/[MITgcm]/MITgcm/model/src/calc_phi_hyd.F
ViewVC logotype

Annotation of /MITgcm/model/src/calc_phi_hyd.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.9 - (hide annotations) (download)
Fri Feb 2 21:04:47 2001 UTC (23 years, 3 months ago) by adcroft
Branch: MAIN
Changes since 1.8: +162 -40 lines
Merged changes from branch "branch-atmos-merge" into MAIN (checkpoint34)
 - substantial modifications to algorithm sequence (dynamics.F)
 - packaged OBCS, Shapiro filter, Zonal filter, Atmospheric Physics

1 adcroft 1.9 C $Header: /u/gcmpack/models/MITgcmUV/model/src/calc_phi_hyd.F,v 1.8.2.5 2001/01/31 17:11:16 jmc Exp $
2 cnh 1.1
3 cnh 1.6 #include "CPP_OPTIONS.h"
4 cnh 1.1
5 adcroft 1.9 SUBROUTINE CALC_PHI_HYD(
6     I bi, bj, iMin, iMax, jMin, jMax, K,
7     I theta, salt,
8     U phiHyd,
9     I myThid)
10 cnh 1.1 C /==========================================================\
11     C | SUBROUTINE CALC_PHI_HYD |
12     C | o Integrate the hydrostatic relation to find phiHyd. |
13     C | |
14 adcroft 1.9 C | On entry: |
15     C | theta,salt are the current thermodynamics quantities|
16     C | (unchanged on exit) |
17     C | phiHyd(i,j,1:k-1) is the hydrostatic pressure/geopot. |
18     C | at cell centers (tracer points) |
19     C | - 1:k-1 layers are valid |
20     C | - k:Nr layers are invalid |
21     C | phiHyd(i,j,k) is the hydrostatic pressure/geop. |
22     C | at cell the interface k (w point above) |
23     C | On exit: |
24     C | phiHyd(i,j,1:k) is the hydrostatic pressure/geopot. |
25     C | at cell centers (tracer points) |
26     C | - 1:k layers are valid |
27     C | - k+1:Nr layers are invalid |
28     C | phiHyd(i,j,k+1) is the hydrostatic pressure/geop. |
29     C | at cell the interface k+1 (w point below)|
30     C | |
31 cnh 1.1 C \==========================================================/
32     IMPLICIT NONE
33     C == Global variables ==
34     #include "SIZE.h"
35     #include "GRID.h"
36     #include "EEPARAMS.h"
37     #include "PARAMS.h"
38     C == Routine arguments ==
39     INTEGER bi,bj,iMin,iMax,jMin,jMax,K
40 adcroft 1.9 _RL theta(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
41     _RL salt(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
42 cnh 1.2 _RL phiHyd(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
43 adcroft 1.9 INTEGER myThid
44    
45     #ifdef INCLUDE_PHIHYD_CALCULATION_CODE
46    
47 cnh 1.1 C == Local variables ==
48 adcroft 1.9 INTEGER i,j
49     _RL alphaRho(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
50     _RL dRloc,dRlocKp1
51     _RL ddRm1, ddRp1, ddRm, ddRp
52     _RL atm_cp, atm_kappa, atm_po
53    
54     IF ( buoyancyRelation .eq. 'OCEANIC' ) THEN
55     C This is the hydrostatic pressure calculation for the Ocean
56     C which uses the FIND_RHO() routine to calculate density
57     C before integrating g*rho over the current layer/interface
58    
59     dRloc=drC(k)
60     IF (k.EQ.1) dRloc=drF(1)
61     IF (k.EQ.Nr) THEN
62     dRlocKp1=0.
63     ELSE
64     dRlocKp1=drC(k+1)
65     ENDIF
66    
67     C-- If this is the top layer we impose the boundary condition
68     C P(z=eta) = P(atmospheric_loading)
69     IF (k.EQ.1) THEN
70     DO j=jMin,jMax
71     DO i=iMin,iMax
72     C *NOTE* The loading should go here but has not been implemented yet
73     phiHyd(i,j,k)=0.
74     ENDDO
75     ENDDO
76     ENDIF
77    
78     C Calculate density
79     CALL FIND_RHO( bi, bj, iMin, iMax, jMin, jMax, k, k, eosType,
80     & theta, salt,
81     & alphaRho, myThid)
82    
83     C Hydrostatic pressure at cell centers
84     DO j=jMin,jMax
85     DO i=iMin,iMax
86     #ifdef ALLOW_AUTODIFF_TAMC
87     Is this directive correct or even necessary in this new code?
88     CADJ GENERAL
89     #endif /* ALLOW_AUTODIFF_TAMC */
90    
91     C---------- This discretization is the "finite volume" form
92     C which has not been used to date since it does not
93     C conserve KE+PE exactly even though it is more natural
94     C
95     c IF (k.LT.Nr) phiHyd(i,j,k+1)=phiHyd(i,j,k)+
96     c & drF(K)*gravity*alphaRho(i,j)
97     c phiHyd(i,j,k)=phiHyd(i,j,k)+
98     c & 0.5*drF(K)*gravity*alphaRho(i,j)
99     C-----------------------------------------------------------------------
100    
101     C---------- This discretization is the "energy conserving" form
102     C which has been used since at least Adcroft et al., MWR 1997
103     C
104     phiHyd(i,j,k)=phiHyd(i,j,k)+
105     & 0.5*dRloc*gravity*alphaRho(i,j)
106     IF (k.LT.Nr) phiHyd(i,j,k+1)=phiHyd(i,j,k)+
107     & 0.5*dRlocKp1*gravity*alphaRho(i,j)
108     C-----------------------------------------------------------------------
109     ENDDO
110     ENDDO
111    
112    
113    
114    
115     ELSEIF ( buoyancyRelation .eq. 'ATMOSPHERIC' ) THEN
116     C This is the hydrostatic geopotential calculation for the Atmosphere
117     C The ideal gas law is used implicitly here rather than calculating
118     C the specific volume, analogous to the oceanic case.
119    
120     C Integrate d Phi / d pi
121    
122     C *NOTE* These constants should be in the data file and PARAMS.h
123     atm_cp=1004. _d 0
124     atm_kappa=2. _d 0/7. _d 0
125     atm_po=1. _d 5
126     IF (K.EQ.1) THEN
127     ddRp1=atm_cp*( ((rC(K)/atm_po)**atm_kappa)
128     & -((rF(K)/atm_po)**atm_kappa) )
129     DO j=jMin,jMax
130     DO i=iMin,iMax
131     ddRp=ddRp1
132     IF (hFacC(I,J, K ,bi,bj).EQ.0.) ddRp=0.
133     C------------ The integration for the first level phi(k=1) is the
134     C same for both the "finite volume" and energy conserving
135     C methods.
136     C *NOTE* The geopotential boundary condition should go
137     C here but has not been implemented yet
138     phiHyd(i,j,K)=0.
139     & -ddRp*(theta(I,J,K,bi,bj)-tRef(K))
140     C-----------------------------------------------------------------------
141     ENDDO
142     ENDDO
143     ELSE
144    
145     C-------- This discretization is the "finite volume" form which
146     C integrates the hydrostatic equation of each half/sub-layer.
147     C This seems most natural and could easily allow for lopped cells
148     C by replacing rF(K) with the height of the surface (not implemented).
149     C in the lower layers (e.g. at k=1).
150     C
151     c ddRm1=atm_cp*( ((rF( K )/atm_po)**atm_kappa)
152     c & -((rC(K-1)/atm_po)**atm_kappa) )
153     c ddRp1=atm_cp*( ((rC( K )/atm_po)**atm_kappa)
154     c & -((rF( K )/atm_po)**atm_kappa) )
155     C-----------------------------------------------------------------------
156    
157    
158     C-------- This discretization is the energy conserving form
159     ddRp1=atm_cp*( ((rC( K )/atm_po)**atm_kappa)
160     & -((rC(K-1)/atm_po)**atm_kappa) )*0.5
161     ddRm1=ddRp1
162     C-----------------------------------------------------------------------
163    
164     DO j=jMin,jMax
165     DO i=iMin,iMax
166     ddRp=ddRp1
167     ddRm=ddRm1
168     IF (hFacC(I,J, K ,bi,bj).EQ.0.) ddRp=0.
169     IF (hFacC(I,J,K-1,bi,bj).EQ.0.) ddRm=0.
170     phiHyd(i,j,K)=phiHyd(i,j,K-1)
171     & -( ddRm*(theta(I,J,K-1,bi,bj)-tRef(K-1))
172     & +ddRp*(theta(I,J, K ,bi,bj)-tRef( K )) )
173     C Old code (atmos-exact) looked like this
174     Cold phiHyd(i,j,K)=phiHyd(i,j,K-1) - ddRm1*
175     Cold & (theta(I,J,K-1,bi,bj)+theta(I,J,K,bi,bj)-2.*tRef(K))
176     ENDDO
177     ENDDO
178     ENDIF
179 cnh 1.1
180 cnh 1.6
181 adcroft 1.9 ELSE
182     STOP 'CALC_PHI_HYD: We should never reach this point!'
183 cnh 1.5 ENDIF
184 cnh 1.1
185 cnh 1.6 #endif
186    
187 cnh 1.1 return
188     end

  ViewVC Help
Powered by ViewVC 1.1.22