C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/model/src/calc_phi_hyd.F,v 1.27 2003/02/09 02:58:39 jmc Exp $ C $Name: $ #include "CPP_OPTIONS.h" CBOP C !ROUTINE: CALC_PHI_HYD C !INTERFACE: SUBROUTINE CALC_PHI_HYD( I bi, bj, iMin, iMax, jMin, jMax, K, I tFld, sFld, U phiHyd, O dPhiHydX, dPhiHydY, I myTime, myIter, myThid) C !DESCRIPTION: \bv C *==========================================================* C | SUBROUTINE CALC_PHI_HYD | C | o Integrate the hydrostatic relation to find the Hydros. | C *==========================================================* C | Potential (ocean: Pressure/rho ; atmos = geopotential)| C | On entry: | C | tFld,sFld are the current thermodynamics quantities| C | (unchanged on exit) | C | phiHyd(i,j,1:k-1) is the hydrostatic Potential | C | at cell centers (tracer points) | C | - 1:k-1 layers are valid | C | - k:Nr layers are invalid | C | phiHyd(i,j,k) is the hydrostatic Potential | C | (ocean only_^) at cell the interface k (w point above) | C | On exit: | C | phiHyd(i,j,1:k) is the hydrostatic Potential | C | at cell centers (tracer points) | C | - 1:k layers are valid | C | - k+1:Nr layers are invalid | C | phiHyd(i,j,k+1) is the hydrostatic Potential (P/rho) | C | (ocean only-^) at cell the interface k+1 (w point below)| C | Atmosphere: | C | integr_GeoPot allows to select one integration method | C | (see the list below) | C *==========================================================* C \ev C !USES: IMPLICIT NONE C == Global variables == #include "SIZE.h" #include "GRID.h" #include "EEPARAMS.h" #include "PARAMS.h" c #include "FFIELDS.h" #ifdef ALLOW_AUTODIFF_TAMC #include "tamc.h" #include "tamc_keys.h" #endif /* ALLOW_AUTODIFF_TAMC */ #include "SURFACE.h" #include "DYNVARS.h" C !INPUT/OUTPUT PARAMETERS: C == Routine arguments == INTEGER bi,bj,iMin,iMax,jMin,jMax,K _RL tFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy) _RL sFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy) _RL phiHyd(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) _RL dPhiHydX(1-Olx:sNx+Olx,1-Oly:sNy+Oly) _RL dPhiHydY(1-Olx:sNx+Olx,1-Oly:sNy+Oly) _RL myTime INTEGER myIter, myThid #ifdef INCLUDE_PHIHYD_CALCULATION_CODE C !LOCAL VARIABLES: C == Local variables == INTEGER i,j, Kp1 _RL zero, one, half _RL alphaRho(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL dRloc,dRlocKp1,locAlpha _RL ddPI, ddPIm, ddPIp, ratioRp, ratioRm INTEGER iMnLoc,jMnLoc PARAMETER ( zero= 0. _d 0 , one= 1. _d 0 , half= .5 _d 0 ) LOGICAL useDiagPhiRlow CEOP useDiagPhiRlow = .TRUE. C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| C Atmosphere: C integr_GeoPot => select one option for the integration of the Geopotential: C = 0 : Energy Conserving Form, No hFac ; C = 1 : Finite Volume Form, with hFac, linear in P by Half level; C =2,3: Finite Difference Form, with hFac, linear in P between 2 Tracer levels C 2 : case Tracer level at the middle of InterFace_W; C 3 : case InterFace_W at the middle of Tracer levels; C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| #ifdef ALLOW_AUTODIFF_TAMC act1 = bi - myBxLo(myThid) max1 = myBxHi(myThid) - myBxLo(myThid) + 1 act2 = bj - myByLo(myThid) max2 = myByHi(myThid) - myByLo(myThid) + 1 act3 = myThid - 1 max3 = nTx*nTy act4 = ikey_dynamics - 1 ikey = (act1 + 1) + act2*max1 & + act3*max1*max2 & + act4*max1*max2*max3 #endif /* ALLOW_AUTODIFF_TAMC */ C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| IF ( buoyancyRelation .eq. 'OCEANIC' ) THEN C This is the hydrostatic pressure calculation for the Ocean C which uses the FIND_RHO() routine to calculate density C before integrating g*rho over the current layer/interface #ifdef ALLOW_AUTODIFF_TAMC CADJ GENERAL #endif /* ALLOW_AUTODIFF_TAMC */ dRloc=drC(k) IF (k.EQ.1) dRloc=drF(1) IF (k.EQ.Nr) THEN dRlocKp1=0. ELSE dRlocKp1=drC(k+1) ENDIF C-- If this is the top layer we impose the boundary condition C P(z=eta) = P(atmospheric_loading) IF (k.EQ.1) THEN DO j=jMin,jMax DO i=iMin,iMax c phiHyd(i,j,k) = phi0surf(i,j,bi,bj) phiHyd(i,j,k) = 0. ENDDO ENDDO ENDIF C Calculate density #ifdef ALLOW_AUTODIFF_TAMC kkey = (ikey-1)*Nr + k CADJ STORE tFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte CADJ STORE sFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte #endif /* ALLOW_AUTODIFF_TAMC */ CALL FIND_RHO( bi, bj, iMin, iMax, jMin, jMax, k, k, & tFld, sFld, & alphaRho, myThid) C Quasi-hydrostatic terms are added in as if they modify the buoyancy IF (quasiHydrostatic) THEN CALL QUASIHYDROSTATICTERMS(bi,bj,k,alphaRho,myThid) ENDIF C--- Diagnose Hydrostatic pressure at the bottom: IF (useDiagPhiRlow) THEN CALL DIAGS_PHI_RLOW( I k, bi, bj, iMin,iMax, jMin,jMax, I phiHyd, alphaRho, tFld, sFld, I myTime, myIter, myThid) ENDIF C--- Hydrostatic pressure at cell centers IF (integr_GeoPot.EQ.1) THEN C -- Finite Volume Form DO j=jMin,jMax DO i=iMin,iMax C---------- This discretization is the "finite volume" form C which has not been used to date since it does not C conserve KE+PE exactly even though it is more natural C IF (k.LT.Nr) phiHyd(i,j,k+1)=phiHyd(i,j,k) & + drF(K)*gravity*alphaRho(i,j)*recip_rhoConst phiHyd(i,j,k)=phiHyd(i,j,k)+ & + half*drF(K)*gravity*alphaRho(i,j)*recip_rhoConst ENDDO ENDDO ELSE C -- Finite Difference Form DO j=jMin,jMax DO i=iMin,iMax C---------- This discretization is the "energy conserving" form C which has been used since at least Adcroft et al., MWR 1997 C phiHyd(i,j,k)=phiHyd(i,j,k) & +half*dRloc*gravity*alphaRho(i,j)*recip_rhoConst IF (k.LT.Nr) phiHyd(i,j,k+1)=phiHyd(i,j,k) & +half*dRlocKp1*gravity*alphaRho(i,j)*recip_rhoConst ENDDO ENDDO C -- end if integr_GeoPot = ... ENDIF C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| ELSEIF ( buoyancyRelation .eq. 'OCEANICP' ) THEN C This is the hydrostatic pressure calculation for the Ocean C which uses the FIND_RHO() routine to calculate density C before integrating (1/rho)'*dp over the current layer/interface #ifdef ALLOW_AUTODIFF_TAMC CADJ GENERAL #endif /* ALLOW_AUTODIFF_TAMC */ dRloc=drC(k) IF (k.EQ.1) dRloc=drF(1) IF (k.EQ.Nr) THEN dRlocKp1=0. ELSE dRlocKp1=drC(k+1) ENDIF IF (k.EQ.1) THEN DO j=jMin,jMax DO i=iMin,iMax c phiHyd(i,j,k) = phi0surf(i,j,bi,bj) phiHyd(i,j,k) = 0. ENDDO ENDDO ENDIF C-- Calculate density #ifdef ALLOW_AUTODIFF_TAMC kkey = (ikey-1)*Nr + k CADJ STORE tFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte CADJ STORE sFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte #endif /* ALLOW_AUTODIFF_TAMC */ CALL FIND_RHO( bi, bj, iMin, iMax, jMin, jMax, k, k, & tFld, sFld, & alphaRho, myThid) #ifdef ALLOW_AUTODIFF_TAMC CADJ STORE alphaRho (:,:) = comlev1_bibj_k, key=kkey, byte=isbyte #endif /* ALLOW_AUTODIFF_TAMC */ C-- Calculate specific volume anomaly : alpha' = 1/rho - alpha_Cst DO j=jMin,jMax DO i=iMin,iMax locAlpha=alphaRho(i,j)+rhoConst alphaRho(i,j)=maskC(i,j,k,bi,bj)* & (one/locAlpha - recip_rhoConst) ENDDO ENDDO C--- Diagnose Sea-surface height (Hydrostatic geopotential at r=Rlow): IF (useDiagPhiRlow) THEN CALL DIAGS_PHI_RLOW( I k, bi, bj, iMin,iMax, jMin,jMax, I phiHyd, alphaRho, tFld, sFld, I myTime, myIter, myThid) ENDIF C---- Hydrostatic pressure at cell centers IF (integr_GeoPot.EQ.1) THEN C -- Finite Volume Form DO j=jMin,jMax DO i=iMin,iMax C---------- This discretization is the "finite volume" form C which has not been used to date since it does not C conserve KE+PE exactly even though it is more natural C IF (k.LT.Nr) phiHyd(i,j,k+1)=phiHyd(i,j,k) & + hFacC(i,j,k,bi,bj)*drF(K)*alphaRho(i,j) phiHyd(i,j,k)=phiHyd(i,j,k) & +(hFacC(i,j,k,bi,bj)-half)*drF(K)*alphaRho(i,j) ENDDO ENDDO ELSE C -- Finite Difference Form DO j=jMin,jMax DO i=iMin,iMax C---------- This discretization is the "energy conserving" form phiHyd(i,j,k)=phiHyd(i,j,k) & + half*dRloc*alphaRho(i,j) IF (k.LT.Nr) phiHyd(i,j,k+1)=phiHyd(i,j,k) & + half*dRlocKp1*alphaRho(i,j) ENDDO ENDDO C -- end if integr_GeoPot = ... ENDIF ELSEIF ( buoyancyRelation .eq. 'ATMOSPHERIC' ) THEN C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| C This is the hydrostatic geopotential calculation for the Atmosphere C The ideal gas law is used implicitly here rather than calculating C the specific volume, analogous to the oceanic case. C Integrate d Phi / d pi IF (integr_GeoPot.EQ.0) THEN C -- Energy Conserving Form, No hFac -- C------------ The integration for the first level phi(k=1) is the same C for both the "finite volume" and energy conserving methods. Ci *NOTE* o Working with geopotential Anomaly, the geopotential boundary C condition is simply Phi-prime(Ro_surf)=0. C o convention ddPI > 0 (same as drF & drC) C----------------------------------------------------------------------- IF (K.EQ.1) THEN ddPIp=atm_Cp*( ((rF(K)/atm_Po)**atm_kappa) & -((rC(K)/atm_Po)**atm_kappa) ) DO j=jMin,jMax DO i=iMin,iMax c phiHyd(i,j,K)= phi0surf(i,j,bi,bj)+ phiHyd(i,j,K)= & ddPIp*maskC(i,j,K,bi,bj) & *(tFld(I,J,K,bi,bj)-tRef(K)) ENDDO ENDDO ELSE C-------- This discretization is the energy conserving form ddPI=atm_Cp*( ((rC(K-1)/atm_Po)**atm_kappa) & -((rC( K )/atm_Po)**atm_kappa) )*0.5 DO j=jMin,jMax DO i=iMin,iMax phiHyd(i,j,K)=phiHyd(i,j,K-1) & +ddPI*maskC(i,j,K-1,bi,bj) & *(tFld(I,J,K-1,bi,bj)-tRef(K-1)) & +ddPI*maskC(i,j, K ,bi,bj) & *(tFld(I,J, K ,bi,bj)-tRef( K )) C Old code (atmos-exact) looked like this Cold phiHyd(i,j,K)=phiHyd(i,j,K-1) - ddPI* Cold & (tFld(I,J,K-1,bi,bj)+tFld(I,J,K,bi,bj)-2.*tRef(K)) ENDDO ENDDO ENDIF C end: Energy Conserving Form, No hFac -- C----------------------------------------------------------------------- ELSEIF (integr_GeoPot.EQ.1) THEN C -- Finite Volume Form, with hFac, linear in P by Half level -- C--------- C Finite Volume formulation consistent with Partial Cell, linear in p by piece C Note: a true Finite Volume form should be linear between 2 Interf_W : C phi_C = (phi_W_k+ phi_W_k+1)/2 ; but not accurate in Stratosphere (low p) C also: if Interface_W at the middle between tracer levels, this form C is close to the Energy Cons. form in the Interior, except for the C non-linearity in PI(p) C--------- IF (K.EQ.1) THEN ddPIp=atm_Cp*( ((rF(K)/atm_Po)**atm_kappa) & -((rC(K)/atm_Po)**atm_kappa) ) DO j=jMin,jMax DO i=iMin,iMax c phiHyd(i,j,K)= phi0surf(i,j,bi,bj)+ phiHyd(i,j,K)= & ddPIp*_hFacC(I,J, K ,bi,bj) & *(tFld(I,J, K ,bi,bj)-tRef( K )) ENDDO ENDDO ELSE ddPIm=atm_Cp*( ((rC(K-1)/atm_Po)**atm_kappa) & -((rF( K )/atm_Po)**atm_kappa) ) ddPIp=atm_Cp*( ((rF( K )/atm_Po)**atm_kappa) & -((rC( K )/atm_Po)**atm_kappa) ) DO j=jMin,jMax DO i=iMin,iMax phiHyd(i,j,K) = phiHyd(i,j,K-1) & +ddPIm*_hFacC(I,J,K-1,bi,bj) & *(tFld(I,J,K-1,bi,bj)-tRef(K-1)) & +ddPIp*_hFacC(I,J, K ,bi,bj) & *(tFld(I,J, K ,bi,bj)-tRef( K )) ENDDO ENDDO ENDIF C end: Finite Volume Form, with hFac, linear in P by Half level -- C----------------------------------------------------------------------- ELSEIF (integr_GeoPot.EQ.2) THEN C -- Finite Difference Form, with hFac, Tracer Lev. = middle -- C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| C Finite Difference formulation consistent with Partial Cell, C case Tracer level at the middle of InterFace_W C linear between 2 Tracer levels ; conserve energy in the Interior C--------- Kp1 = min(Nr,K+1) IF (K.EQ.1) THEN ddPIm=atm_Cp*( ((rF( K )/atm_Po)**atm_kappa) & -((rC( K )/atm_Po)**atm_kappa) ) * 2. _d 0 ddPIp=atm_Cp*( ((rC( K )/atm_Po)**atm_kappa) & -((rC(Kp1)/atm_Po)**atm_kappa) ) DO j=jMin,jMax DO i=iMin,iMax c phiHyd(i,j,K)= phi0surf(i,j,bi,bj)+ phiHyd(i,j,K)= & ( ddPIm*max(zero, _hFacC(i,j,K,bi,bj)-half) & +ddPIp*min(zero, _hFacC(i,j,K,bi,bj)-half) ) & *(tFld(i,j, K ,bi,bj)-tRef( K )) & * maskC(i,j, K ,bi,bj) ENDDO ENDDO ELSE ddPIm=atm_Cp*( ((rC(K-1)/atm_Po)**atm_kappa) & -((rC( K )/atm_Po)**atm_kappa) ) ddPIp=atm_Cp*( ((rC( K )/atm_Po)**atm_kappa) & -((rC(Kp1)/atm_Po)**atm_kappa) ) DO j=jMin,jMax DO i=iMin,iMax phiHyd(i,j,K) = phiHyd(i,j,K-1) & + ddPIm*0.5 & *(tFld(i,j,K-1,bi,bj)-tRef(K-1)) & * maskC(i,j,K-1,bi,bj) & +(ddPIm*max(zero, _hFacC(i,j,K,bi,bj)-half) & +ddPIp*min(zero, _hFacC(i,j,K,bi,bj)-half) ) & *(tFld(i,j, K ,bi,bj)-tRef( K )) & * maskC(i,j, K ,bi,bj) ENDDO ENDDO ENDIF C end: Finite Difference Form, with hFac, Tracer Lev. = middle -- C----------------------------------------------------------------------- ELSEIF (integr_GeoPot.EQ.3) THEN C -- Finite Difference Form, with hFac, Interface_W = middle -- C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| C Finite Difference formulation consistent with Partial Cell, C Valid & accurate if Interface_W at middle between tracer levels C linear in p between 2 Tracer levels ; conserve energy in the Interior C--------- Kp1 = min(Nr,K+1) IF (K.EQ.1) THEN ratioRm=0.5*drF(K)/(rF(k)-rC(K)) ratioRp=drF(K)*recip_drC(Kp1) ddPIm=atm_Cp*( ((rF( K )/atm_Po)**atm_kappa) & -((rC( K )/atm_Po)**atm_kappa) ) * 2. _d 0 ddPIp=atm_Cp*( ((rC( K )/atm_Po)**atm_kappa) & -((rC(Kp1)/atm_Po)**atm_kappa) ) DO j=jMin,jMax DO i=iMin,iMax c phiHyd(i,j,K)= phi0surf(i,j,bi,bj)+ phiHyd(i,j,K)= & ( ddPIm*max(zero,(_hFacC(i,j,K,bi,bj)-one)*ratioRm+half) & +ddPIp*min(zero, _hFacC(i,j,K,bi,bj)*ratioRp -half) ) & *(tFld(i,j, K ,bi,bj)-tRef( K )) & * maskC(i,j, K ,bi,bj) ENDDO ENDDO ELSE ratioRm=drF(K)*recip_drC(K) ratioRp=drF(K)*recip_drC(Kp1) ddPIm=atm_Cp*( ((rC(K-1)/atm_Po)**atm_kappa) & -((rC( K )/atm_Po)**atm_kappa) ) ddPIp=atm_Cp*( ((rC( K )/atm_Po)**atm_kappa) & -((rC(Kp1)/atm_Po)**atm_kappa) ) DO j=jMin,jMax DO i=iMin,iMax phiHyd(i,j,K) = phiHyd(i,j,K-1) & + ddPIm*0.5 & *(tFld(i,j,K-1,bi,bj)-tRef(K-1)) & * maskC(i,j,K-1,bi,bj) & +(ddPIm*max(zero,(_hFacC(i,j,K,bi,bj)-one)*ratioRm+half) & +ddPIp*min(zero, _hFacC(i,j,K,bi,bj)*ratioRp -half) ) & *(tFld(i,j, K ,bi,bj)-tRef( K )) & * maskC(i,j, K ,bi,bj) ENDDO ENDDO ENDIF C end: Finite Difference Form, with hFac, Interface_W = middle -- C----------------------------------------------------------------------- ELSE STOP 'CALC_PHI_HYD: Bad integr_GeoPot option !' ENDIF C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| ELSE STOP 'CALC_PHI_HYD: Bad value of buoyancyRelation !' ENDIF IF (momPressureForcing) THEN iMnLoc = MAX(1-Olx+1,iMin) jMnLoc = MAX(1-Oly+1,jMin) CALL CALC_GRAD_PHI_HYD( I k, bi, bj, iMnLoc,iMax, jMnLoc,jMax, I phiHyd, alphaRho, tFld, sFld, O dPhiHydX, dPhiHydY, I myTime, myIter, myThid) ENDIF #endif /* INCLUDE_PHIHYD_CALCULATION_CODE */ RETURN END