy
127 DO i=1-OLx,sNx+OLx
128 phiHydF(i,j) = 0.
129 ENDDO
130 ENDDO
131 ENDIF
132
133 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
134 IF ( buoyancyRelation .EQ. 'OCEANIC' ) THEN
135 C This is the hydrostatic pressure calculation for the Ocean
136 C which uses the FIND_RHO() routine to calculate density
137 C before integrating g*rho over the current layer/interface
138 #ifdef ALLOW_AUTODIFF_TAMC
139 CADJ GENERAL
140 #endif /* ALLOW_AUTODIFF_TAMC */
141
142 IF ( implicitIntGravWave .OR. myIter.LT.0 ) THEN
143 C--- Calculate density
144 #ifdef ALLOW_AUTODIFF_TAMC
145 kkey = (ikey-1)*Nr + k
146 CADJ STORE tFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte,
147 CADJ & kind = isbyte
148 CADJ STORE sFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte,
149 CADJ & kind = isbyte
150 #endif /* ALLOW_AUTODIFF_TAMC */
151 CALL FIND_RHO_2D(
152 I iMin, iMax, jMin, jMax, k,
153 I tFld(1-OLx,1-OLy,k,bi,bj),
154 I sFld(1-OLx,1-OLy,k,bi,bj),
155 O alphaRho,
156 I k, bi, bj, myThid )
157 ELSE
158 DO j=jMin,jMax
159 DO i=iMin,iMax
160 alphaRho(i,j) = rhoInSitu(i,j,k,bi,bj)
161 ENDDO
162 ENDDO
163 ENDIF
164
165 #ifdef ALLOW_SHELFICE
166 C mask rho, so that there is no contribution of phiHyd from
167 C overlying shelfice (whose density we do not know)
168 IF ( useShelfIce .AND. useDOWN_SLOPE ) THEN
169 C- note: does not work for down_slope pkg which needs rho below the bottom.
170 C setting rho=0 above the ice-shelf base is enough (and works in both cases)
171 C but might be slower (--> keep original masking if not using down_slope pkg)
172 DO j=jMin,jMax
173 DO i=iMin,iMax
174 IF ( k.LT.kSurfC(i,j,bi,bj) ) alphaRho(i,j) = 0. _d 0
175 ENDDO
176 ENDDO
177 ELSEIF ( useShelfIce ) THEN
178 DO j=jMin,jMax
179 DO i=iMin,iMax
180 alphaRho(i,j) = alphaRho(i,j)*maskC(i,j,k,bi,bj)
181 ENDDO
182 ENDDO
183 ENDIF
184 #endif /* ALLOW_SHELFICE */
185
186 #ifdef ALLOW_MOM_COMMON
187 C Quasi-hydrostatic terms are added in as if they modify the buoyancy
188 IF (quasiHydrostatic) THEN
189 CALL MOM_QUASIHYDROSTATIC(bi,bj,k,uVel,vVel,alphaRho,myThid)
190 ENDIF
191 #endif /* ALLOW_MOM_COMMON */
192
193 #ifdef NONLIN_FRSURF
194 IF ( addSurfPhiAnom .AND.
195 & uniformFreeSurfLev .AND. k.EQ.1 ) THEN
196 DO j=jMin,jMax
197 DO i=iMin,iMax
198 phiHydF(i,j) = surfPhiFac*etaH(i,j,bi,bj)
199 & *gravity*alphaRho(i,j)*recip_rhoConst
200 ENDDO
201 ENDDO
202 ENDIF
203 #endif /* NONLIN_FRSURF */
204
205 C---- Hydrostatic pressure at cell centers
206
207 IF (integr_GeoPot.EQ.1) THEN
208 C -- Finite Volume Form
209
210 C---------- This discretization is the "finite volume" form
211 C which has not been used to date since it does not
212 C conserve KE+PE exactly even though it is more natural
213
214 IF ( uniformFreeSurfLev ) THEN
215 DO j=jMin,jMax
216 DO i=iMin,iMax
217 phiHydC(i,j) = phiHydF(i,j)
218 & + half*drF(k)*gravity*alphaRho(i,j)*recip_rhoConst
219 phiHydF(i,j) = phiHydF(i,j)
220 & + drF(k)*gravity*alphaRho(i,j)*recip_rhoConst
221 ENDDO
222 ENDDO
223 ELSE
224 DO j=jMin,jMax
225 DO i=iMin,iMax
226 IF (k.EQ.kSurfC(i,j,bi,bj)) THEN
227 ddRloc = Ro_surf(i,j,bi,bj)-rC(k)
228 #ifdef NONLIN_FRSURF
229 ddRloc = ddRloc + surfPhiFac*etaH(i,j,bi,bj)
230 #endif
231 phiHydC(i,j) = ddRloc*gravity*alphaRho(i,j)*recip_rhoConst
232 ELSE
233 phiHydC(i,j) = phiHydF(i,j)
234 & + half*drF(k)*gravity*alphaRho(i,j)*recip_rhoConst
235 ENDIF
236 phiHydF(i,j) = phiHydC(i,j)
237 & + half*drF(k)*gravity*alphaRho(i,j)*recip_rhoConst
238 ENDDO
239 ENDDO
240 ENDIF
241
242 ELSE
243 C -- Finite Difference Form
244
245 C---------- This discretization is the "energy conserving" form
246 C which has been used since at least Adcroft et al., MWR 1997
247
248 dRlocM=half*drC(k)
249 IF (k.EQ.1) dRlocM=rF(k)-rC(k)
250 IF (k.EQ.Nr) THEN
251 dRlocP=rC(k)-rF(k+1)
252 ELSE
253 dRlocP=half*drC(k+1)
254 ENDIF
255 IF ( uniformFreeSurfLev ) THEN
256 DO j=jMin,jMax
257 DO i=iMin,iMax
258 phiHydC(i,j) = phiHydF(i,j)
259 & +dRlocM*gravity*alphaRho(i,j)*recip_rhoConst
260 phiHydF(i,j) = phiHydC(i,j)
261 & +dRlocP*gravity*alphaRho(i,j)*recip_rhoConst
262 ENDDO
263 ENDDO
264 ELSE
265 rec_dRm = one/(rF(k)-rC(k))
266 rec_dRp = one/(rC(k)-rF(k+1))
267 DO j=jMin,jMax
268 DO i=iMin,iMax
269 IF (k.EQ.kSurfC(i,j,bi,bj)) THEN
270 ddRloc = Ro_surf(i,j,bi,bj)-rC(k)
271 #ifdef NONLIN_FRSURF
272 ddRloc = ddRloc + surfPhiFac*etaH(i,j,bi,bj)
273 #endif
274 phiHydC(i,j) =( MAX(zero,ddRloc)*rec_dRm*dRlocM
275 & +MIN(zero,ddRloc)*rec_dRp*dRlocP
276 & )*gravity*alphaRho(i,j)*recip_rhoConst
277 ELSE
278 phiHydC(i,j) = phiHydF(i,j)
279 & +dRlocM*gravity*alphaRho(i,j)*recip_rhoConst
280 ENDIF
281 phiHydF(i,j) = phiHydC(i,j)
282 & +dRlocP*gravity*alphaRho(i,j)*recip_rhoConst
283 ENDDO
284 ENDDO
285 ENDIF
286
287 C -- end if integr_GeoPot = ...
288 ENDIF
289
290 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
291 ELSEIF ( buoyancyRelation .EQ. 'OCEANICP' ) THEN
292 C This is the hydrostatic pressure calculation for the Ocean
293 C which uses the FIND_RHO() routine to calculate density before
294 C integrating (1/rho)_prime*dp over the current layer/interface
295 #ifdef ALLOW_AUTODIFF_TAMC
296 CADJ GENERAL
297 #endif /* ALLOW_AUTODIFF_TAMC */
298
299 IF ( implicitIntGravWave .OR. myIter.LT.0 ) THEN
300 C-- Calculate density
301 #ifdef ALLOW_AUTODIFF_TAMC
302 kkey = (ikey-1)*Nr + k
303 CADJ STORE tFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte,
304 CADJ & kind = isbyte
305 CADJ STORE sFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte,
306 CADJ & kind = isbyte
307 #endif /* ALLOW_AUTODIFF_TAMC */
308 CALL FIND_RHO_2D(
309 I iMin, iMax, jMin, jMax, k,
310 I tFld(1-OLx,1-OLy,k,bi,bj),
311 I sFld(1-OLx,1-OLy,k,bi,bj),
312 O alphaRho,
313 I k, bi, bj, myThid )
314 #ifdef ALLOW_AUTODIFF_TAMC
315 CADJ STORE alphaRho (:,:) = comlev1_bibj_k, key=kkey, byte=isbyte,
316 CADJ & kind = isbyte
317 #endif /* ALLOW_AUTODIFF_TAMC */
318 ELSE
319 DO j=jMin,jMax
320 DO i=iMin,iMax
321 alphaRho(i,j) = rhoInSitu(i,j,k,bi,bj)
322 ENDDO
323 ENDDO
324 ENDIF
325
326 C-- Calculate specific volume anomaly : alpha_prime = 1/rho - alpha_Cst
327 DO j=jMin,jMax
328 DO i=iMin,iMax
329 locAlpha=alphaRho(i,j)+rhoConst
330 alphaRho(i,j)=maskC(i,j,k,bi,bj)*
331 & (one/locAlpha - recip_rhoConst)
332 ENDDO
333 ENDDO
334
335 C---- Hydrostatic pressure at cell centers
336
337 IF (integr_GeoPot.EQ.1) THEN
338 C -- Finite Volume Form
339
340 DO j=jMin,jMax
341 DO i=iMin,iMax
342
343 C---------- This discretization is the "finite volume" form
344 C which has not been used to date since it does not
345 C conserve KE+PE exactly even though it is more natural
346
347 IF (k.EQ.kSurfC(i,j,bi,bj)) THEN
348 ddRloc = Ro_surf(i,j,bi,bj)-rC(k)
349 #ifdef NONLIN_FRSURF
350 ddRloc = ddRloc + surfPhiFac*etaH(i,j,bi,bj)
351 #endif
352 phiHydC(i,j) = ddRloc*alphaRho(i,j)
353 c--to reproduce results of c48d_post: uncomment those 4+1 lines
354 c phiHydC(i,j)=phiHydF(i,j)
355 c & +(hFacC(i,j,k,bi,bj)-half)*drF(k)*alphaRho(i,j)
356 c phiHydF(i,j)=phiHydF(i,j)
357 c & + hFacC(i,j,k,bi,bj)*drF(k)*alphaRho(i,j)
358 ELSE
359 phiHydC(i,j) = phiHydF(i,j) + half*drF(k)*alphaRho(i,j)
360 c phiHydF(i,j) = phiHydF(i,j) + drF(k)*alphaRho(i,j)
361 ENDIF
362 c-- and comment this last one:
363 phiHydF(i,j) = phiHydC(i,j) + half*drF(k)*alphaRho(i,j)
364 c-----
365 ENDDO
366 ENDDO
367
368 ELSE
369 C -- Finite Difference Form, with Part-Cell Bathy
370
371 dRlocM=half*drC(k)
372 IF (k.EQ.1) dRlocM=rF(k)-rC(k)
373 IF (k.EQ.Nr) THEN
374 dRlocP=rC(k)-rF(k+1)
375 ELSE
376 dRlocP=half*drC(k+1)
377 ENDIF
378 rec_dRm = one/(rF(k)-rC(k))
379 rec_dRp = one/(rC(k)-rF(k+1))
380
381 DO j=jMin,jMax
382 DO i=iMin,iMax
383
384 C---------- This discretization is the "energy conserving" form
385
386 IF (k.EQ.kSurfC(i,j,bi,bj)) THEN
387 ddRloc = Ro_surf(i,j,bi,bj)-rC(k)
388 #ifdef NONLIN_FRSURF
389 ddRloc = ddRloc + surfPhiFac*etaH(i,j,bi,bj)
390 #endif
391 phiHydC(i,j) =( MAX(zero,ddRloc)*rec_dRm*dRlocM
392 & +MIN(zero,ddRloc)*rec_dRp*dRlocP
393 & )*alphaRho(i,j)
394 ELSE
395 phiHydC(i,j) = phiHydF(i,j) + dRlocM*alphaRho(i,j)
396 ENDIF
397 phiHydF(i,j) = phiHydC(i,j) + dRlocP*alphaRho(i,j)
398 ENDDO
399 ENDDO
400
401 C -- end if integr_GeoPot = ...
402 ENDIF
403
404 ELSEIF ( buoyancyRelation .EQ. 'ATMOSPHERIC' ) THEN
405 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
406 C This is the hydrostatic geopotential calculation for the Atmosphere
407 C The ideal gas law is used implicitly here rather than calculating
408 C the specific volume, analogous to the oceanic case.
409
410 C-- virtual potential temperature anomaly (including water vapour effect)
411 DO j=jMin,jMax
412 DO i=iMin,iMax
413 alphaRho(i,j)=maskC(i,j,k,bi,bj)
414 & *( tFld(i,j,k,bi,bj)*(sFld(i,j,k,bi,bj)*atm_Rq+one)
415 & -tRef(k) )
416 ENDDO
417 ENDDO
418
419 C--- Integrate d Phi / d pi
420
421 IF (integr_GeoPot.EQ.0) THEN
422 C -- Energy Conserving Form, accurate with Full cell topo --
423 C------------ The integration for the first level phi(k=1) is the same
424 C for both the "finite volume" and energy conserving methods.
425 C *NOTE* o Working with geopotential Anomaly, the geopotential boundary
426 C condition is simply Phi-prime(Ro_surf)=0.
427 C o convention ddPI > 0 (same as drF & drC)
428 C-----------------------------------------------------------------------
429 IF (k.EQ.1) THEN
430 ddPIm=atm_Cp*( ((rF( k )/atm_Po)**atm_kappa)
431 & -((rC( k )/atm_Po)**atm_kappa) )
432 ELSE
433 ddPIm=atm_Cp*( ((rC(k-1)/atm_Po)**atm_kappa)
434 & -((rC( k )/atm_Po)**atm_kappa) )*half
435 ENDIF
436 IF (k.EQ.Nr) THEN
437 ddPIp=atm_Cp*( ((rC( k )/atm_Po)**atm_kappa)
438 & -((rF(k+1)/atm_Po)**atm_kappa) )
439 ELSE
440 ddPIp=atm_Cp*( ((rC( k )/atm_Po)**atm_kappa)
441 & -((rC(k+1)/atm_Po)**atm_kappa) )*half
442 ENDIF
443 C-------- This discretization is the energy conserving form
444 DO j=jMin,jMax
445 DO i=iMin,iMax
446 phiHydC(i,j) = phiHydF(i,j) +ddPIm*alphaRho(i,j)
447 phiHydF(i,j) = phiHydC(i,j) +ddPIp*alphaRho(i,j)
448 ENDDO
449 ENDDO
450 C end: Energy Conserving Form, No hFac --
451 C-----------------------------------------------------------------------
452
453 ELSEIF (integr_GeoPot.EQ.1) THEN
454 C -- Finite Volume Form, with Part-Cell Topo, linear in P by Half level
455 C---------
456 C Finite Volume formulation consistent with Partial Cell, linear in p by piece
457 C Note: a true Finite Volume form should be linear between 2 Interf_W :
458 C phi_C = (phi_W_k+ phi_W_k+1)/2 ; but not accurate in Stratosphere (low p)
459 C also: if Interface_W at the middle between tracer levels, this form
460 C is close to the Energy Cons. form in the Interior, except for the
461 C non-linearity in PI(p)
462 C---------
463 ddPIm=atm_Cp*( ((rF( k )/atm_Po)**atm_kappa)
464 & -((rC( k )/atm_Po)**atm_kappa) )
465 ddPIp=atm_Cp*( ((rC( k )/atm_Po)**atm_kappa)
466 & -((rF(k+1)/atm_Po)**atm_kappa) )
467 DO j=jMin,jMax
468 DO i=iMin,iMax
469 IF (k.EQ.kSurfC(i,j,bi,bj)) THEN
470 ddRloc = Ro_surf(i,j,bi,bj)-rC(k)
471 #ifdef NONLIN_FRSURF
472 ddRloc = ddRloc + surfPhiFac*etaH(i,j,bi,bj)
473 #endif
474 phiHydC(i,j) = ddRloc*recip_drF(k)*2. _d 0
475 & *ddPIm*alphaRho(i,j)
476 ELSE
477 phiHydC(i,j) = phiHydF(i,j) +ddPIm*alphaRho(i,j)
478 ENDIF
479 phiHydF(i,j) = phiHydC(i,j) +ddPIp*alphaRho(i,j)
480 ENDDO
481 ENDDO
482 C end: Finite Volume Form, with Part-Cell Topo, linear in P by Half level
483 C-----------------------------------------------------------------------
484
485 ELSEIF ( integr_GeoPot.EQ.2
486 & .OR. integr_GeoPot.EQ.3 ) THEN
487 C -- Finite Difference Form, with Part-Cell Topo,
488 C works with Interface_W at the middle between 2.Tracer_Level
489 C and with Tracer_Level at the middle between 2.Interface_W.
490 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
491 C Finite Difference formulation consistent with Partial Cell,
492 C Valid & accurate if Interface_W at middle between tracer levels
493 C linear in p between 2 Tracer levels ; conserve energy in the Interior
494 C---------
495 IF (k.EQ.1) THEN
496 ddPIm=atm_Cp*( ((rF( k )/atm_Po)**atm_kappa)
497 & -((rC( k )/atm_Po)**atm_kappa) )
498 ELSE
499 ddPIm=atm_Cp*( ((rC(k-1)/atm_Po)**atm_kappa)
500 & -((rC( k )/atm_Po)**atm_kappa) )*half
501 ENDIF
502 IF (k.EQ.Nr) THEN
503 ddPIp=atm_Cp*( ((rC( k )/atm_Po)**atm_kappa)
504 & -((rF(k+1)/atm_Po)**atm_kappa) )
505 ELSE
506 ddPIp=atm_Cp*( ((rC( k )/atm_Po)**atm_kappa)
507 & -((rC(k+1)/atm_Po)**atm_kappa) )*half
508 ENDIF
509 rec_dRm = one/(rF(k)-rC(k))
510 rec_dRp = one/(rC(k)-rF(k+1))
511 DO j=jMin,jMax
512 DO i=iMin,iMax
513 IF (k.EQ.kSurfC(i,j,bi,bj)) THEN
514 ddRloc = Ro_surf(i,j,bi,bj)-rC(k)
515 #ifdef NONLIN_FRSURF
516 ddRloc = ddRloc + surfPhiFac*etaH(i,j,bi,bj)
517 #endif
518 phiHydC(i,j) =( MAX(zero,ddRloc)*rec_dRm*ddPIm
519 & +MIN(zero,ddRloc)*rec_dRp*ddPIp )
520 & *alphaRho(i,j)
521 ELSE
522 phiHydC(i,j) = phiHydF(i,j) +ddPIm*alphaRho(i,j)
523 ENDIF
524 phiHydF(i,j) = phiHydC(i,j) +ddPIp*alphaRho(i,j)
525 ENDDO
526 ENDDO
527 C end: Finite Difference Form, with Part-Cell Topo
528 C-----------------------------------------------------------------------
529
530 ELSE
531 STOP 'CALC_PHI_HYD: Bad integr_GeoPot option !'
532 ENDIF
533
534 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
535 ELSE
536 STOP 'CALC_PHI_HYD: Bad value of buoyancyRelation !'
537 ENDIF
538
539 C--- Diagnose Phi at boundary r=R_low :
540 C = Ocean bottom pressure (Ocean, Z-coord.)
541 C = Sea-surface height (Ocean, P-coord.)
542 C = Top atmosphere height (Atmos, P-coord.)
543 IF (useDiagPhiRlow) THEN
544 CALL DIAGS_PHI_RLOW(
545 I k, bi, bj, iMin,iMax, jMin,jMax,
546 I phiHydF, phiHydC, alphaRho, tFld, sFld,
547 I myTime, myIter, myThid)
548 ENDIF
549
550 C--- Diagnose Full Hydrostatic Potential at cell center level
551 CALL DIAGS_PHI_HYD(
552 I k, bi, bj, iMin,iMax, jMin,jMax,
553 I phiHydC,
554 I myTime, myIter, myThid)
555
556 IF (momPressureForcing) THEN
557 CALL CALC_GRAD_PHI_HYD(
558 I k, bi, bj, iMin,iMax, jMin,jMax,
559 I phiHydC, alphaRho, tFld, sFld,
560 O dPhiHydX, dPhiHydY,
561 I myTime, myIter, myThid)
562 ENDIF
563
564 #endif /* INCLUDE_PHIHYD_CALCULATION_CODE */
565
566 RETURN
567 END

  ViewVC Help
Powered by ViewVC 1.1.22