1 |
C $Header: /u/gcmpack/MITgcm/model/src/calc_phi_hyd.F,v 1.40 2010/03/16 00:08:27 jmc Exp $ |
2 |
C $Name: $ |
3 |
|
4 |
#include "PACKAGES_CONFIG.h" |
5 |
#include "CPP_OPTIONS.h" |
6 |
|
7 |
CBOP |
8 |
C !ROUTINE: CALC_PHI_HYD |
9 |
C !INTERFACE: |
10 |
SUBROUTINE CALC_PHI_HYD( |
11 |
I bi, bj, iMin, iMax, jMin, jMax, k, |
12 |
I tFld, sFld, |
13 |
U phiHydF, |
14 |
O phiHydC, dPhiHydX, dPhiHydY, |
15 |
I myTime, myIter, myThid ) |
16 |
C !DESCRIPTION: \bv |
17 |
C *==========================================================* |
18 |
C | SUBROUTINE CALC_PHI_HYD | |
19 |
C | o Integrate the hydrostatic relation to find the Hydros. | |
20 |
C *==========================================================* |
21 |
C | Potential (ocean: Pressure/rho ; atmos = geopotential) |
22 |
C | On entry: |
23 |
C | tFld,sFld are the current thermodynamics quantities |
24 |
C | (unchanged on exit) |
25 |
C | phiHydF(i,j) is the hydrostatic Potential anomaly |
26 |
C | at middle between tracer points k-1,k |
27 |
C | On exit: |
28 |
C | phiHydC(i,j) is the hydrostatic Potential anomaly |
29 |
C | at cell centers (tracer points), level k |
30 |
C | phiHydF(i,j) is the hydrostatic Potential anomaly |
31 |
C | at middle between tracer points k,k+1 |
32 |
C | dPhiHydX,Y hydrostatic Potential gradient (X&Y dir) |
33 |
C | at cell centers (tracer points), level k |
34 |
C | integr_GeoPot allows to select one integration method |
35 |
C | 1= Finite volume form ; else= Finite difference form |
36 |
C *==========================================================* |
37 |
C \ev |
38 |
C !USES: |
39 |
IMPLICIT NONE |
40 |
C == Global variables == |
41 |
#include "SIZE.h" |
42 |
#include "GRID.h" |
43 |
#include "EEPARAMS.h" |
44 |
#include "PARAMS.h" |
45 |
#ifdef ALLOW_AUTODIFF_TAMC |
46 |
#include "tamc.h" |
47 |
#include "tamc_keys.h" |
48 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
49 |
#include "SURFACE.h" |
50 |
#include "DYNVARS.h" |
51 |
|
52 |
C !INPUT/OUTPUT PARAMETERS: |
53 |
C == Routine arguments == |
54 |
C bi, bj, k :: tile and level indices |
55 |
C iMin,iMax,jMin,jMax :: computational domain |
56 |
C tFld :: potential temperature |
57 |
C sFld :: salinity |
58 |
C phiHydF :: hydrostatic potential anomaly at middle between |
59 |
C 2 centers (entry: Interf_k ; output: Interf_k+1) |
60 |
C phiHydC :: hydrostatic potential anomaly at cell center |
61 |
C dPhiHydX,Y :: gradient (X & Y dir.) of hydrostatic potential anom. |
62 |
C myTime :: current time |
63 |
C myIter :: current iteration number |
64 |
C myThid :: thread number for this instance of the routine. |
65 |
INTEGER bi,bj,iMin,iMax,jMin,jMax,k |
66 |
_RL tFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy) |
67 |
_RL sFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy) |
68 |
c _RL phiHyd(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
69 |
_RL phiHydF(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
70 |
_RL phiHydC(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
71 |
_RL dPhiHydX(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
72 |
_RL dPhiHydY(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
73 |
_RL myTime |
74 |
INTEGER myIter, myThid |
75 |
|
76 |
#ifdef INCLUDE_PHIHYD_CALCULATION_CODE |
77 |
|
78 |
C !LOCAL VARIABLES: |
79 |
C == Local variables == |
80 |
INTEGER i,j |
81 |
_RL zero, one, half |
82 |
_RL alphaRho(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
83 |
_RL dRlocM,dRlocP, ddRloc, locAlpha |
84 |
_RL ddPIm, ddPIp, rec_dRm, rec_dRp |
85 |
_RL surfPhiFac |
86 |
PARAMETER ( zero= 0. _d 0 , one= 1. _d 0 , half= .5 _d 0 ) |
87 |
LOGICAL useDiagPhiRlow, addSurfPhiAnom |
88 |
CEOP |
89 |
useDiagPhiRlow = .TRUE. |
90 |
addSurfPhiAnom = select_rStar.EQ.0 .AND. nonlinFreeSurf.GE.4 |
91 |
surfPhiFac = 0. |
92 |
IF (addSurfPhiAnom) surfPhiFac = 1. |
93 |
|
94 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
95 |
C Atmosphere: |
96 |
C integr_GeoPot => select one option for the integration of the Geopotential: |
97 |
C = 0 : Energy Conserving Form, accurate with Topo full cell; |
98 |
C = 1 : Finite Volume Form, with Part-Cell, linear in P by Half level; |
99 |
C =2,3: Finite Difference Form, with Part-Cell, |
100 |
C linear in P between 2 Tracer levels. |
101 |
C can handle both cases: Tracer lev at the middle of InterFace_W |
102 |
C and InterFace_W at the middle of Tracer lev; |
103 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
104 |
|
105 |
#ifdef ALLOW_AUTODIFF_TAMC |
106 |
act1 = bi - myBxLo(myThid) |
107 |
max1 = myBxHi(myThid) - myBxLo(myThid) + 1 |
108 |
|
109 |
act2 = bj - myByLo(myThid) |
110 |
max2 = myByHi(myThid) - myByLo(myThid) + 1 |
111 |
|
112 |
act3 = myThid - 1 |
113 |
max3 = nTx*nTy |
114 |
|
115 |
act4 = ikey_dynamics - 1 |
116 |
|
117 |
ikey = (act1 + 1) + act2*max1 |
118 |
& + act3*max1*max2 |
119 |
& + act4*max1*max2*max3 |
120 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
121 |
|
122 |
C-- Initialize phiHydF to zero : |
123 |
C note: atmospheric_loading or Phi_topo anomaly are incorporated |
124 |
C later in S/R calc_grad_phi_hyd |
125 |
IF (k.EQ.1) THEN |
126 |
DO j=1-OLy,sNy+OLy |
127 |
DO i=1-OLx,sNx+OLx |
128 |
phiHydF(i,j) = 0. |
129 |
ENDDO |
130 |
ENDDO |
131 |
ENDIF |
132 |
|
133 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
134 |
IF ( buoyancyRelation .EQ. 'OCEANIC' ) THEN |
135 |
C This is the hydrostatic pressure calculation for the Ocean |
136 |
C which uses the FIND_RHO() routine to calculate density |
137 |
C before integrating g*rho over the current layer/interface |
138 |
#ifdef ALLOW_AUTODIFF_TAMC |
139 |
CADJ GENERAL |
140 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
141 |
|
142 |
IF ( implicitIntGravWave .OR. myIter.LT.0 ) THEN |
143 |
C--- Calculate density |
144 |
#ifdef ALLOW_AUTODIFF_TAMC |
145 |
kkey = (ikey-1)*Nr + k |
146 |
CADJ STORE tFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte, |
147 |
CADJ & kind = isbyte |
148 |
CADJ STORE sFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte, |
149 |
CADJ & kind = isbyte |
150 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
151 |
CALL FIND_RHO_2D( |
152 |
I iMin, iMax, jMin, jMax, k, |
153 |
I tFld(1-OLx,1-OLy,k,bi,bj), |
154 |
I sFld(1-OLx,1-OLy,k,bi,bj), |
155 |
O alphaRho, |
156 |
I k, bi, bj, myThid ) |
157 |
ELSE |
158 |
DO j=jMin,jMax |
159 |
DO i=iMin,iMax |
160 |
alphaRho(i,j) = rhoInSitu(i,j,k,bi,bj) |
161 |
ENDDO |
162 |
ENDDO |
163 |
ENDIF |
164 |
|
165 |
#ifdef ALLOW_SHELFICE |
166 |
C mask rho, so that there is no contribution of phiHyd from |
167 |
C overlying shelfice (whose density we do not know) |
168 |
IF ( useShelfIce .AND. useDOWN_SLOPE ) THEN |
169 |
C- note: does not work for down_slope pkg which needs rho below the bottom. |
170 |
C setting rho=0 above the ice-shelf base is enough (and works in both cases) |
171 |
C but might be slower (--> keep original masking if not using down_slope pkg) |
172 |
DO j=jMin,jMax |
173 |
DO i=iMin,iMax |
174 |
IF ( k.LT.kSurfC(i,j,bi,bj) ) alphaRho(i,j) = 0. _d 0 |
175 |
ENDDO |
176 |
ENDDO |
177 |
ELSEIF ( useShelfIce ) THEN |
178 |
DO j=jMin,jMax |
179 |
DO i=iMin,iMax |
180 |
alphaRho(i,j) = alphaRho(i,j)*maskC(i,j,k,bi,bj) |
181 |
ENDDO |
182 |
ENDDO |
183 |
ENDIF |
184 |
#endif /* ALLOW_SHELFICE */ |
185 |
|
186 |
#ifdef ALLOW_MOM_COMMON |
187 |
C Quasi-hydrostatic terms are added in as if they modify the buoyancy |
188 |
IF (quasiHydrostatic) THEN |
189 |
CALL MOM_QUASIHYDROSTATIC(bi,bj,k,uVel,vVel,alphaRho,myThid) |
190 |
ENDIF |
191 |
#endif /* ALLOW_MOM_COMMON */ |
192 |
|
193 |
#ifdef NONLIN_FRSURF |
194 |
IF ( addSurfPhiAnom .AND. |
195 |
& uniformFreeSurfLev .AND. k.EQ.1 ) THEN |
196 |
DO j=jMin,jMax |
197 |
DO i=iMin,iMax |
198 |
phiHydF(i,j) = surfPhiFac*etaH(i,j,bi,bj) |
199 |
& *gravity*alphaRho(i,j)*recip_rhoConst |
200 |
ENDDO |
201 |
ENDDO |
202 |
ENDIF |
203 |
#endif /* NONLIN_FRSURF */ |
204 |
|
205 |
C---- Hydrostatic pressure at cell centers |
206 |
|
207 |
IF (integr_GeoPot.EQ.1) THEN |
208 |
C -- Finite Volume Form |
209 |
|
210 |
C---------- This discretization is the "finite volume" form |
211 |
C which has not been used to date since it does not |
212 |
C conserve KE+PE exactly even though it is more natural |
213 |
|
214 |
IF ( uniformFreeSurfLev ) THEN |
215 |
DO j=jMin,jMax |
216 |
DO i=iMin,iMax |
217 |
phiHydC(i,j) = phiHydF(i,j) |
218 |
& + half*drF(k)*gravity*alphaRho(i,j)*recip_rhoConst |
219 |
phiHydF(i,j) = phiHydF(i,j) |
220 |
& + drF(k)*gravity*alphaRho(i,j)*recip_rhoConst |
221 |
ENDDO |
222 |
ENDDO |
223 |
ELSE |
224 |
DO j=jMin,jMax |
225 |
DO i=iMin,iMax |
226 |
IF (k.EQ.kSurfC(i,j,bi,bj)) THEN |
227 |
ddRloc = Ro_surf(i,j,bi,bj)-rC(k) |
228 |
#ifdef NONLIN_FRSURF |
229 |
ddRloc = ddRloc + surfPhiFac*etaH(i,j,bi,bj) |
230 |
#endif |
231 |
phiHydC(i,j) = ddRloc*gravity*alphaRho(i,j)*recip_rhoConst |
232 |
ELSE |
233 |
phiHydC(i,j) = phiHydF(i,j) |
234 |
& + half*drF(k)*gravity*alphaRho(i,j)*recip_rhoConst |
235 |
ENDIF |
236 |
phiHydF(i,j) = phiHydC(i,j) |
237 |
& + half*drF(k)*gravity*alphaRho(i,j)*recip_rhoConst |
238 |
ENDDO |
239 |
ENDDO |
240 |
ENDIF |
241 |
|
242 |
ELSE |
243 |
C -- Finite Difference Form |
244 |
|
245 |
C---------- This discretization is the "energy conserving" form |
246 |
C which has been used since at least Adcroft et al., MWR 1997 |
247 |
|
248 |
dRlocM=half*drC(k) |
249 |
IF (k.EQ.1) dRlocM=rF(k)-rC(k) |
250 |
IF (k.EQ.Nr) THEN |
251 |
dRlocP=rC(k)-rF(k+1) |
252 |
ELSE |
253 |
dRlocP=half*drC(k+1) |
254 |
ENDIF |
255 |
IF ( uniformFreeSurfLev ) THEN |
256 |
DO j=jMin,jMax |
257 |
DO i=iMin,iMax |
258 |
phiHydC(i,j) = phiHydF(i,j) |
259 |
& +dRlocM*gravity*alphaRho(i,j)*recip_rhoConst |
260 |
phiHydF(i,j) = phiHydC(i,j) |
261 |
& +dRlocP*gravity*alphaRho(i,j)*recip_rhoConst |
262 |
ENDDO |
263 |
ENDDO |
264 |
ELSE |
265 |
rec_dRm = one/(rF(k)-rC(k)) |
266 |
rec_dRp = one/(rC(k)-rF(k+1)) |
267 |
DO j=jMin,jMax |
268 |
DO i=iMin,iMax |
269 |
IF (k.EQ.kSurfC(i,j,bi,bj)) THEN |
270 |
ddRloc = Ro_surf(i,j,bi,bj)-rC(k) |
271 |
#ifdef NONLIN_FRSURF |
272 |
ddRloc = ddRloc + surfPhiFac*etaH(i,j,bi,bj) |
273 |
#endif |
274 |
phiHydC(i,j) =( MAX(zero,ddRloc)*rec_dRm*dRlocM |
275 |
& +MIN(zero,ddRloc)*rec_dRp*dRlocP |
276 |
& )*gravity*alphaRho(i,j)*recip_rhoConst |
277 |
ELSE |
278 |
phiHydC(i,j) = phiHydF(i,j) |
279 |
& +dRlocM*gravity*alphaRho(i,j)*recip_rhoConst |
280 |
ENDIF |
281 |
phiHydF(i,j) = phiHydC(i,j) |
282 |
& +dRlocP*gravity*alphaRho(i,j)*recip_rhoConst |
283 |
ENDDO |
284 |
ENDDO |
285 |
ENDIF |
286 |
|
287 |
C -- end if integr_GeoPot = ... |
288 |
ENDIF |
289 |
|
290 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
291 |
ELSEIF ( buoyancyRelation .EQ. 'OCEANICP' ) THEN |
292 |
C This is the hydrostatic pressure calculation for the Ocean |
293 |
C which uses the FIND_RHO() routine to calculate density before |
294 |
C integrating (1/rho)_prime*dp over the current layer/interface |
295 |
#ifdef ALLOW_AUTODIFF_TAMC |
296 |
CADJ GENERAL |
297 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
298 |
|
299 |
IF ( implicitIntGravWave .OR. myIter.LT.0 ) THEN |
300 |
C-- Calculate density |
301 |
#ifdef ALLOW_AUTODIFF_TAMC |
302 |
kkey = (ikey-1)*Nr + k |
303 |
CADJ STORE tFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte, |
304 |
CADJ & kind = isbyte |
305 |
CADJ STORE sFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte, |
306 |
CADJ & kind = isbyte |
307 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
308 |
CALL FIND_RHO_2D( |
309 |
I iMin, iMax, jMin, jMax, k, |
310 |
I tFld(1-OLx,1-OLy,k,bi,bj), |
311 |
I sFld(1-OLx,1-OLy,k,bi,bj), |
312 |
O alphaRho, |
313 |
I k, bi, bj, myThid ) |
314 |
#ifdef ALLOW_AUTODIFF_TAMC |
315 |
CADJ STORE alphaRho (:,:) = comlev1_bibj_k, key=kkey, byte=isbyte, |
316 |
CADJ & kind = isbyte |
317 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
318 |
ELSE |
319 |
DO j=jMin,jMax |
320 |
DO i=iMin,iMax |
321 |
alphaRho(i,j) = rhoInSitu(i,j,k,bi,bj) |
322 |
ENDDO |
323 |
ENDDO |
324 |
ENDIF |
325 |
|
326 |
C-- Calculate specific volume anomaly : alpha_prime = 1/rho - alpha_Cst |
327 |
DO j=jMin,jMax |
328 |
DO i=iMin,iMax |
329 |
locAlpha=alphaRho(i,j)+rhoConst |
330 |
alphaRho(i,j)=maskC(i,j,k,bi,bj)* |
331 |
& (one/locAlpha - recip_rhoConst) |
332 |
ENDDO |
333 |
ENDDO |
334 |
|
335 |
C---- Hydrostatic pressure at cell centers |
336 |
|
337 |
IF (integr_GeoPot.EQ.1) THEN |
338 |
C -- Finite Volume Form |
339 |
|
340 |
DO j=jMin,jMax |
341 |
DO i=iMin,iMax |
342 |
|
343 |
C---------- This discretization is the "finite volume" form |
344 |
C which has not been used to date since it does not |
345 |
C conserve KE+PE exactly even though it is more natural |
346 |
|
347 |
IF (k.EQ.kSurfC(i,j,bi,bj)) THEN |
348 |
ddRloc = Ro_surf(i,j,bi,bj)-rC(k) |
349 |
#ifdef NONLIN_FRSURF |
350 |
ddRloc = ddRloc + surfPhiFac*etaH(i,j,bi,bj) |
351 |
#endif |
352 |
phiHydC(i,j) = ddRloc*alphaRho(i,j) |
353 |
c--to reproduce results of c48d_post: uncomment those 4+1 lines |
354 |
c phiHydC(i,j)=phiHydF(i,j) |
355 |
c & +(hFacC(i,j,k,bi,bj)-half)*drF(k)*alphaRho(i,j) |
356 |
c phiHydF(i,j)=phiHydF(i,j) |
357 |
c & + hFacC(i,j,k,bi,bj)*drF(k)*alphaRho(i,j) |
358 |
ELSE |
359 |
phiHydC(i,j) = phiHydF(i,j) + half*drF(k)*alphaRho(i,j) |
360 |
c phiHydF(i,j) = phiHydF(i,j) + drF(k)*alphaRho(i,j) |
361 |
ENDIF |
362 |
c-- and comment this last one: |
363 |
phiHydF(i,j) = phiHydC(i,j) + half*drF(k)*alphaRho(i,j) |
364 |
c----- |
365 |
ENDDO |
366 |
ENDDO |
367 |
|
368 |
ELSE |
369 |
C -- Finite Difference Form, with Part-Cell Bathy |
370 |
|
371 |
dRlocM=half*drC(k) |
372 |
IF (k.EQ.1) dRlocM=rF(k)-rC(k) |
373 |
IF (k.EQ.Nr) THEN |
374 |
dRlocP=rC(k)-rF(k+1) |
375 |
ELSE |
376 |
dRlocP=half*drC(k+1) |
377 |
ENDIF |
378 |
rec_dRm = one/(rF(k)-rC(k)) |
379 |
rec_dRp = one/(rC(k)-rF(k+1)) |
380 |
|
381 |
DO j=jMin,jMax |
382 |
DO i=iMin,iMax |
383 |
|
384 |
C---------- This discretization is the "energy conserving" form |
385 |
|
386 |
IF (k.EQ.kSurfC(i,j,bi,bj)) THEN |
387 |
ddRloc = Ro_surf(i,j,bi,bj)-rC(k) |
388 |
#ifdef NONLIN_FRSURF |
389 |
ddRloc = ddRloc + surfPhiFac*etaH(i,j,bi,bj) |
390 |
#endif |
391 |
phiHydC(i,j) =( MAX(zero,ddRloc)*rec_dRm*dRlocM |
392 |
& +MIN(zero,ddRloc)*rec_dRp*dRlocP |
393 |
& )*alphaRho(i,j) |
394 |
ELSE |
395 |
phiHydC(i,j) = phiHydF(i,j) + dRlocM*alphaRho(i,j) |
396 |
ENDIF |
397 |
phiHydF(i,j) = phiHydC(i,j) + dRlocP*alphaRho(i,j) |
398 |
ENDDO |
399 |
ENDDO |
400 |
|
401 |
C -- end if integr_GeoPot = ... |
402 |
ENDIF |
403 |
|
404 |
ELSEIF ( buoyancyRelation .EQ. 'ATMOSPHERIC' ) THEN |
405 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
406 |
C This is the hydrostatic geopotential calculation for the Atmosphere |
407 |
C The ideal gas law is used implicitly here rather than calculating |
408 |
C the specific volume, analogous to the oceanic case. |
409 |
|
410 |
C-- virtual potential temperature anomaly (including water vapour effect) |
411 |
DO j=jMin,jMax |
412 |
DO i=iMin,iMax |
413 |
alphaRho(i,j)=maskC(i,j,k,bi,bj) |
414 |
& *( tFld(i,j,k,bi,bj)*(sFld(i,j,k,bi,bj)*atm_Rq+one) |
415 |
& -tRef(k) ) |
416 |
ENDDO |
417 |
ENDDO |
418 |
|
419 |
C--- Integrate d Phi / d pi |
420 |
|
421 |
IF (integr_GeoPot.EQ.0) THEN |
422 |
C -- Energy Conserving Form, accurate with Full cell topo -- |
423 |
C------------ The integration for the first level phi(k=1) is the same |
424 |
C for both the "finite volume" and energy conserving methods. |
425 |
C *NOTE* o Working with geopotential Anomaly, the geopotential boundary |
426 |
C condition is simply Phi-prime(Ro_surf)=0. |
427 |
C o convention ddPI > 0 (same as drF & drC) |
428 |
C----------------------------------------------------------------------- |
429 |
IF (k.EQ.1) THEN |
430 |
ddPIm=atm_Cp*( ((rF( k )/atm_Po)**atm_kappa) |
431 |
& -((rC( k )/atm_Po)**atm_kappa) ) |
432 |
ELSE |
433 |
ddPIm=atm_Cp*( ((rC(k-1)/atm_Po)**atm_kappa) |
434 |
& -((rC( k )/atm_Po)**atm_kappa) )*half |
435 |
ENDIF |
436 |
IF (k.EQ.Nr) THEN |
437 |
ddPIp=atm_Cp*( ((rC( k )/atm_Po)**atm_kappa) |
438 |
& -((rF(k+1)/atm_Po)**atm_kappa) ) |
439 |
ELSE |
440 |
ddPIp=atm_Cp*( ((rC( k )/atm_Po)**atm_kappa) |
441 |
& -((rC(k+1)/atm_Po)**atm_kappa) )*half |
442 |
ENDIF |
443 |
C-------- This discretization is the energy conserving form |
444 |
DO j=jMin,jMax |
445 |
DO i=iMin,iMax |
446 |
phiHydC(i,j) = phiHydF(i,j) +ddPIm*alphaRho(i,j) |
447 |
phiHydF(i,j) = phiHydC(i,j) +ddPIp*alphaRho(i,j) |
448 |
ENDDO |
449 |
ENDDO |
450 |
C end: Energy Conserving Form, No hFac -- |
451 |
C----------------------------------------------------------------------- |
452 |
|
453 |
ELSEIF (integr_GeoPot.EQ.1) THEN |
454 |
C -- Finite Volume Form, with Part-Cell Topo, linear in P by Half level |
455 |
C--------- |
456 |
C Finite Volume formulation consistent with Partial Cell, linear in p by piece |
457 |
C Note: a true Finite Volume form should be linear between 2 Interf_W : |
458 |
C phi_C = (phi_W_k+ phi_W_k+1)/2 ; but not accurate in Stratosphere (low p) |
459 |
C also: if Interface_W at the middle between tracer levels, this form |
460 |
C is close to the Energy Cons. form in the Interior, except for the |
461 |
C non-linearity in PI(p) |
462 |
C--------- |
463 |
ddPIm=atm_Cp*( ((rF( k )/atm_Po)**atm_kappa) |
464 |
& -((rC( k )/atm_Po)**atm_kappa) ) |
465 |
ddPIp=atm_Cp*( ((rC( k )/atm_Po)**atm_kappa) |
466 |
& -((rF(k+1)/atm_Po)**atm_kappa) ) |
467 |
DO j=jMin,jMax |
468 |
DO i=iMin,iMax |
469 |
IF (k.EQ.kSurfC(i,j,bi,bj)) THEN |
470 |
ddRloc = Ro_surf(i,j,bi,bj)-rC(k) |
471 |
#ifdef NONLIN_FRSURF |
472 |
ddRloc = ddRloc + surfPhiFac*etaH(i,j,bi,bj) |
473 |
#endif |
474 |
phiHydC(i,j) = ddRloc*recip_drF(k)*2. _d 0 |
475 |
& *ddPIm*alphaRho(i,j) |
476 |
ELSE |
477 |
phiHydC(i,j) = phiHydF(i,j) +ddPIm*alphaRho(i,j) |
478 |
ENDIF |
479 |
phiHydF(i,j) = phiHydC(i,j) +ddPIp*alphaRho(i,j) |
480 |
ENDDO |
481 |
ENDDO |
482 |
C end: Finite Volume Form, with Part-Cell Topo, linear in P by Half level |
483 |
C----------------------------------------------------------------------- |
484 |
|
485 |
ELSEIF ( integr_GeoPot.EQ.2 |
486 |
& .OR. integr_GeoPot.EQ.3 ) THEN |
487 |
C -- Finite Difference Form, with Part-Cell Topo, |
488 |
C works with Interface_W at the middle between 2.Tracer_Level |
489 |
C and with Tracer_Level at the middle between 2.Interface_W. |
490 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
491 |
C Finite Difference formulation consistent with Partial Cell, |
492 |
C Valid & accurate if Interface_W at middle between tracer levels |
493 |
C linear in p between 2 Tracer levels ; conserve energy in the Interior |
494 |
C--------- |
495 |
IF (k.EQ.1) THEN |
496 |
ddPIm=atm_Cp*( ((rF( k )/atm_Po)**atm_kappa) |
497 |
& -((rC( k )/atm_Po)**atm_kappa) ) |
498 |
ELSE |
499 |
ddPIm=atm_Cp*( ((rC(k-1)/atm_Po)**atm_kappa) |
500 |
& -((rC( k )/atm_Po)**atm_kappa) )*half |
501 |
ENDIF |
502 |
IF (k.EQ.Nr) THEN |
503 |
ddPIp=atm_Cp*( ((rC( k )/atm_Po)**atm_kappa) |
504 |
& -((rF(k+1)/atm_Po)**atm_kappa) ) |
505 |
ELSE |
506 |
ddPIp=atm_Cp*( ((rC( k )/atm_Po)**atm_kappa) |
507 |
& -((rC(k+1)/atm_Po)**atm_kappa) )*half |
508 |
ENDIF |
509 |
rec_dRm = one/(rF(k)-rC(k)) |
510 |
rec_dRp = one/(rC(k)-rF(k+1)) |
511 |
DO j=jMin,jMax |
512 |
DO i=iMin,iMax |
513 |
IF (k.EQ.kSurfC(i,j,bi,bj)) THEN |
514 |
ddRloc = Ro_surf(i,j,bi,bj)-rC(k) |
515 |
#ifdef NONLIN_FRSURF |
516 |
ddRloc = ddRloc + surfPhiFac*etaH(i,j,bi,bj) |
517 |
#endif |
518 |
phiHydC(i,j) =( MAX(zero,ddRloc)*rec_dRm*ddPIm |
519 |
& +MIN(zero,ddRloc)*rec_dRp*ddPIp ) |
520 |
& *alphaRho(i,j) |
521 |
ELSE |
522 |
phiHydC(i,j) = phiHydF(i,j) +ddPIm*alphaRho(i,j) |
523 |
ENDIF |
524 |
phiHydF(i,j) = phiHydC(i,j) +ddPIp*alphaRho(i,j) |
525 |
ENDDO |
526 |
ENDDO |
527 |
C end: Finite Difference Form, with Part-Cell Topo |
528 |
C----------------------------------------------------------------------- |
529 |
|
530 |
ELSE |
531 |
STOP 'CALC_PHI_HYD: Bad integr_GeoPot option !' |
532 |
ENDIF |
533 |
|
534 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
535 |
ELSE |
536 |
STOP 'CALC_PHI_HYD: Bad value of buoyancyRelation !' |
537 |
ENDIF |
538 |
|
539 |
C--- Diagnose Phi at boundary r=R_low : |
540 |
C = Ocean bottom pressure (Ocean, Z-coord.) |
541 |
C = Sea-surface height (Ocean, P-coord.) |
542 |
C = Top atmosphere height (Atmos, P-coord.) |
543 |
IF (useDiagPhiRlow) THEN |
544 |
CALL DIAGS_PHI_RLOW( |
545 |
I k, bi, bj, iMin,iMax, jMin,jMax, |
546 |
I phiHydF, phiHydC, alphaRho, tFld, sFld, |
547 |
I myTime, myIter, myThid) |
548 |
ENDIF |
549 |
|
550 |
C--- Diagnose Full Hydrostatic Potential at cell center level |
551 |
CALL DIAGS_PHI_HYD( |
552 |
I k, bi, bj, iMin,iMax, jMin,jMax, |
553 |
I phiHydC, |
554 |
I myTime, myIter, myThid) |
555 |
|
556 |
IF (momPressureForcing) THEN |
557 |
CALL CALC_GRAD_PHI_HYD( |
558 |
I k, bi, bj, iMin,iMax, jMin,jMax, |
559 |
I phiHydC, alphaRho, tFld, sFld, |
560 |
O dPhiHydX, dPhiHydY, |
561 |
I myTime, myIter, myThid) |
562 |
ENDIF |
563 |
|
564 |
#endif /* INCLUDE_PHIHYD_CALCULATION_CODE */ |
565 |
|
566 |
RETURN |
567 |
END |