/[MITgcm]/MITgcm/model/src/calc_phi_hyd.F
ViewVC logotype

Annotation of /MITgcm/model/src/calc_phi_hyd.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.39 - (hide annotations) (download)
Fri Feb 13 21:56:48 2009 UTC (15 years, 3 months ago) by heimbach
Branch: MAIN
CVS Tags: checkpoint62c, checkpoint62a, checkpoint62, checkpoint62b, checkpoint61n, checkpoint61q, checkpoint61o, checkpoint61l, checkpoint61m, checkpoint61j, checkpoint61k, checkpoint61v, checkpoint61w, checkpoint61t, checkpoint61u, checkpoint61r, checkpoint61s, checkpoint61p, checkpoint61z, checkpoint61x, checkpoint61y
Changes since 1.38: +11 -6 lines
Add TAF option "kind" (or adjust "byte") to enable real*4 common blocks

1 heimbach 1.39 C $Header: /u/gcmpack/MITgcm/model/src/calc_phi_hyd.F,v 1.38 2008/09/22 17:55:16 jmc Exp $
2 cnh 1.16 C $Name: $
3 cnh 1.1
4 jmc 1.32 #include "PACKAGES_CONFIG.h"
5 cnh 1.6 #include "CPP_OPTIONS.h"
6 cnh 1.1
7 cnh 1.16 CBOP
8     C !ROUTINE: CALC_PHI_HYD
9     C !INTERFACE:
10 adcroft 1.9 SUBROUTINE CALC_PHI_HYD(
11 jmc 1.29 I bi, bj, iMin, iMax, jMin, jMax, k,
12 mlosch 1.20 I tFld, sFld,
13 jmc 1.29 U phiHydF,
14     O phiHydC, dPhiHydX, dPhiHydY,
15 jmc 1.38 I myTime, myIter, myThid )
16 cnh 1.16 C !DESCRIPTION: \bv
17     C *==========================================================*
18 cnh 1.1 C | SUBROUTINE CALC_PHI_HYD |
19 jmc 1.36 C | o Integrate the hydrostatic relation to find the Hydros. |
20 cnh 1.16 C *==========================================================*
21 jmc 1.29 C | Potential (ocean: Pressure/rho ; atmos = geopotential)
22     C | On entry:
23     C | tFld,sFld are the current thermodynamics quantities
24     C | (unchanged on exit)
25     C | phiHydF(i,j) is the hydrostatic Potential anomaly
26 jmc 1.36 C | at middle between tracer points k-1,k
27 jmc 1.29 C | On exit:
28     C | phiHydC(i,j) is the hydrostatic Potential anomaly
29     C | at cell centers (tracer points), level k
30     C | phiHydF(i,j) is the hydrostatic Potential anomaly
31 jmc 1.36 C | at middle between tracer points k,k+1
32 jmc 1.29 C | dPhiHydX,Y hydrostatic Potential gradient (X&Y dir)
33     C | at cell centers (tracer points), level k
34     C | integr_GeoPot allows to select one integration method
35     C | 1= Finite volume form ; else= Finite difference form
36 cnh 1.16 C *==========================================================*
37     C \ev
38     C !USES:
39 cnh 1.1 IMPLICIT NONE
40     C == Global variables ==
41     #include "SIZE.h"
42     #include "GRID.h"
43     #include "EEPARAMS.h"
44     #include "PARAMS.h"
45 heimbach 1.13 #ifdef ALLOW_AUTODIFF_TAMC
46     #include "tamc.h"
47     #include "tamc_keys.h"
48     #endif /* ALLOW_AUTODIFF_TAMC */
49 adcroft 1.19 #include "SURFACE.h"
50 mlosch 1.20 #include "DYNVARS.h"
51 heimbach 1.13
52 cnh 1.16 C !INPUT/OUTPUT PARAMETERS:
53 cnh 1.1 C == Routine arguments ==
54 jmc 1.36 C bi, bj, k :: tile and level indices
55 jmc 1.29 C iMin,iMax,jMin,jMax :: computational domain
56     C tFld :: potential temperature
57     C sFld :: salinity
58     C phiHydF :: hydrostatic potential anomaly at middle between
59     C 2 centers (entry: Interf_k ; output: Interf_k+1)
60     C phiHydC :: hydrostatic potential anomaly at cell center
61     C dPhiHydX,Y :: gradient (X & Y dir.) of hydrostatic potential anom.
62     C myTime :: current time
63     C myIter :: current iteration number
64     C myThid :: thread number for this instance of the routine.
65     INTEGER bi,bj,iMin,iMax,jMin,jMax,k
66 mlosch 1.20 _RL tFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
67     _RL sFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
68 jmc 1.29 c _RL phiHyd(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
69     _RL phiHydF(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
70     _RL phiHydC(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
71 jmc 1.25 _RL dPhiHydX(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
72     _RL dPhiHydY(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
73     _RL myTime
74     INTEGER myIter, myThid
75 jmc 1.36
76 adcroft 1.9 #ifdef INCLUDE_PHIHYD_CALCULATION_CODE
77    
78 cnh 1.16 C !LOCAL VARIABLES:
79 cnh 1.1 C == Local variables ==
80 jmc 1.29 INTEGER i,j
81 jmc 1.14 _RL zero, one, half
82 adcroft 1.9 _RL alphaRho(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
83 jmc 1.29 _RL dRlocM,dRlocP, ddRloc, locAlpha
84     _RL ddPIm, ddPIp, rec_dRm, rec_dRp
85     _RL surfPhiFac
86 jmc 1.25 PARAMETER ( zero= 0. _d 0 , one= 1. _d 0 , half= .5 _d 0 )
87 jmc 1.29 LOGICAL useDiagPhiRlow, addSurfPhiAnom
88 cnh 1.16 CEOP
89 jmc 1.27 useDiagPhiRlow = .TRUE.
90 jmc 1.29 addSurfPhiAnom = select_rStar.EQ.0 .AND. nonlinFreeSurf.GT.3
91     surfPhiFac = 0.
92     IF (addSurfPhiAnom) surfPhiFac = 1.
93 jmc 1.14
94     C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
95 jmc 1.36 C Atmosphere:
96 jmc 1.24 C integr_GeoPot => select one option for the integration of the Geopotential:
97 jmc 1.29 C = 0 : Energy Conserving Form, accurate with Topo full cell;
98     C = 1 : Finite Volume Form, with Part-Cell, linear in P by Half level;
99 jmc 1.36 C =2,3: Finite Difference Form, with Part-Cell,
100 jmc 1.29 C linear in P between 2 Tracer levels.
101 jmc 1.36 C can handle both cases: Tracer lev at the middle of InterFace_W
102 jmc 1.29 C and InterFace_W at the middle of Tracer lev;
103 jmc 1.14 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
104 adcroft 1.9
105 heimbach 1.13 #ifdef ALLOW_AUTODIFF_TAMC
106     act1 = bi - myBxLo(myThid)
107     max1 = myBxHi(myThid) - myBxLo(myThid) + 1
108    
109     act2 = bj - myByLo(myThid)
110     max2 = myByHi(myThid) - myByLo(myThid) + 1
111    
112     act3 = myThid - 1
113     max3 = nTx*nTy
114    
115     act4 = ikey_dynamics - 1
116    
117     ikey = (act1 + 1) + act2*max1
118     & + act3*max1*max2
119     & + act4*max1*max2*max3
120     #endif /* ALLOW_AUTODIFF_TAMC */
121    
122 jmc 1.36 C-- Initialize phiHydF to zero :
123 jmc 1.29 C note: atmospheric_loading or Phi_topo anomaly are incorporated
124     C later in S/R calc_grad_phi_hyd
125     IF (k.EQ.1) THEN
126     DO j=1-Oly,sNy+Oly
127     DO i=1-Olx,sNx+Olx
128     phiHydF(i,j) = 0.
129     ENDDO
130     ENDDO
131     ENDIF
132 jmc 1.25
133     C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
134 jmc 1.29 IF ( buoyancyRelation .EQ. 'OCEANIC' ) THEN
135 adcroft 1.9 C This is the hydrostatic pressure calculation for the Ocean
136     C which uses the FIND_RHO() routine to calculate density
137     C before integrating g*rho over the current layer/interface
138 jmc 1.38 #ifdef ALLOW_AUTODIFF_TAMC
139 jmc 1.25 CADJ GENERAL
140 jmc 1.38 #endif /* ALLOW_AUTODIFF_TAMC */
141 adcroft 1.9
142 jmc 1.38 IF ( implicitIntGravWave .OR. myIter.LT.0 ) THEN
143 jmc 1.29 C--- Calculate density
144 heimbach 1.13 #ifdef ALLOW_AUTODIFF_TAMC
145 jmc 1.38 kkey = (ikey-1)*Nr + k
146 heimbach 1.39 CADJ STORE tFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte,
147     CADJ & kind = isbyte
148     CADJ STORE sFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte,
149     CADJ & kind = isbyte
150 heimbach 1.13 #endif /* ALLOW_AUTODIFF_TAMC */
151 jmc 1.38 CALL FIND_RHO_2D(
152     I iMin, iMax, jMin, jMax, k,
153     I tFld(1-OLx,1-OLy,k,bi,bj),
154     I sFld(1-OLx,1-OLy,k,bi,bj),
155     O alphaRho,
156     I k, bi, bj, myThid )
157     ELSE
158     DO j=jMin,jMax
159     DO i=iMin,iMax
160     alphaRho(i,j) = rhoInSitu(i,j,k,bi,bj)
161     ENDDO
162     ENDDO
163     ENDIF
164 jmc 1.36
165 mlosch 1.33 #ifdef ALLOW_SHELFICE
166 jmc 1.36 C mask rho, so that there is no contribution of phiHyd from
167 mlosch 1.33 C overlying shelfice (whose density we do not know)
168 jmc 1.37 IF ( useShelfIce .AND. useDOWN_SLOPE ) THEN
169     C- note: does not work for down_slope pkg which needs rho below the bottom.
170     C setting rho=0 above the ice-shelf base is enough (and works in both cases)
171     C but might be slower (--> keep original masking if not using down_slope pkg)
172     DO j=jMin,jMax
173     DO i=iMin,iMax
174     IF ( k.LT.kSurfC(i,j,bi,bj) ) alphaRho(i,j) = 0. _d 0
175     ENDDO
176     ENDDO
177     ELSEIF ( useShelfIce ) THEN
178 mlosch 1.33 DO j=jMin,jMax
179     DO i=iMin,iMax
180     alphaRho(i,j) = alphaRho(i,j)*maskC(i,j,k,bi,bj)
181     ENDDO
182     ENDDO
183     ENDIF
184     #endif /* ALLOW_SHELFICE */
185 adcroft 1.22
186 jmc 1.34 #ifdef ALLOW_MOM_COMMON
187 adcroft 1.22 C Quasi-hydrostatic terms are added in as if they modify the buoyancy
188     IF (quasiHydrostatic) THEN
189 jmc 1.34 CALL MOM_QUASIHYDROSTATIC(bi,bj,k,uVel,vVel,alphaRho,myThid)
190 adcroft 1.22 ENDIF
191 jmc 1.34 #endif /* ALLOW_MOM_COMMON */
192 adcroft 1.9
193 jmc 1.29 #ifdef NONLIN_FRSURF
194     IF (k.EQ.1 .AND. addSurfPhiAnom) THEN
195     DO j=jMin,jMax
196     DO i=iMin,iMax
197     phiHydF(i,j) = surfPhiFac*etaH(i,j,bi,bj)
198     & *gravity*alphaRho(i,j)*recip_rhoConst
199     ENDDO
200     ENDDO
201     ENDIF
202     #endif /* NONLIN_FRSURF */
203 jmc 1.27
204 jmc 1.29 C---- Hydrostatic pressure at cell centers
205 jmc 1.25
206     IF (integr_GeoPot.EQ.1) THEN
207     C -- Finite Volume Form
208    
209     DO j=jMin,jMax
210 adcroft 1.9 DO i=iMin,iMax
211    
212 jmc 1.25 C---------- This discretization is the "finite volume" form
213     C which has not been used to date since it does not
214     C conserve KE+PE exactly even though it is more natural
215     C
216 jmc 1.29 phiHydC(i,j)=phiHydF(i,j)
217     & + half*drF(k)*gravity*alphaRho(i,j)*recip_rhoConst
218     phiHydF(i,j)=phiHydF(i,j)
219     & + drF(k)*gravity*alphaRho(i,j)*recip_rhoConst
220 jmc 1.25 ENDDO
221     ENDDO
222    
223     ELSE
224     C -- Finite Difference Form
225    
226 jmc 1.29 dRlocM=half*drC(k)
227     IF (k.EQ.1) dRlocM=rF(k)-rC(k)
228     IF (k.EQ.Nr) THEN
229     dRlocP=rC(k)-rF(k+1)
230     ELSE
231     dRlocP=half*drC(k+1)
232     ENDIF
233    
234 jmc 1.25 DO j=jMin,jMax
235     DO i=iMin,iMax
236 adcroft 1.9
237     C---------- This discretization is the "energy conserving" form
238     C which has been used since at least Adcroft et al., MWR 1997
239     C
240 jmc 1.29 phiHydC(i,j)=phiHydF(i,j)
241     & +dRlocM*gravity*alphaRho(i,j)*recip_rhoConst
242     phiHydF(i,j)=phiHydC(i,j)
243     & +dRlocP*gravity*alphaRho(i,j)*recip_rhoConst
244 adcroft 1.9 ENDDO
245 jmc 1.25 ENDDO
246    
247     C -- end if integr_GeoPot = ...
248     ENDIF
249 jmc 1.36
250 jmc 1.25 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
251 jmc 1.29 ELSEIF ( buoyancyRelation .EQ. 'OCEANICP' ) THEN
252 adcroft 1.19 C This is the hydrostatic pressure calculation for the Ocean
253     C which uses the FIND_RHO() routine to calculate density
254 jmc 1.25 C before integrating (1/rho)'*dp over the current layer/interface
255 mlosch 1.21 #ifdef ALLOW_AUTODIFF_TAMC
256     CADJ GENERAL
257     #endif /* ALLOW_AUTODIFF_TAMC */
258 adcroft 1.19
259 jmc 1.38 IF ( implicitIntGravWave .OR. myIter.LT.0 ) THEN
260 jmc 1.27 C-- Calculate density
261 adcroft 1.19 #ifdef ALLOW_AUTODIFF_TAMC
262 jmc 1.38 kkey = (ikey-1)*Nr + k
263 heimbach 1.39 CADJ STORE tFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte,
264     CADJ & kind = isbyte
265     CADJ STORE sFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte,
266     CADJ & kind = isbyte
267 adcroft 1.19 #endif /* ALLOW_AUTODIFF_TAMC */
268 jmc 1.38 CALL FIND_RHO_2D(
269     I iMin, iMax, jMin, jMax, k,
270     I tFld(1-OLx,1-OLy,k,bi,bj),
271     I sFld(1-OLx,1-OLy,k,bi,bj),
272     O alphaRho,
273     I k, bi, bj, myThid )
274 heimbach 1.23 #ifdef ALLOW_AUTODIFF_TAMC
275 heimbach 1.39 CADJ STORE alphaRho (:,:) = comlev1_bibj_k, key=kkey, byte=isbyte,
276     CADJ & kind = isbyte
277 heimbach 1.23 #endif /* ALLOW_AUTODIFF_TAMC */
278 jmc 1.38 ELSE
279     DO j=jMin,jMax
280     DO i=iMin,iMax
281     alphaRho(i,j) = rhoInSitu(i,j,k,bi,bj)
282     ENDDO
283     ENDDO
284     ENDIF
285 jmc 1.31
286 jmc 1.27 C-- Calculate specific volume anomaly : alpha' = 1/rho - alpha_Cst
287     DO j=jMin,jMax
288     DO i=iMin,iMax
289     locAlpha=alphaRho(i,j)+rhoConst
290     alphaRho(i,j)=maskC(i,j,k,bi,bj)*
291     & (one/locAlpha - recip_rhoConst)
292     ENDDO
293     ENDDO
294    
295 jmc 1.25 C---- Hydrostatic pressure at cell centers
296    
297     IF (integr_GeoPot.EQ.1) THEN
298     C -- Finite Volume Form
299    
300     DO j=jMin,jMax
301 adcroft 1.19 DO i=iMin,iMax
302 jmc 1.25
303     C---------- This discretization is the "finite volume" form
304     C which has not been used to date since it does not
305     C conserve KE+PE exactly even though it is more natural
306     C
307 jmc 1.37 IF (k.EQ.kSurfC(i,j,bi,bj)) THEN
308 jmc 1.29 ddRloc = Ro_surf(i,j,bi,bj)-rC(k)
309     #ifdef NONLIN_FRSURF
310     ddRloc = ddRloc + surfPhiFac*etaH(i,j,bi,bj)
311     #endif
312     phiHydC(i,j) = ddRloc*alphaRho(i,j)
313 jmc 1.36 c--to reproduce results of c48d_post: uncomment those 4+1 lines
314 jmc 1.29 c phiHydC(i,j)=phiHydF(i,j)
315     c & +(hFacC(i,j,k,bi,bj)-half)*drF(k)*alphaRho(i,j)
316     c phiHydF(i,j)=phiHydF(i,j)
317     c & + hFacC(i,j,k,bi,bj)*drF(k)*alphaRho(i,j)
318     ELSE
319     phiHydC(i,j) = phiHydF(i,j) + half*drF(k)*alphaRho(i,j)
320     c phiHydF(i,j) = phiHydF(i,j) + drF(k)*alphaRho(i,j)
321     ENDIF
322     c-- and comment this last one:
323     phiHydF(i,j) = phiHydC(i,j) + half*drF(k)*alphaRho(i,j)
324     c-----
325 jmc 1.25 ENDDO
326     ENDDO
327    
328     ELSE
329 jmc 1.29 C -- Finite Difference Form, with Part-Cell Bathy
330    
331     dRlocM=half*drC(k)
332     IF (k.EQ.1) dRlocM=rF(k)-rC(k)
333     IF (k.EQ.Nr) THEN
334     dRlocP=rC(k)-rF(k+1)
335     ELSE
336     dRlocP=half*drC(k+1)
337     ENDIF
338     rec_dRm = one/(rF(k)-rC(k))
339     rec_dRp = one/(rC(k)-rF(k+1))
340 jmc 1.25
341     DO j=jMin,jMax
342     DO i=iMin,iMax
343 adcroft 1.9
344 adcroft 1.19 C---------- This discretization is the "energy conserving" form
345 mlosch 1.21
346 jmc 1.37 IF (k.EQ.kSurfC(i,j,bi,bj)) THEN
347 jmc 1.29 ddRloc = Ro_surf(i,j,bi,bj)-rC(k)
348     #ifdef NONLIN_FRSURF
349     ddRloc = ddRloc + surfPhiFac*etaH(i,j,bi,bj)
350     #endif
351     phiHydC(i,j) =( MAX(zero,ddRloc)*rec_dRm*dRlocM
352     & +MIN(zero,ddRloc)*rec_dRp*dRlocP
353     & )*alphaRho(i,j)
354     ELSE
355     phiHydC(i,j) = phiHydF(i,j) + dRlocM*alphaRho(i,j)
356     ENDIF
357     phiHydF(i,j) = phiHydC(i,j) + dRlocP*alphaRho(i,j)
358 adcroft 1.19 ENDDO
359 jmc 1.25 ENDDO
360    
361     C -- end if integr_GeoPot = ...
362     ENDIF
363 adcroft 1.9
364 jmc 1.29 ELSEIF ( buoyancyRelation .EQ. 'ATMOSPHERIC' ) THEN
365 jmc 1.14 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
366 adcroft 1.9 C This is the hydrostatic geopotential calculation for the Atmosphere
367     C The ideal gas law is used implicitly here rather than calculating
368     C the specific volume, analogous to the oceanic case.
369    
370 jmc 1.30 C-- virtual potential temperature anomaly (including water vapour effect)
371     DO j=jMin,jMax
372     DO i=iMin,iMax
373     alphaRho(i,j)=maskC(i,j,k,bi,bj)
374 jmc 1.36 & *( tFld(i,j,k,bi,bj)*(sFld(i,j,k,bi,bj)*atm_Rq+one)
375 jmc 1.30 & -tRef(k) )
376     ENDDO
377     ENDDO
378    
379 jmc 1.29 C--- Integrate d Phi / d pi
380 adcroft 1.9
381 jmc 1.29 IF (integr_GeoPot.EQ.0) THEN
382     C -- Energy Conserving Form, accurate with Full cell topo --
383 jmc 1.14 C------------ The integration for the first level phi(k=1) is the same
384     C for both the "finite volume" and energy conserving methods.
385 jmc 1.36 C *NOTE* o Working with geopotential Anomaly, the geopotential boundary
386 adcroft 1.17 C condition is simply Phi-prime(Ro_surf)=0.
387 jmc 1.14 C o convention ddPI > 0 (same as drF & drC)
388     C-----------------------------------------------------------------------
389 jmc 1.29 IF (k.EQ.1) THEN
390     ddPIm=atm_Cp*( ((rF( k )/atm_Po)**atm_kappa)
391     & -((rC( k )/atm_Po)**atm_kappa) )
392     ELSE
393     ddPIm=atm_Cp*( ((rC(k-1)/atm_Po)**atm_kappa)
394     & -((rC( k )/atm_Po)**atm_kappa) )*half
395     ENDIF
396     IF (k.EQ.Nr) THEN
397     ddPIp=atm_Cp*( ((rC( k )/atm_Po)**atm_kappa)
398     & -((rF(k+1)/atm_Po)**atm_kappa) )
399     ELSE
400     ddPIp=atm_Cp*( ((rC( k )/atm_Po)**atm_kappa)
401 jmc 1.36 & -((rC(k+1)/atm_Po)**atm_kappa) )*half
402 jmc 1.29 ENDIF
403 jmc 1.14 C-------- This discretization is the energy conserving form
404 jmc 1.29 DO j=jMin,jMax
405     DO i=iMin,iMax
406 jmc 1.30 phiHydC(i,j) = phiHydF(i,j) +ddPIm*alphaRho(i,j)
407     phiHydF(i,j) = phiHydC(i,j) +ddPIp*alphaRho(i,j)
408 jmc 1.14 ENDDO
409 jmc 1.29 ENDDO
410 jmc 1.14 C end: Energy Conserving Form, No hFac --
411 adcroft 1.9 C-----------------------------------------------------------------------
412 jmc 1.14
413 jmc 1.29 ELSEIF (integr_GeoPot.EQ.1) THEN
414     C -- Finite Volume Form, with Part-Cell Topo, linear in P by Half level
415 jmc 1.14 C---------
416     C Finite Volume formulation consistent with Partial Cell, linear in p by piece
417     C Note: a true Finite Volume form should be linear between 2 Interf_W :
418     C phi_C = (phi_W_k+ phi_W_k+1)/2 ; but not accurate in Stratosphere (low p)
419     C also: if Interface_W at the middle between tracer levels, this form
420 jmc 1.36 C is close to the Energy Cons. form in the Interior, except for the
421 jmc 1.14 C non-linearity in PI(p)
422     C---------
423 jmc 1.29 ddPIm=atm_Cp*( ((rF( k )/atm_Po)**atm_kappa)
424     & -((rC( k )/atm_Po)**atm_kappa) )
425     ddPIp=atm_Cp*( ((rC( k )/atm_Po)**atm_kappa)
426     & -((rF(k+1)/atm_Po)**atm_kappa) )
427     DO j=jMin,jMax
428     DO i=iMin,iMax
429 jmc 1.37 IF (k.EQ.kSurfC(i,j,bi,bj)) THEN
430 jmc 1.29 ddRloc = Ro_surf(i,j,bi,bj)-rC(k)
431     #ifdef NONLIN_FRSURF
432     ddRloc = ddRloc + surfPhiFac*etaH(i,j,bi,bj)
433     #endif
434     phiHydC(i,j) = ddRloc*recip_drF(k)*2. _d 0
435 jmc 1.30 & *ddPIm*alphaRho(i,j)
436 jmc 1.29 ELSE
437 jmc 1.30 phiHydC(i,j) = phiHydF(i,j) +ddPIm*alphaRho(i,j)
438 jmc 1.29 ENDIF
439 jmc 1.30 phiHydF(i,j) = phiHydC(i,j) +ddPIp*alphaRho(i,j)
440 adcroft 1.9 ENDDO
441 jmc 1.29 ENDDO
442     C end: Finite Volume Form, with Part-Cell Topo, linear in P by Half level
443 adcroft 1.9 C-----------------------------------------------------------------------
444    
445 jmc 1.29 ELSEIF ( integr_GeoPot.EQ.2
446     & .OR. integr_GeoPot.EQ.3 ) THEN
447 jmc 1.36 C -- Finite Difference Form, with Part-Cell Topo,
448 jmc 1.29 C works with Interface_W at the middle between 2.Tracer_Level
449     C and with Tracer_Level at the middle between 2.Interface_W.
450 jmc 1.14 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
451     C Finite Difference formulation consistent with Partial Cell,
452     C Valid & accurate if Interface_W at middle between tracer levels
453 jmc 1.36 C linear in p between 2 Tracer levels ; conserve energy in the Interior
454 jmc 1.14 C---------
455 jmc 1.29 IF (k.EQ.1) THEN
456     ddPIm=atm_Cp*( ((rF( k )/atm_Po)**atm_kappa)
457     & -((rC( k )/atm_Po)**atm_kappa) )
458     ELSE
459     ddPIm=atm_Cp*( ((rC(k-1)/atm_Po)**atm_kappa)
460     & -((rC( k )/atm_Po)**atm_kappa) )*half
461     ENDIF
462     IF (k.EQ.Nr) THEN
463     ddPIp=atm_Cp*( ((rC( k )/atm_Po)**atm_kappa)
464     & -((rF(k+1)/atm_Po)**atm_kappa) )
465     ELSE
466     ddPIp=atm_Cp*( ((rC( k )/atm_Po)**atm_kappa)
467 jmc 1.36 & -((rC(k+1)/atm_Po)**atm_kappa) )*half
468 jmc 1.29 ENDIF
469     rec_dRm = one/(rF(k)-rC(k))
470     rec_dRp = one/(rC(k)-rF(k+1))
471     DO j=jMin,jMax
472     DO i=iMin,iMax
473 jmc 1.37 IF (k.EQ.kSurfC(i,j,bi,bj)) THEN
474 jmc 1.29 ddRloc = Ro_surf(i,j,bi,bj)-rC(k)
475     #ifdef NONLIN_FRSURF
476     ddRloc = ddRloc + surfPhiFac*etaH(i,j,bi,bj)
477     #endif
478     phiHydC(i,j) =( MAX(zero,ddRloc)*rec_dRm*ddPIm
479     & +MIN(zero,ddRloc)*rec_dRp*ddPIp )
480 jmc 1.30 & *alphaRho(i,j)
481 jmc 1.29 ELSE
482 jmc 1.30 phiHydC(i,j) = phiHydF(i,j) +ddPIm*alphaRho(i,j)
483 jmc 1.29 ENDIF
484 jmc 1.30 phiHydF(i,j) = phiHydC(i,j) +ddPIp*alphaRho(i,j)
485 jmc 1.14 ENDDO
486 jmc 1.29 ENDDO
487     C end: Finite Difference Form, with Part-Cell Topo
488 jmc 1.14 C-----------------------------------------------------------------------
489 cnh 1.1
490 jmc 1.29 ELSE
491     STOP 'CALC_PHI_HYD: Bad integr_GeoPot option !'
492     ENDIF
493 cnh 1.6
494 jmc 1.14 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
495 adcroft 1.9 ELSE
496 jmc 1.24 STOP 'CALC_PHI_HYD: Bad value of buoyancyRelation !'
497 jmc 1.25 ENDIF
498    
499 jmc 1.29 C--- Diagnose Phi at boundary r=R_low :
500     C = Ocean bottom pressure (Ocean, Z-coord.)
501     C = Sea-surface height (Ocean, P-coord.)
502     C = Top atmosphere height (Atmos, P-coord.)
503     IF (useDiagPhiRlow) THEN
504     CALL DIAGS_PHI_RLOW(
505     I k, bi, bj, iMin,iMax, jMin,jMax,
506     I phiHydF, phiHydC, alphaRho, tFld, sFld,
507 jmc 1.36 I myTime, myIter, myThid)
508 jmc 1.29 ENDIF
509    
510     C--- Diagnose Full Hydrostatic Potential at cell center level
511     CALL DIAGS_PHI_HYD(
512     I k, bi, bj, iMin,iMax, jMin,jMax,
513     I phiHydC,
514     I myTime, myIter, myThid)
515    
516 jmc 1.36 IF (momPressureForcing) THEN
517 jmc 1.25 CALL CALC_GRAD_PHI_HYD(
518 jmc 1.35 I k, bi, bj, iMin,iMax, jMin,jMax,
519 jmc 1.29 I phiHydC, alphaRho, tFld, sFld,
520 jmc 1.25 O dPhiHydX, dPhiHydY,
521 jmc 1.36 I myTime, myIter, myThid)
522 cnh 1.5 ENDIF
523 cnh 1.1
524 jmc 1.14 #endif /* INCLUDE_PHIHYD_CALCULATION_CODE */
525 cnh 1.6
526 jmc 1.11 RETURN
527     END

  ViewVC Help
Powered by ViewVC 1.1.22