/[MITgcm]/MITgcm/model/src/calc_phi_hyd.F
ViewVC logotype

Contents of /MITgcm/model/src/calc_phi_hyd.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.18 - (show annotations) (download)
Wed Jul 31 16:38:30 2002 UTC (21 years, 10 months ago) by mlosch
Branch: MAIN
CVS Tags: checkpoint46b_post, checkpoint46a_post, checkpoint46b_pre, checkpoint46c_pre
Changes since 1.17: +18 -14 lines
Added pressure loading term and experiment based on Wunsch and Stammer (1997)
o new field in FFIELDS.h, etc...
o new cpp flag ATMOSPHERIC_LOADING
o Changed hFacC to _hFacC in calc_phi_hyd.F
o Added SHORTWAVE_HEATING to some files for consistency

1 C $Header: /u/gcmpack/MITgcm/model/src/calc_phi_hyd.F,v 1.17 2001/09/27 18:14:20 adcroft Exp $
2 C $Name: $
3
4 #include "CPP_OPTIONS.h"
5
6 CBOP
7 C !ROUTINE: CALC_PHI_HYD
8 C !INTERFACE:
9 SUBROUTINE CALC_PHI_HYD(
10 I bi, bj, iMin, iMax, jMin, jMax, K,
11 I theta, salt,
12 U phiHyd,
13 I myThid)
14 C !DESCRIPTION: \bv
15 C *==========================================================*
16 C | SUBROUTINE CALC_PHI_HYD |
17 C | o Integrate the hydrostatic relation to find the Hydros. |
18 C *==========================================================*
19 C | Potential (ocean: Pressure/rho ; atmos = geopotential)|
20 C | On entry: |
21 C | theta,salt are the current thermodynamics quantities|
22 C | (unchanged on exit) |
23 C | phiHyd(i,j,1:k-1) is the hydrostatic Potential |
24 C | at cell centers (tracer points) |
25 C | - 1:k-1 layers are valid |
26 C | - k:Nr layers are invalid |
27 C | phiHyd(i,j,k) is the hydrostatic Potential |
28 C | (ocean only_^) at cell the interface k (w point above) |
29 C | On exit: |
30 C | phiHyd(i,j,1:k) is the hydrostatic Potential |
31 C | at cell centers (tracer points) |
32 C | - 1:k layers are valid |
33 C | - k+1:Nr layers are invalid |
34 C | phiHyd(i,j,k+1) is the hydrostatic Potential (P/rho) |
35 C | (ocean only-^) at cell the interface k+1 (w point below)|
36 C | Atmosphere: |
37 C | Integr_GeoPot allows to select one integration method |
38 C | (see the list below) |
39 C *==========================================================*
40 C \ev
41 C !USES:
42 IMPLICIT NONE
43 C == Global variables ==
44 #include "SIZE.h"
45 #include "GRID.h"
46 #include "EEPARAMS.h"
47 #include "PARAMS.h"
48 #include "FFIELDS.h"
49 #ifdef ALLOW_AUTODIFF_TAMC
50 #include "tamc.h"
51 #include "tamc_keys.h"
52 #endif /* ALLOW_AUTODIFF_TAMC */
53
54 C !INPUT/OUTPUT PARAMETERS:
55 C == Routine arguments ==
56 INTEGER bi,bj,iMin,iMax,jMin,jMax,K
57 _RL theta(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
58 _RL salt(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
59 _RL phiHyd(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
60 INTEGER myThid
61
62 #ifdef INCLUDE_PHIHYD_CALCULATION_CODE
63
64 C !LOCAL VARIABLES:
65 C == Local variables ==
66 INTEGER i,j, Kp1
67 _RL zero, one, half
68 _RL alphaRho(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
69 _RL dRloc,dRlocKp1
70 _RL ddPI, ddPIm, ddPIp, ratioRp, ratioRm
71 CEOP
72
73 zero = 0. _d 0
74 one = 1. _d 0
75 half = .5 _d 0
76
77 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
78 C Atmosphere:
79 C Integr_GeoPot => select one option for the integration of the Geopotential:
80 C = 0 : Energy Conserving Form, No hFac ;
81 C = 1 : Finite Volume Form, with hFac, linear in P by Half level;
82 C =2,3: Finite Difference Form, with hFac, linear in P between 2 Tracer levels
83 C 2 : case Tracer level at the middle of InterFace_W;
84 C 3 : case InterFace_W at the middle of Tracer levels;
85 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
86
87 #ifdef ALLOW_AUTODIFF_TAMC
88 act1 = bi - myBxLo(myThid)
89 max1 = myBxHi(myThid) - myBxLo(myThid) + 1
90
91 act2 = bj - myByLo(myThid)
92 max2 = myByHi(myThid) - myByLo(myThid) + 1
93
94 act3 = myThid - 1
95 max3 = nTx*nTy
96
97 act4 = ikey_dynamics - 1
98
99 ikey = (act1 + 1) + act2*max1
100 & + act3*max1*max2
101 & + act4*max1*max2*max3
102 #endif /* ALLOW_AUTODIFF_TAMC */
103
104 IF ( buoyancyRelation .eq. 'OCEANIC' ) THEN
105 C This is the hydrostatic pressure calculation for the Ocean
106 C which uses the FIND_RHO() routine to calculate density
107 C before integrating g*rho over the current layer/interface
108
109 dRloc=drC(k)
110 IF (k.EQ.1) dRloc=drF(1)
111 IF (k.EQ.Nr) THEN
112 dRlocKp1=0.
113 ELSE
114 dRlocKp1=drC(k+1)
115 ENDIF
116
117 C-- If this is the top layer we impose the boundary condition
118 C P(z=eta) = P(atmospheric_loading)
119 IF (k.EQ.1) THEN
120 DO j=jMin,jMax
121 DO i=iMin,iMax
122 #ifdef ATMOSPHERIC_LOADING
123 phiHyd(i,j,k)=pload(i,j,bi,bj)*recip_rhoConst
124 #else
125 phiHyd(i,j,k)=0. _d 0
126 #endif
127 ENDDO
128 ENDDO
129 ENDIF
130
131 C Calculate density
132 #ifdef ALLOW_AUTODIFF_TAMC
133 kkey = (ikey-1)*Nr + k
134 CADJ STORE theta(:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
135 CADJ STORE salt (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
136 #endif /* ALLOW_AUTODIFF_TAMC */
137 CALL FIND_RHO( bi, bj, iMin, iMax, jMin, jMax, k, k, eosType,
138 & theta, salt,
139 & alphaRho, myThid)
140
141 C Hydrostatic pressure at cell centers
142 DO j=jMin,jMax
143 DO i=iMin,iMax
144 #ifdef ALLOW_AUTODIFF_TAMC
145 c Patrick, is this directive correct or even necessary in
146 c this new code?
147 c Yes, because of phiHyd(i,j,k+1)=phiHyd(i,j,k)+...
148 c within the k-loop.
149 CADJ GENERAL
150 #endif /* ALLOW_AUTODIFF_TAMC */
151
152 C---------- This discretization is the "finite volume" form
153 C which has not been used to date since it does not
154 C conserve KE+PE exactly even though it is more natural
155 C
156 c IF (k.LT.Nr) phiHyd(i,j,k+1)=phiHyd(i,j,k)+
157 c & drF(K)*gravity*alphaRho(i,j)*recip_rhoConst
158 c phiHyd(i,j,k)=phiHyd(i,j,k)+
159 c & 0.5*drF(K)*gravity*alphaRho(i,j)*recip_rhoConst
160 C-----------------------------------------------------------------------
161
162 C---------- This discretization is the "energy conserving" form
163 C which has been used since at least Adcroft et al., MWR 1997
164 C
165 phiHyd(i,j,k)=phiHyd(i,j,k)+
166 & 0.5*dRloc*gravity*alphaRho(i,j)*recip_rhoConst
167 IF (k.LT.Nr) phiHyd(i,j,k+1)=phiHyd(i,j,k)+
168 & 0.5*dRlocKp1*gravity*alphaRho(i,j)*recip_rhoConst
169 C-----------------------------------------------------------------------
170 ENDDO
171 ENDDO
172
173
174
175 ELSEIF ( buoyancyRelation .eq. 'ATMOSPHERIC' ) THEN
176 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
177 C This is the hydrostatic geopotential calculation for the Atmosphere
178 C The ideal gas law is used implicitly here rather than calculating
179 C the specific volume, analogous to the oceanic case.
180
181 C Integrate d Phi / d pi
182
183 IF (Integr_GeoPot.EQ.0) THEN
184 C -- Energy Conserving Form, No hFac --
185 C------------ The integration for the first level phi(k=1) is the same
186 C for both the "finite volume" and energy conserving methods.
187 Ci *NOTE* o Working with geopotential Anomaly, the geopotential boundary
188 C condition is simply Phi-prime(Ro_surf)=0.
189 C o convention ddPI > 0 (same as drF & drC)
190 C-----------------------------------------------------------------------
191 IF (K.EQ.1) THEN
192 ddPIp=atm_cp*( ((rF(K)/atm_po)**atm_kappa)
193 & -((rC(K)/atm_po)**atm_kappa) )
194 DO j=jMin,jMax
195 DO i=iMin,iMax
196 phiHyd(i,j,K)=
197 & ddPIp*maskC(i,j,K,bi,bj)
198 & *(theta(I,J,K,bi,bj)-tRef(K))
199 ENDDO
200 ENDDO
201 ELSE
202 C-------- This discretization is the energy conserving form
203 ddPI=atm_cp*( ((rC(K-1)/atm_po)**atm_kappa)
204 & -((rC( K )/atm_po)**atm_kappa) )*0.5
205 DO j=jMin,jMax
206 DO i=iMin,iMax
207 phiHyd(i,j,K)=phiHyd(i,j,K-1)
208 & +ddPI*maskC(i,j,K-1,bi,bj)
209 & *(theta(I,J,K-1,bi,bj)-tRef(K-1))
210 & +ddPI*maskC(i,j, K ,bi,bj)
211 & *(theta(I,J, K ,bi,bj)-tRef( K ))
212 C Old code (atmos-exact) looked like this
213 Cold phiHyd(i,j,K)=phiHyd(i,j,K-1) - ddPI*
214 Cold & (theta(I,J,K-1,bi,bj)+theta(I,J,K,bi,bj)-2.*tRef(K))
215 ENDDO
216 ENDDO
217 ENDIF
218 C end: Energy Conserving Form, No hFac --
219 C-----------------------------------------------------------------------
220
221 ELSEIF (Integr_GeoPot.EQ.1) THEN
222 C -- Finite Volume Form, with hFac, linear in P by Half level --
223 C---------
224 C Finite Volume formulation consistent with Partial Cell, linear in p by piece
225 C Note: a true Finite Volume form should be linear between 2 Interf_W :
226 C phi_C = (phi_W_k+ phi_W_k+1)/2 ; but not accurate in Stratosphere (low p)
227 C also: if Interface_W at the middle between tracer levels, this form
228 C is close to the Energy Cons. form in the Interior, except for the
229 C non-linearity in PI(p)
230 C---------
231 IF (K.EQ.1) THEN
232 ddPIp=atm_cp*( ((rF(K)/atm_po)**atm_kappa)
233 & -((rC(K)/atm_po)**atm_kappa) )
234 DO j=jMin,jMax
235 DO i=iMin,iMax
236 phiHyd(i,j,K) =
237 & ddPIp*_hFacC(I,J, K ,bi,bj)
238 & *(theta(I,J, K ,bi,bj)-tRef( K ))
239 ENDDO
240 ENDDO
241 ELSE
242 ddPIm=atm_cp*( ((rC(K-1)/atm_po)**atm_kappa)
243 & -((rF( K )/atm_po)**atm_kappa) )
244 ddPIp=atm_cp*( ((rF( K )/atm_po)**atm_kappa)
245 & -((rC( K )/atm_po)**atm_kappa) )
246 DO j=jMin,jMax
247 DO i=iMin,iMax
248 phiHyd(i,j,K) = phiHyd(i,j,K-1)
249 & +ddPIm*_hFacC(I,J,K-1,bi,bj)
250 & *(theta(I,J,K-1,bi,bj)-tRef(K-1))
251 & +ddPIp*_hFacC(I,J, K ,bi,bj)
252 & *(theta(I,J, K ,bi,bj)-tRef( K ))
253 ENDDO
254 ENDDO
255 ENDIF
256 C end: Finite Volume Form, with hFac, linear in P by Half level --
257 C-----------------------------------------------------------------------
258
259 ELSEIF (Integr_GeoPot.EQ.2) THEN
260 C -- Finite Difference Form, with hFac, Tracer Lev. = middle --
261 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
262 C Finite Difference formulation consistent with Partial Cell,
263 C case Tracer level at the middle of InterFace_W
264 C linear between 2 Tracer levels ; conserve energy in the Interior
265 C---------
266 Kp1 = min(Nr,K+1)
267 IF (K.EQ.1) THEN
268 ddPIm=atm_cp*( ((rF( K )/atm_po)**atm_kappa)
269 & -((rC( K )/atm_po)**atm_kappa) ) * 2. _d 0
270 ddPIp=atm_cp*( ((rC( K )/atm_po)**atm_kappa)
271 & -((rC(Kp1)/atm_po)**atm_kappa) )
272 DO j=jMin,jMax
273 DO i=iMin,iMax
274 phiHyd(i,j,K) =
275 & ( ddPIm*max(zero, _hFacC(i,j,K,bi,bj)-half)
276 & +ddPIp*min(zero, _hFacC(i,j,K,bi,bj)-half) )
277 & *(theta(i,j, K ,bi,bj)-tRef( K ))
278 & * maskC(i,j, K ,bi,bj)
279 ENDDO
280 ENDDO
281 ELSE
282 ddPIm=atm_cp*( ((rC(K-1)/atm_po)**atm_kappa)
283 & -((rC( K )/atm_po)**atm_kappa) )
284 ddPIp=atm_cp*( ((rC( K )/atm_po)**atm_kappa)
285 & -((rC(Kp1)/atm_po)**atm_kappa) )
286 DO j=jMin,jMax
287 DO i=iMin,iMax
288 phiHyd(i,j,K) = phiHyd(i,j,K-1)
289 & + ddPIm*0.5
290 & *(theta(i,j,K-1,bi,bj)-tRef(K-1))
291 & * maskC(i,j,K-1,bi,bj)
292 & +(ddPIm*max(zero, _hFacC(i,j,K,bi,bj)-half)
293 & +ddPIp*min(zero, _hFacC(i,j,K,bi,bj)-half) )
294 & *(theta(i,j, K ,bi,bj)-tRef( K ))
295 & * maskC(i,j, K ,bi,bj)
296 ENDDO
297 ENDDO
298 ENDIF
299 C end: Finite Difference Form, with hFac, Tracer Lev. = middle --
300 C-----------------------------------------------------------------------
301
302 ELSEIF (Integr_GeoPot.EQ.3) THEN
303 C -- Finite Difference Form, with hFac, Interface_W = middle --
304 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
305 C Finite Difference formulation consistent with Partial Cell,
306 C Valid & accurate if Interface_W at middle between tracer levels
307 C linear in p between 2 Tracer levels ; conserve energy in the Interior
308 C---------
309 Kp1 = min(Nr,K+1)
310 IF (K.EQ.1) THEN
311 ratioRm=0.5*drF(K)/(rF(k)-rC(K))
312 ratioRp=drF(K)*recip_drC(Kp1)
313 ddPIm=atm_cp*( ((rF( K )/atm_po)**atm_kappa)
314 & -((rC( K )/atm_po)**atm_kappa) ) * 2. _d 0
315 ddPIp=atm_cp*( ((rC( K )/atm_po)**atm_kappa)
316 & -((rC(Kp1)/atm_po)**atm_kappa) )
317 DO j=jMin,jMax
318 DO i=iMin,iMax
319 phiHyd(i,j,K) =
320 & ( ddPIm*max(zero,(_hFacC(i,j,K,bi,bj)-one)*ratioRm+half)
321 & +ddPIp*min(zero, _hFacC(i,j,K,bi,bj)*ratioRp -half) )
322 & *(theta(i,j, K ,bi,bj)-tRef( K ))
323 & * maskC(i,j, K ,bi,bj)
324 ENDDO
325 ENDDO
326 ELSE
327 ratioRm=drF(K)*recip_drC(K)
328 ratioRp=drF(K)*recip_drC(Kp1)
329 ddPIm=atm_cp*( ((rC(K-1)/atm_po)**atm_kappa)
330 & -((rC( K )/atm_po)**atm_kappa) )
331 ddPIp=atm_cp*( ((rC( K )/atm_po)**atm_kappa)
332 & -((rC(Kp1)/atm_po)**atm_kappa) )
333 DO j=jMin,jMax
334 DO i=iMin,iMax
335 phiHyd(i,j,K) = phiHyd(i,j,K-1)
336 & + ddPIm*0.5
337 & *(theta(i,j,K-1,bi,bj)-tRef(K-1))
338 & * maskC(i,j,K-1,bi,bj)
339 & +(ddPIm*max(zero,(_hFacC(i,j,K,bi,bj)-one)*ratioRm+half)
340 & +ddPIp*min(zero, _hFacC(i,j,K,bi,bj)*ratioRp -half) )
341 & *(theta(i,j, K ,bi,bj)-tRef( K ))
342 & * maskC(i,j, K ,bi,bj)
343 ENDDO
344 ENDDO
345 ENDIF
346 C end: Finite Difference Form, with hFac, Interface_W = middle --
347 C-----------------------------------------------------------------------
348
349 ELSE
350 STOP 'CALC_PHI_HYD: Bad Integr_GeoPot option !'
351 ENDIF
352
353 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
354 ELSE
355 STOP 'CALC_PHI_HYD: We should never reach this point!'
356 ENDIF
357
358 #endif /* INCLUDE_PHIHYD_CALCULATION_CODE */
359
360 RETURN
361 END

  ViewVC Help
Powered by ViewVC 1.1.22