/[MITgcm]/MITgcm/model/src/calc_phi_hyd.F
ViewVC logotype

Contents of /MITgcm/model/src/calc_phi_hyd.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.21 - (show annotations) (download)
Wed Sep 25 19:36:50 2002 UTC (21 years, 8 months ago) by mlosch
Branch: MAIN
CVS Tags: checkpoint46l_post, checkpoint46l_pre, checkpoint46j_pre, checkpoint46j_post, checkpoint46k_post, checkpoint46i_post, checkpoint46h_post
Changes since 1.20: +38 -25 lines
o cleaned up the use of rhoNil and rhoConst.
  - rhoNil should only appear in the LINEAR equation of state, everywhere
    else rhoNil is replaced by rhoConst, e.g. find_rho computes rho-rhoConst
    and the dynamical equations are all divided by rhoConst
o introduced new parameter rhoConstFresh, a reference density of fresh
  water, to remove the fresh water flux's dependence on rhoNil. The default
  value is 999.8 kg/m^3
o cleanup up external_forcing.F and external_forcing_surf.F
  - can now be used by both OCEANIC and OCEANICP

1 C $Header: /u/gcmpack/MITgcm/model/src/calc_phi_hyd.F,v 1.20 2002/09/18 16:38:01 mlosch Exp $
2 C $Name: $
3
4 #include "CPP_OPTIONS.h"
5
6 CBOP
7 C !ROUTINE: CALC_PHI_HYD
8 C !INTERFACE:
9 SUBROUTINE CALC_PHI_HYD(
10 I bi, bj, iMin, iMax, jMin, jMax, K,
11 I tFld, sFld,
12 U phiHyd,
13 I myThid)
14 C !DESCRIPTION: \bv
15 C *==========================================================*
16 C | SUBROUTINE CALC_PHI_HYD |
17 C | o Integrate the hydrostatic relation to find the Hydros. |
18 C *==========================================================*
19 C | Potential (ocean: Pressure/rho ; atmos = geopotential)|
20 C | On entry: |
21 C | tFld,sFld are the current thermodynamics quantities|
22 C | (unchanged on exit) |
23 C | phiHyd(i,j,1:k-1) is the hydrostatic Potential |
24 C | at cell centers (tracer points) |
25 C | - 1:k-1 layers are valid |
26 C | - k:Nr layers are invalid |
27 C | phiHyd(i,j,k) is the hydrostatic Potential |
28 C | (ocean only_^) at cell the interface k (w point above) |
29 C | On exit: |
30 C | phiHyd(i,j,1:k) is the hydrostatic Potential |
31 C | at cell centers (tracer points) |
32 C | - 1:k layers are valid |
33 C | - k+1:Nr layers are invalid |
34 C | phiHyd(i,j,k+1) is the hydrostatic Potential (P/rho) |
35 C | (ocean only-^) at cell the interface k+1 (w point below)|
36 C | Atmosphere: |
37 C | Integr_GeoPot allows to select one integration method |
38 C | (see the list below) |
39 C *==========================================================*
40 C \ev
41 C !USES:
42 IMPLICIT NONE
43 C == Global variables ==
44 #include "SIZE.h"
45 #include "GRID.h"
46 #include "EEPARAMS.h"
47 #include "PARAMS.h"
48 #include "FFIELDS.h"
49 #ifdef ALLOW_AUTODIFF_TAMC
50 #include "tamc.h"
51 #include "tamc_keys.h"
52 #endif /* ALLOW_AUTODIFF_TAMC */
53 #include "SURFACE.h"
54 #include "DYNVARS.h"
55
56 C !INPUT/OUTPUT PARAMETERS:
57 C == Routine arguments ==
58 INTEGER bi,bj,iMin,iMax,jMin,jMax,K
59 _RL tFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
60 _RL sFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
61 _RL phiHyd(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
62 INTEGER myThid
63
64 #ifdef INCLUDE_PHIHYD_CALCULATION_CODE
65
66 C !LOCAL VARIABLES:
67 C == Local variables ==
68 INTEGER i,j, Kp1
69 _RL zero, one, half
70 _RL alphaRho(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
71 _RL dRloc,dRlocKp1,locAlpha
72 _RL ddPI, ddPIm, ddPIp, ratioRp, ratioRm
73 CEOP
74
75 zero = 0. _d 0
76 one = 1. _d 0
77 half = .5 _d 0
78
79 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
80 C Atmosphere:
81 C Integr_GeoPot => select one option for the integration of the Geopotential:
82 C = 0 : Energy Conserving Form, No hFac ;
83 C = 1 : Finite Volume Form, with hFac, linear in P by Half level;
84 C =2,3: Finite Difference Form, with hFac, linear in P between 2 Tracer levels
85 C 2 : case Tracer level at the middle of InterFace_W;
86 C 3 : case InterFace_W at the middle of Tracer levels;
87 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
88
89 #ifdef ALLOW_AUTODIFF_TAMC
90 act1 = bi - myBxLo(myThid)
91 max1 = myBxHi(myThid) - myBxLo(myThid) + 1
92
93 act2 = bj - myByLo(myThid)
94 max2 = myByHi(myThid) - myByLo(myThid) + 1
95
96 act3 = myThid - 1
97 max3 = nTx*nTy
98
99 act4 = ikey_dynamics - 1
100
101 ikey = (act1 + 1) + act2*max1
102 & + act3*max1*max2
103 & + act4*max1*max2*max3
104 #endif /* ALLOW_AUTODIFF_TAMC */
105
106 IF ( buoyancyRelation .eq. 'OCEANIC' ) THEN
107 C This is the hydrostatic pressure calculation for the Ocean
108 C which uses the FIND_RHO() routine to calculate density
109 C before integrating g*rho over the current layer/interface
110
111 dRloc=drC(k)
112 IF (k.EQ.1) dRloc=drF(1)
113 IF (k.EQ.Nr) THEN
114 dRlocKp1=0.
115 ELSE
116 dRlocKp1=drC(k+1)
117 ENDIF
118
119 C-- If this is the top layer we impose the boundary condition
120 C P(z=eta) = P(atmospheric_loading)
121 IF (k.EQ.1) THEN
122 DO j=jMin,jMax
123 DO i=iMin,iMax
124 #ifdef ATMOSPHERIC_LOADING
125 phiHyd(i,j,k)=pload(i,j,bi,bj)*recip_rhoConst
126 #else
127 phiHyd(i,j,k)=0. _d 0
128 #endif
129 ENDDO
130 ENDDO
131 ENDIF
132
133 C Calculate density
134 #ifdef ALLOW_AUTODIFF_TAMC
135 kkey = (ikey-1)*Nr + k
136 CADJ STORE tFld(:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
137 CADJ STORE sFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
138 #endif /* ALLOW_AUTODIFF_TAMC */
139 CALL FIND_RHO( bi, bj, iMin, iMax, jMin, jMax, k, k,
140 & tFld, sFld,
141 & alphaRho, myThid)
142
143 C Hydrostatic pressure at cell centers
144 DO j=jMin,jMax
145 DO i=iMin,iMax
146 #ifdef ALLOW_AUTODIFF_TAMC
147 c Patrick, is this directive correct or even necessary in
148 c this new code?
149 c Yes, because of phiHyd(i,j,k+1)=phiHyd(i,j,k)+...
150 c within the k-loop.
151 CADJ GENERAL
152 #endif /* ALLOW_AUTODIFF_TAMC */
153
154 CmlC---------- This discretization is the "finite volume" form
155 CmlC which has not been used to date since it does not
156 CmlC conserve KE+PE exactly even though it is more natural
157 CmlC
158 Cml IF ( K .EQ. kLowC(i,j,bi,bj) ) THEN
159 Cml phiHydLow(i,j,bi,bj) = phiHyd(i,j,k)
160 Cml & + hFacC(i,j,k,bi,bj)
161 Cml & *drF(K)*gravity*alphaRho(i,j)*recip_rhoConst
162 Cml & + gravity*etaN(i,j,bi,bj)
163 Cml ENDIF
164 Cml IF (k.LT.Nr) phiHyd(i,j,k+1)=phiHyd(i,j,k)+
165 Cml & drF(K)*gravity*alphaRho(i,j)*recip_rhoConst
166 Cml phiHyd(i,j,k)=phiHyd(i,j,k)+
167 Cml & 0.5*drF(K)*gravity*alphaRho(i,j)*recip_rhoConst
168 CmlC-----------------------------------------------------------------------
169
170 C---------- This discretization is the "energy conserving" form
171 C which has been used since at least Adcroft et al., MWR 1997
172 C
173
174 phiHyd(i,j,k)=phiHyd(i,j,k)+
175 & 0.5*dRloc*gravity*alphaRho(i,j)*recip_rhoConst
176 IF (k.LT.Nr) phiHyd(i,j,k+1)=phiHyd(i,j,k)+
177 & 0.5*dRlocKp1*gravity*alphaRho(i,j)*recip_rhoConst
178 C-----------------------------------------------------------------------
179
180 C---------- Compute bottom pressure deviation from gravity*rho0*H
181 C This has to be done starting from phiHyd at the current
182 C tracer point and .5 of the cell's thickness has to be
183 C substracted from hFacC
184 IF ( K .EQ. kLowC(i,j,bi,bj) ) THEN
185 phiHydLow(i,j,bi,bj) = phiHyd(i,j,k)
186 & + (hFacC(i,j,k,bi,bj)-.5)*drF(K)
187 & *gravity*alphaRho(i,j)*recip_rhoConst
188 & + gravity*etaN(i,j,bi,bj)
189 ENDIF
190 C-----------------------------------------------------------------------
191
192 ENDDO
193 ENDDO
194
195 ELSEIF ( buoyancyRelation .eq. 'OCEANICP' ) THEN
196 C This is the hydrostatic pressure calculation for the Ocean
197 C which uses the FIND_RHO() routine to calculate density
198 C before integrating g*rho over the current layer/interface
199 #ifdef ALLOW_AUTODIFF_TAMC
200 CADJ GENERAL
201 #endif /* ALLOW_AUTODIFF_TAMC */
202
203 dRloc=drC(k)
204 IF (k.EQ.1) dRloc=drF(1)
205 IF (k.EQ.Nr) THEN
206 dRlocKp1=0.
207 ELSE
208 dRlocKp1=drC(k+1)
209 ENDIF
210
211 IF (k.EQ.1) THEN
212 DO j=jMin,jMax
213 DO i=iMin,iMax
214 phiHyd(i,j,k)=0.
215 phiHyd(i,j,k)=pload(i,j,bi,bj)
216 ENDDO
217 ENDDO
218 ENDIF
219
220 C Calculate density
221 #ifdef ALLOW_AUTODIFF_TAMC
222 kkey = (ikey-1)*Nr + k
223 CADJ STORE tFld(:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
224 CADJ STORE sFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
225 #endif /* ALLOW_AUTODIFF_TAMC */
226 CALL FIND_RHO( bi, bj, iMin, iMax, jMin, jMax, k, k,
227 & tFld, sFld,
228 & alphaRho, myThid)
229
230 C Hydrostatic pressure at cell centers
231 DO j=jMin,jMax
232 DO i=iMin,iMax
233 locAlpha=alphaRho(i,j)+rhoConst
234 IF (locAlpha.NE.0.) locAlpha=maskC(i,j,k,bi,bj)/locAlpha
235
236 CmlC---------- This discretization is the "finite volume" form
237 CmlC which has not been used to date since it does not
238 CmlC conserve KE+PE exactly even though it is more natural
239 CmlC
240 Cml IF ( K .EQ. kLowC(i,j,bi,bj) ) THEN
241 Cml phiHydLow(i,j,bi,bj) = phiHyd(i,j,k)
242 Cml & + hFacC(i,j,k,bi,bj)*drF(K)*locAlpha
243 Cml & + Bo_surf(i,j,bi,bj)*etaN(i,j,bi,bj)
244 Cml ENDIF
245 Cml IF (k.LT.Nr) phiHyd(i,j,k+1)=phiHyd(i,j,k)+
246 Cml & drF(K)*locAlpha
247 Cml phiHyd(i,j,k)=phiHyd(i,j,k)+
248 Cml & 0.5*drF(K)*locAlpha
249 CmlC-----------------------------------------------------------------------
250
251 C---------- This discretization is the "energy conserving" form
252 C which has been used since at least Adcroft et al., MWR 1997
253 C
254
255 phiHyd(i,j,k)=phiHyd(i,j,k)+
256 & 0.5*dRloc*locAlpha
257 IF (k.LT.Nr) phiHyd(i,j,k+1)=phiHyd(i,j,k)+
258 & 0.5*dRlocKp1*locAlpha
259
260 C-----------------------------------------------------------------------
261
262 C---------- Compute gravity*(sea surface elevation) first
263 C This has to be done starting from phiHyd at the current
264 C tracer point and .5 of the cell's thickness has to be
265 C substracted from hFacC
266 IF ( K .EQ. kLowC(i,j,bi,bj) ) THEN
267 phiHydLow(i,j,bi,bj) = phiHyd(i,j,k)
268 & + (hFacC(i,j,k,bi,bj)-0.5)*drF(k)*locAlpha
269 & + Bo_surf(i,j,bi,bj)*etaN(i,j,bi,bj)
270 ENDIF
271 C-----------------------------------------------------------------------
272
273 ENDDO
274 ENDDO
275
276 ELSEIF ( buoyancyRelation .eq. 'ATMOSPHERIC' ) THEN
277 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
278 C This is the hydrostatic geopotential calculation for the Atmosphere
279 C The ideal gas law is used implicitly here rather than calculating
280 C the specific volume, analogous to the oceanic case.
281
282 C Integrate d Phi / d pi
283
284 IF (Integr_GeoPot.EQ.0) THEN
285 C -- Energy Conserving Form, No hFac --
286 C------------ The integration for the first level phi(k=1) is the same
287 C for both the "finite volume" and energy conserving methods.
288 Ci *NOTE* o Working with geopotential Anomaly, the geopotential boundary
289 C condition is simply Phi-prime(Ro_surf)=0.
290 C o convention ddPI > 0 (same as drF & drC)
291 C-----------------------------------------------------------------------
292 IF (K.EQ.1) THEN
293 ddPIp=atm_cp*( ((rF(K)/atm_po)**atm_kappa)
294 & -((rC(K)/atm_po)**atm_kappa) )
295 DO j=jMin,jMax
296 DO i=iMin,iMax
297 phiHyd(i,j,K)=
298 & ddPIp*maskC(i,j,K,bi,bj)
299 & *(tFld(I,J,K,bi,bj)-tRef(K))
300 ENDDO
301 ENDDO
302 ELSE
303 C-------- This discretization is the energy conserving form
304 ddPI=atm_cp*( ((rC(K-1)/atm_po)**atm_kappa)
305 & -((rC( K )/atm_po)**atm_kappa) )*0.5
306 DO j=jMin,jMax
307 DO i=iMin,iMax
308 phiHyd(i,j,K)=phiHyd(i,j,K-1)
309 & +ddPI*maskC(i,j,K-1,bi,bj)
310 & *(tFld(I,J,K-1,bi,bj)-tRef(K-1))
311 & +ddPI*maskC(i,j, K ,bi,bj)
312 & *(tFld(I,J, K ,bi,bj)-tRef( K ))
313 C Old code (atmos-exact) looked like this
314 Cold phiHyd(i,j,K)=phiHyd(i,j,K-1) - ddPI*
315 Cold & (tFld(I,J,K-1,bi,bj)+tFld(I,J,K,bi,bj)-2.*tRef(K))
316 ENDDO
317 ENDDO
318 ENDIF
319 C end: Energy Conserving Form, No hFac --
320 C-----------------------------------------------------------------------
321
322 ELSEIF (Integr_GeoPot.EQ.1) THEN
323 C -- Finite Volume Form, with hFac, linear in P by Half level --
324 C---------
325 C Finite Volume formulation consistent with Partial Cell, linear in p by piece
326 C Note: a true Finite Volume form should be linear between 2 Interf_W :
327 C phi_C = (phi_W_k+ phi_W_k+1)/2 ; but not accurate in Stratosphere (low p)
328 C also: if Interface_W at the middle between tracer levels, this form
329 C is close to the Energy Cons. form in the Interior, except for the
330 C non-linearity in PI(p)
331 C---------
332 IF (K.EQ.1) THEN
333 ddPIp=atm_cp*( ((rF(K)/atm_po)**atm_kappa)
334 & -((rC(K)/atm_po)**atm_kappa) )
335 DO j=jMin,jMax
336 DO i=iMin,iMax
337 phiHyd(i,j,K) =
338 & ddPIp*_hFacC(I,J, K ,bi,bj)
339 & *(tFld(I,J, K ,bi,bj)-tRef( K ))
340 ENDDO
341 ENDDO
342 ELSE
343 ddPIm=atm_cp*( ((rC(K-1)/atm_po)**atm_kappa)
344 & -((rF( K )/atm_po)**atm_kappa) )
345 ddPIp=atm_cp*( ((rF( K )/atm_po)**atm_kappa)
346 & -((rC( K )/atm_po)**atm_kappa) )
347 DO j=jMin,jMax
348 DO i=iMin,iMax
349 phiHyd(i,j,K) = phiHyd(i,j,K-1)
350 & +ddPIm*_hFacC(I,J,K-1,bi,bj)
351 & *(tFld(I,J,K-1,bi,bj)-tRef(K-1))
352 & +ddPIp*_hFacC(I,J, K ,bi,bj)
353 & *(tFld(I,J, K ,bi,bj)-tRef( K ))
354 ENDDO
355 ENDDO
356 ENDIF
357 C end: Finite Volume Form, with hFac, linear in P by Half level --
358 C-----------------------------------------------------------------------
359
360 ELSEIF (Integr_GeoPot.EQ.2) THEN
361 C -- Finite Difference Form, with hFac, Tracer Lev. = middle --
362 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
363 C Finite Difference formulation consistent with Partial Cell,
364 C case Tracer level at the middle of InterFace_W
365 C linear between 2 Tracer levels ; conserve energy in the Interior
366 C---------
367 Kp1 = min(Nr,K+1)
368 IF (K.EQ.1) THEN
369 ddPIm=atm_cp*( ((rF( K )/atm_po)**atm_kappa)
370 & -((rC( K )/atm_po)**atm_kappa) ) * 2. _d 0
371 ddPIp=atm_cp*( ((rC( K )/atm_po)**atm_kappa)
372 & -((rC(Kp1)/atm_po)**atm_kappa) )
373 DO j=jMin,jMax
374 DO i=iMin,iMax
375 phiHyd(i,j,K) =
376 & ( ddPIm*max(zero, _hFacC(i,j,K,bi,bj)-half)
377 & +ddPIp*min(zero, _hFacC(i,j,K,bi,bj)-half) )
378 & *(tFld(i,j, K ,bi,bj)-tRef( K ))
379 & * maskC(i,j, K ,bi,bj)
380 ENDDO
381 ENDDO
382 ELSE
383 ddPIm=atm_cp*( ((rC(K-1)/atm_po)**atm_kappa)
384 & -((rC( K )/atm_po)**atm_kappa) )
385 ddPIp=atm_cp*( ((rC( K )/atm_po)**atm_kappa)
386 & -((rC(Kp1)/atm_po)**atm_kappa) )
387 DO j=jMin,jMax
388 DO i=iMin,iMax
389 phiHyd(i,j,K) = phiHyd(i,j,K-1)
390 & + ddPIm*0.5
391 & *(tFld(i,j,K-1,bi,bj)-tRef(K-1))
392 & * maskC(i,j,K-1,bi,bj)
393 & +(ddPIm*max(zero, _hFacC(i,j,K,bi,bj)-half)
394 & +ddPIp*min(zero, _hFacC(i,j,K,bi,bj)-half) )
395 & *(tFld(i,j, K ,bi,bj)-tRef( K ))
396 & * maskC(i,j, K ,bi,bj)
397 ENDDO
398 ENDDO
399 ENDIF
400 C end: Finite Difference Form, with hFac, Tracer Lev. = middle --
401 C-----------------------------------------------------------------------
402
403 ELSEIF (Integr_GeoPot.EQ.3) THEN
404 C -- Finite Difference Form, with hFac, Interface_W = middle --
405 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
406 C Finite Difference formulation consistent with Partial Cell,
407 C Valid & accurate if Interface_W at middle between tracer levels
408 C linear in p between 2 Tracer levels ; conserve energy in the Interior
409 C---------
410 Kp1 = min(Nr,K+1)
411 IF (K.EQ.1) THEN
412 ratioRm=0.5*drF(K)/(rF(k)-rC(K))
413 ratioRp=drF(K)*recip_drC(Kp1)
414 ddPIm=atm_cp*( ((rF( K )/atm_po)**atm_kappa)
415 & -((rC( K )/atm_po)**atm_kappa) ) * 2. _d 0
416 ddPIp=atm_cp*( ((rC( K )/atm_po)**atm_kappa)
417 & -((rC(Kp1)/atm_po)**atm_kappa) )
418 DO j=jMin,jMax
419 DO i=iMin,iMax
420 phiHyd(i,j,K) =
421 & ( ddPIm*max(zero,(_hFacC(i,j,K,bi,bj)-one)*ratioRm+half)
422 & +ddPIp*min(zero, _hFacC(i,j,K,bi,bj)*ratioRp -half) )
423 & *(tFld(i,j, K ,bi,bj)-tRef( K ))
424 & * maskC(i,j, K ,bi,bj)
425 ENDDO
426 ENDDO
427 ELSE
428 ratioRm=drF(K)*recip_drC(K)
429 ratioRp=drF(K)*recip_drC(Kp1)
430 ddPIm=atm_cp*( ((rC(K-1)/atm_po)**atm_kappa)
431 & -((rC( K )/atm_po)**atm_kappa) )
432 ddPIp=atm_cp*( ((rC( K )/atm_po)**atm_kappa)
433 & -((rC(Kp1)/atm_po)**atm_kappa) )
434 DO j=jMin,jMax
435 DO i=iMin,iMax
436 phiHyd(i,j,K) = phiHyd(i,j,K-1)
437 & + ddPIm*0.5
438 & *(tFld(i,j,K-1,bi,bj)-tRef(K-1))
439 & * maskC(i,j,K-1,bi,bj)
440 & +(ddPIm*max(zero,(_hFacC(i,j,K,bi,bj)-one)*ratioRm+half)
441 & +ddPIp*min(zero, _hFacC(i,j,K,bi,bj)*ratioRp -half) )
442 & *(tFld(i,j, K ,bi,bj)-tRef( K ))
443 & * maskC(i,j, K ,bi,bj)
444 ENDDO
445 ENDDO
446 ENDIF
447 C end: Finite Difference Form, with hFac, Interface_W = middle --
448 C-----------------------------------------------------------------------
449
450 ELSE
451 STOP 'CALC_PHI_HYD: Bad Integr_GeoPot option !'
452 ENDIF
453
454 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
455 ELSE
456 STOP 'CALC_PHI_HYD: We should never reach this point!'
457 ENDIF
458
459 #endif /* INCLUDE_PHIHYD_CALCULATION_CODE */
460
461 RETURN
462 END

  ViewVC Help
Powered by ViewVC 1.1.22