/[MITgcm]/MITgcm/model/src/calc_phi_hyd.F
ViewVC logotype

Annotation of /MITgcm/model/src/calc_phi_hyd.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.38 - (hide annotations) (download)
Mon Sep 22 17:55:16 2008 UTC (15 years, 8 months ago) by jmc
Branch: MAIN
CVS Tags: checkpoint61f, checkpoint61e, checkpoint61g, checkpoint61d, checkpoint61h, checkpoint61i
Changes since 1.37: +34 -26 lines
store 3-D (in-situ) density in commom block (this save 1 rho computation);
 re-arange rho diagnostics.

1 jmc 1.38 C $Header: /u/gcmpack/MITgcm/model/src/calc_phi_hyd.F,v 1.37 2008/09/08 21:45:13 jmc Exp $
2 cnh 1.16 C $Name: $
3 cnh 1.1
4 jmc 1.32 #include "PACKAGES_CONFIG.h"
5 cnh 1.6 #include "CPP_OPTIONS.h"
6 cnh 1.1
7 cnh 1.16 CBOP
8     C !ROUTINE: CALC_PHI_HYD
9     C !INTERFACE:
10 adcroft 1.9 SUBROUTINE CALC_PHI_HYD(
11 jmc 1.29 I bi, bj, iMin, iMax, jMin, jMax, k,
12 mlosch 1.20 I tFld, sFld,
13 jmc 1.29 U phiHydF,
14     O phiHydC, dPhiHydX, dPhiHydY,
15 jmc 1.38 I myTime, myIter, myThid )
16 cnh 1.16 C !DESCRIPTION: \bv
17     C *==========================================================*
18 cnh 1.1 C | SUBROUTINE CALC_PHI_HYD |
19 jmc 1.36 C | o Integrate the hydrostatic relation to find the Hydros. |
20 cnh 1.16 C *==========================================================*
21 jmc 1.29 C | Potential (ocean: Pressure/rho ; atmos = geopotential)
22     C | On entry:
23     C | tFld,sFld are the current thermodynamics quantities
24     C | (unchanged on exit)
25     C | phiHydF(i,j) is the hydrostatic Potential anomaly
26 jmc 1.36 C | at middle between tracer points k-1,k
27 jmc 1.29 C | On exit:
28     C | phiHydC(i,j) is the hydrostatic Potential anomaly
29     C | at cell centers (tracer points), level k
30     C | phiHydF(i,j) is the hydrostatic Potential anomaly
31 jmc 1.36 C | at middle between tracer points k,k+1
32 jmc 1.29 C | dPhiHydX,Y hydrostatic Potential gradient (X&Y dir)
33     C | at cell centers (tracer points), level k
34     C | integr_GeoPot allows to select one integration method
35     C | 1= Finite volume form ; else= Finite difference form
36 cnh 1.16 C *==========================================================*
37     C \ev
38     C !USES:
39 cnh 1.1 IMPLICIT NONE
40     C == Global variables ==
41     #include "SIZE.h"
42     #include "GRID.h"
43     #include "EEPARAMS.h"
44     #include "PARAMS.h"
45 heimbach 1.13 #ifdef ALLOW_AUTODIFF_TAMC
46     #include "tamc.h"
47     #include "tamc_keys.h"
48     #endif /* ALLOW_AUTODIFF_TAMC */
49 adcroft 1.19 #include "SURFACE.h"
50 mlosch 1.20 #include "DYNVARS.h"
51 heimbach 1.13
52 cnh 1.16 C !INPUT/OUTPUT PARAMETERS:
53 cnh 1.1 C == Routine arguments ==
54 jmc 1.36 C bi, bj, k :: tile and level indices
55 jmc 1.29 C iMin,iMax,jMin,jMax :: computational domain
56     C tFld :: potential temperature
57     C sFld :: salinity
58     C phiHydF :: hydrostatic potential anomaly at middle between
59     C 2 centers (entry: Interf_k ; output: Interf_k+1)
60     C phiHydC :: hydrostatic potential anomaly at cell center
61     C dPhiHydX,Y :: gradient (X & Y dir.) of hydrostatic potential anom.
62     C myTime :: current time
63     C myIter :: current iteration number
64     C myThid :: thread number for this instance of the routine.
65     INTEGER bi,bj,iMin,iMax,jMin,jMax,k
66 mlosch 1.20 _RL tFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
67     _RL sFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
68 jmc 1.29 c _RL phiHyd(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
69     _RL phiHydF(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
70     _RL phiHydC(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
71 jmc 1.25 _RL dPhiHydX(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
72     _RL dPhiHydY(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
73     _RL myTime
74     INTEGER myIter, myThid
75 jmc 1.36
76 adcroft 1.9 #ifdef INCLUDE_PHIHYD_CALCULATION_CODE
77    
78 cnh 1.16 C !LOCAL VARIABLES:
79 cnh 1.1 C == Local variables ==
80 jmc 1.29 INTEGER i,j
81 jmc 1.14 _RL zero, one, half
82 adcroft 1.9 _RL alphaRho(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
83 jmc 1.29 _RL dRlocM,dRlocP, ddRloc, locAlpha
84     _RL ddPIm, ddPIp, rec_dRm, rec_dRp
85     _RL surfPhiFac
86 jmc 1.25 PARAMETER ( zero= 0. _d 0 , one= 1. _d 0 , half= .5 _d 0 )
87 jmc 1.29 LOGICAL useDiagPhiRlow, addSurfPhiAnom
88 cnh 1.16 CEOP
89 jmc 1.27 useDiagPhiRlow = .TRUE.
90 jmc 1.29 addSurfPhiAnom = select_rStar.EQ.0 .AND. nonlinFreeSurf.GT.3
91     surfPhiFac = 0.
92     IF (addSurfPhiAnom) surfPhiFac = 1.
93 jmc 1.14
94     C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
95 jmc 1.36 C Atmosphere:
96 jmc 1.24 C integr_GeoPot => select one option for the integration of the Geopotential:
97 jmc 1.29 C = 0 : Energy Conserving Form, accurate with Topo full cell;
98     C = 1 : Finite Volume Form, with Part-Cell, linear in P by Half level;
99 jmc 1.36 C =2,3: Finite Difference Form, with Part-Cell,
100 jmc 1.29 C linear in P between 2 Tracer levels.
101 jmc 1.36 C can handle both cases: Tracer lev at the middle of InterFace_W
102 jmc 1.29 C and InterFace_W at the middle of Tracer lev;
103 jmc 1.14 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
104 adcroft 1.9
105 heimbach 1.13 #ifdef ALLOW_AUTODIFF_TAMC
106     act1 = bi - myBxLo(myThid)
107     max1 = myBxHi(myThid) - myBxLo(myThid) + 1
108    
109     act2 = bj - myByLo(myThid)
110     max2 = myByHi(myThid) - myByLo(myThid) + 1
111    
112     act3 = myThid - 1
113     max3 = nTx*nTy
114    
115     act4 = ikey_dynamics - 1
116    
117     ikey = (act1 + 1) + act2*max1
118     & + act3*max1*max2
119     & + act4*max1*max2*max3
120     #endif /* ALLOW_AUTODIFF_TAMC */
121    
122 jmc 1.36 C-- Initialize phiHydF to zero :
123 jmc 1.29 C note: atmospheric_loading or Phi_topo anomaly are incorporated
124     C later in S/R calc_grad_phi_hyd
125     IF (k.EQ.1) THEN
126     DO j=1-Oly,sNy+Oly
127     DO i=1-Olx,sNx+Olx
128     phiHydF(i,j) = 0.
129     ENDDO
130     ENDDO
131     ENDIF
132 jmc 1.25
133     C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
134 jmc 1.29 IF ( buoyancyRelation .EQ. 'OCEANIC' ) THEN
135 adcroft 1.9 C This is the hydrostatic pressure calculation for the Ocean
136     C which uses the FIND_RHO() routine to calculate density
137     C before integrating g*rho over the current layer/interface
138 jmc 1.38 #ifdef ALLOW_AUTODIFF_TAMC
139 jmc 1.25 CADJ GENERAL
140 jmc 1.38 #endif /* ALLOW_AUTODIFF_TAMC */
141 adcroft 1.9
142 jmc 1.38 IF ( implicitIntGravWave .OR. myIter.LT.0 ) THEN
143 jmc 1.29 C--- Calculate density
144 heimbach 1.13 #ifdef ALLOW_AUTODIFF_TAMC
145 jmc 1.38 kkey = (ikey-1)*Nr + k
146 heimbach 1.23 CADJ STORE tFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
147 mlosch 1.20 CADJ STORE sFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
148 heimbach 1.13 #endif /* ALLOW_AUTODIFF_TAMC */
149 jmc 1.38 CALL FIND_RHO_2D(
150     I iMin, iMax, jMin, jMax, k,
151     I tFld(1-OLx,1-OLy,k,bi,bj),
152     I sFld(1-OLx,1-OLy,k,bi,bj),
153     O alphaRho,
154     I k, bi, bj, myThid )
155     ELSE
156     DO j=jMin,jMax
157     DO i=iMin,iMax
158     alphaRho(i,j) = rhoInSitu(i,j,k,bi,bj)
159     ENDDO
160     ENDDO
161     ENDIF
162 jmc 1.36
163 mlosch 1.33 #ifdef ALLOW_SHELFICE
164 jmc 1.36 C mask rho, so that there is no contribution of phiHyd from
165 mlosch 1.33 C overlying shelfice (whose density we do not know)
166 jmc 1.37 IF ( useShelfIce .AND. useDOWN_SLOPE ) THEN
167     C- note: does not work for down_slope pkg which needs rho below the bottom.
168     C setting rho=0 above the ice-shelf base is enough (and works in both cases)
169     C but might be slower (--> keep original masking if not using down_slope pkg)
170     DO j=jMin,jMax
171     DO i=iMin,iMax
172     IF ( k.LT.kSurfC(i,j,bi,bj) ) alphaRho(i,j) = 0. _d 0
173     ENDDO
174     ENDDO
175     ELSEIF ( useShelfIce ) THEN
176 mlosch 1.33 DO j=jMin,jMax
177     DO i=iMin,iMax
178     alphaRho(i,j) = alphaRho(i,j)*maskC(i,j,k,bi,bj)
179     ENDDO
180     ENDDO
181     ENDIF
182     #endif /* ALLOW_SHELFICE */
183 adcroft 1.22
184 jmc 1.34 #ifdef ALLOW_MOM_COMMON
185 adcroft 1.22 C Quasi-hydrostatic terms are added in as if they modify the buoyancy
186     IF (quasiHydrostatic) THEN
187 jmc 1.34 CALL MOM_QUASIHYDROSTATIC(bi,bj,k,uVel,vVel,alphaRho,myThid)
188 adcroft 1.22 ENDIF
189 jmc 1.34 #endif /* ALLOW_MOM_COMMON */
190 adcroft 1.9
191 jmc 1.29 #ifdef NONLIN_FRSURF
192     IF (k.EQ.1 .AND. addSurfPhiAnom) THEN
193     DO j=jMin,jMax
194     DO i=iMin,iMax
195     phiHydF(i,j) = surfPhiFac*etaH(i,j,bi,bj)
196     & *gravity*alphaRho(i,j)*recip_rhoConst
197     ENDDO
198     ENDDO
199     ENDIF
200     #endif /* NONLIN_FRSURF */
201 jmc 1.27
202 jmc 1.29 C---- Hydrostatic pressure at cell centers
203 jmc 1.25
204     IF (integr_GeoPot.EQ.1) THEN
205     C -- Finite Volume Form
206    
207     DO j=jMin,jMax
208 adcroft 1.9 DO i=iMin,iMax
209    
210 jmc 1.25 C---------- This discretization is the "finite volume" form
211     C which has not been used to date since it does not
212     C conserve KE+PE exactly even though it is more natural
213     C
214 jmc 1.29 phiHydC(i,j)=phiHydF(i,j)
215     & + half*drF(k)*gravity*alphaRho(i,j)*recip_rhoConst
216     phiHydF(i,j)=phiHydF(i,j)
217     & + drF(k)*gravity*alphaRho(i,j)*recip_rhoConst
218 jmc 1.25 ENDDO
219     ENDDO
220    
221     ELSE
222     C -- Finite Difference Form
223    
224 jmc 1.29 dRlocM=half*drC(k)
225     IF (k.EQ.1) dRlocM=rF(k)-rC(k)
226     IF (k.EQ.Nr) THEN
227     dRlocP=rC(k)-rF(k+1)
228     ELSE
229     dRlocP=half*drC(k+1)
230     ENDIF
231    
232 jmc 1.25 DO j=jMin,jMax
233     DO i=iMin,iMax
234 adcroft 1.9
235     C---------- This discretization is the "energy conserving" form
236     C which has been used since at least Adcroft et al., MWR 1997
237     C
238 jmc 1.29 phiHydC(i,j)=phiHydF(i,j)
239     & +dRlocM*gravity*alphaRho(i,j)*recip_rhoConst
240     phiHydF(i,j)=phiHydC(i,j)
241     & +dRlocP*gravity*alphaRho(i,j)*recip_rhoConst
242 adcroft 1.9 ENDDO
243 jmc 1.25 ENDDO
244    
245     C -- end if integr_GeoPot = ...
246     ENDIF
247 jmc 1.36
248 jmc 1.25 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
249 jmc 1.29 ELSEIF ( buoyancyRelation .EQ. 'OCEANICP' ) THEN
250 adcroft 1.19 C This is the hydrostatic pressure calculation for the Ocean
251     C which uses the FIND_RHO() routine to calculate density
252 jmc 1.25 C before integrating (1/rho)'*dp over the current layer/interface
253 mlosch 1.21 #ifdef ALLOW_AUTODIFF_TAMC
254     CADJ GENERAL
255     #endif /* ALLOW_AUTODIFF_TAMC */
256 adcroft 1.19
257 jmc 1.38 IF ( implicitIntGravWave .OR. myIter.LT.0 ) THEN
258 jmc 1.27 C-- Calculate density
259 adcroft 1.19 #ifdef ALLOW_AUTODIFF_TAMC
260 jmc 1.38 kkey = (ikey-1)*Nr + k
261 heimbach 1.23 CADJ STORE tFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
262 mlosch 1.20 CADJ STORE sFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
263 adcroft 1.19 #endif /* ALLOW_AUTODIFF_TAMC */
264 jmc 1.38 CALL FIND_RHO_2D(
265     I iMin, iMax, jMin, jMax, k,
266     I tFld(1-OLx,1-OLy,k,bi,bj),
267     I sFld(1-OLx,1-OLy,k,bi,bj),
268     O alphaRho,
269     I k, bi, bj, myThid )
270 heimbach 1.23 #ifdef ALLOW_AUTODIFF_TAMC
271     CADJ STORE alphaRho (:,:) = comlev1_bibj_k, key=kkey, byte=isbyte
272     #endif /* ALLOW_AUTODIFF_TAMC */
273 jmc 1.38 ELSE
274     DO j=jMin,jMax
275     DO i=iMin,iMax
276     alphaRho(i,j) = rhoInSitu(i,j,k,bi,bj)
277     ENDDO
278     ENDDO
279     ENDIF
280 jmc 1.31
281 jmc 1.27 C-- Calculate specific volume anomaly : alpha' = 1/rho - alpha_Cst
282     DO j=jMin,jMax
283     DO i=iMin,iMax
284     locAlpha=alphaRho(i,j)+rhoConst
285     alphaRho(i,j)=maskC(i,j,k,bi,bj)*
286     & (one/locAlpha - recip_rhoConst)
287     ENDDO
288     ENDDO
289    
290 jmc 1.25 C---- Hydrostatic pressure at cell centers
291    
292     IF (integr_GeoPot.EQ.1) THEN
293     C -- Finite Volume Form
294    
295     DO j=jMin,jMax
296 adcroft 1.19 DO i=iMin,iMax
297 jmc 1.25
298     C---------- This discretization is the "finite volume" form
299     C which has not been used to date since it does not
300     C conserve KE+PE exactly even though it is more natural
301     C
302 jmc 1.37 IF (k.EQ.kSurfC(i,j,bi,bj)) THEN
303 jmc 1.29 ddRloc = Ro_surf(i,j,bi,bj)-rC(k)
304     #ifdef NONLIN_FRSURF
305     ddRloc = ddRloc + surfPhiFac*etaH(i,j,bi,bj)
306     #endif
307     phiHydC(i,j) = ddRloc*alphaRho(i,j)
308 jmc 1.36 c--to reproduce results of c48d_post: uncomment those 4+1 lines
309 jmc 1.29 c phiHydC(i,j)=phiHydF(i,j)
310     c & +(hFacC(i,j,k,bi,bj)-half)*drF(k)*alphaRho(i,j)
311     c phiHydF(i,j)=phiHydF(i,j)
312     c & + hFacC(i,j,k,bi,bj)*drF(k)*alphaRho(i,j)
313     ELSE
314     phiHydC(i,j) = phiHydF(i,j) + half*drF(k)*alphaRho(i,j)
315     c phiHydF(i,j) = phiHydF(i,j) + drF(k)*alphaRho(i,j)
316     ENDIF
317     c-- and comment this last one:
318     phiHydF(i,j) = phiHydC(i,j) + half*drF(k)*alphaRho(i,j)
319     c-----
320 jmc 1.25 ENDDO
321     ENDDO
322    
323     ELSE
324 jmc 1.29 C -- Finite Difference Form, with Part-Cell Bathy
325    
326     dRlocM=half*drC(k)
327     IF (k.EQ.1) dRlocM=rF(k)-rC(k)
328     IF (k.EQ.Nr) THEN
329     dRlocP=rC(k)-rF(k+1)
330     ELSE
331     dRlocP=half*drC(k+1)
332     ENDIF
333     rec_dRm = one/(rF(k)-rC(k))
334     rec_dRp = one/(rC(k)-rF(k+1))
335 jmc 1.25
336     DO j=jMin,jMax
337     DO i=iMin,iMax
338 adcroft 1.9
339 adcroft 1.19 C---------- This discretization is the "energy conserving" form
340 mlosch 1.21
341 jmc 1.37 IF (k.EQ.kSurfC(i,j,bi,bj)) THEN
342 jmc 1.29 ddRloc = Ro_surf(i,j,bi,bj)-rC(k)
343     #ifdef NONLIN_FRSURF
344     ddRloc = ddRloc + surfPhiFac*etaH(i,j,bi,bj)
345     #endif
346     phiHydC(i,j) =( MAX(zero,ddRloc)*rec_dRm*dRlocM
347     & +MIN(zero,ddRloc)*rec_dRp*dRlocP
348     & )*alphaRho(i,j)
349     ELSE
350     phiHydC(i,j) = phiHydF(i,j) + dRlocM*alphaRho(i,j)
351     ENDIF
352     phiHydF(i,j) = phiHydC(i,j) + dRlocP*alphaRho(i,j)
353 adcroft 1.19 ENDDO
354 jmc 1.25 ENDDO
355    
356     C -- end if integr_GeoPot = ...
357     ENDIF
358 adcroft 1.9
359 jmc 1.29 ELSEIF ( buoyancyRelation .EQ. 'ATMOSPHERIC' ) THEN
360 jmc 1.14 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
361 adcroft 1.9 C This is the hydrostatic geopotential calculation for the Atmosphere
362     C The ideal gas law is used implicitly here rather than calculating
363     C the specific volume, analogous to the oceanic case.
364    
365 jmc 1.30 C-- virtual potential temperature anomaly (including water vapour effect)
366     DO j=jMin,jMax
367     DO i=iMin,iMax
368     alphaRho(i,j)=maskC(i,j,k,bi,bj)
369 jmc 1.36 & *( tFld(i,j,k,bi,bj)*(sFld(i,j,k,bi,bj)*atm_Rq+one)
370 jmc 1.30 & -tRef(k) )
371     ENDDO
372     ENDDO
373    
374 jmc 1.29 C--- Integrate d Phi / d pi
375 adcroft 1.9
376 jmc 1.29 IF (integr_GeoPot.EQ.0) THEN
377     C -- Energy Conserving Form, accurate with Full cell topo --
378 jmc 1.14 C------------ The integration for the first level phi(k=1) is the same
379     C for both the "finite volume" and energy conserving methods.
380 jmc 1.36 C *NOTE* o Working with geopotential Anomaly, the geopotential boundary
381 adcroft 1.17 C condition is simply Phi-prime(Ro_surf)=0.
382 jmc 1.14 C o convention ddPI > 0 (same as drF & drC)
383     C-----------------------------------------------------------------------
384 jmc 1.29 IF (k.EQ.1) THEN
385     ddPIm=atm_Cp*( ((rF( k )/atm_Po)**atm_kappa)
386     & -((rC( k )/atm_Po)**atm_kappa) )
387     ELSE
388     ddPIm=atm_Cp*( ((rC(k-1)/atm_Po)**atm_kappa)
389     & -((rC( k )/atm_Po)**atm_kappa) )*half
390     ENDIF
391     IF (k.EQ.Nr) THEN
392     ddPIp=atm_Cp*( ((rC( k )/atm_Po)**atm_kappa)
393     & -((rF(k+1)/atm_Po)**atm_kappa) )
394     ELSE
395     ddPIp=atm_Cp*( ((rC( k )/atm_Po)**atm_kappa)
396 jmc 1.36 & -((rC(k+1)/atm_Po)**atm_kappa) )*half
397 jmc 1.29 ENDIF
398 jmc 1.14 C-------- This discretization is the energy conserving form
399 jmc 1.29 DO j=jMin,jMax
400     DO i=iMin,iMax
401 jmc 1.30 phiHydC(i,j) = phiHydF(i,j) +ddPIm*alphaRho(i,j)
402     phiHydF(i,j) = phiHydC(i,j) +ddPIp*alphaRho(i,j)
403 jmc 1.14 ENDDO
404 jmc 1.29 ENDDO
405 jmc 1.14 C end: Energy Conserving Form, No hFac --
406 adcroft 1.9 C-----------------------------------------------------------------------
407 jmc 1.14
408 jmc 1.29 ELSEIF (integr_GeoPot.EQ.1) THEN
409     C -- Finite Volume Form, with Part-Cell Topo, linear in P by Half level
410 jmc 1.14 C---------
411     C Finite Volume formulation consistent with Partial Cell, linear in p by piece
412     C Note: a true Finite Volume form should be linear between 2 Interf_W :
413     C phi_C = (phi_W_k+ phi_W_k+1)/2 ; but not accurate in Stratosphere (low p)
414     C also: if Interface_W at the middle between tracer levels, this form
415 jmc 1.36 C is close to the Energy Cons. form in the Interior, except for the
416 jmc 1.14 C non-linearity in PI(p)
417     C---------
418 jmc 1.29 ddPIm=atm_Cp*( ((rF( k )/atm_Po)**atm_kappa)
419     & -((rC( k )/atm_Po)**atm_kappa) )
420     ddPIp=atm_Cp*( ((rC( k )/atm_Po)**atm_kappa)
421     & -((rF(k+1)/atm_Po)**atm_kappa) )
422     DO j=jMin,jMax
423     DO i=iMin,iMax
424 jmc 1.37 IF (k.EQ.kSurfC(i,j,bi,bj)) THEN
425 jmc 1.29 ddRloc = Ro_surf(i,j,bi,bj)-rC(k)
426     #ifdef NONLIN_FRSURF
427     ddRloc = ddRloc + surfPhiFac*etaH(i,j,bi,bj)
428     #endif
429     phiHydC(i,j) = ddRloc*recip_drF(k)*2. _d 0
430 jmc 1.30 & *ddPIm*alphaRho(i,j)
431 jmc 1.29 ELSE
432 jmc 1.30 phiHydC(i,j) = phiHydF(i,j) +ddPIm*alphaRho(i,j)
433 jmc 1.29 ENDIF
434 jmc 1.30 phiHydF(i,j) = phiHydC(i,j) +ddPIp*alphaRho(i,j)
435 adcroft 1.9 ENDDO
436 jmc 1.29 ENDDO
437     C end: Finite Volume Form, with Part-Cell Topo, linear in P by Half level
438 adcroft 1.9 C-----------------------------------------------------------------------
439    
440 jmc 1.29 ELSEIF ( integr_GeoPot.EQ.2
441     & .OR. integr_GeoPot.EQ.3 ) THEN
442 jmc 1.36 C -- Finite Difference Form, with Part-Cell Topo,
443 jmc 1.29 C works with Interface_W at the middle between 2.Tracer_Level
444     C and with Tracer_Level at the middle between 2.Interface_W.
445 jmc 1.14 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
446     C Finite Difference formulation consistent with Partial Cell,
447     C Valid & accurate if Interface_W at middle between tracer levels
448 jmc 1.36 C linear in p between 2 Tracer levels ; conserve energy in the Interior
449 jmc 1.14 C---------
450 jmc 1.29 IF (k.EQ.1) THEN
451     ddPIm=atm_Cp*( ((rF( k )/atm_Po)**atm_kappa)
452     & -((rC( k )/atm_Po)**atm_kappa) )
453     ELSE
454     ddPIm=atm_Cp*( ((rC(k-1)/atm_Po)**atm_kappa)
455     & -((rC( k )/atm_Po)**atm_kappa) )*half
456     ENDIF
457     IF (k.EQ.Nr) THEN
458     ddPIp=atm_Cp*( ((rC( k )/atm_Po)**atm_kappa)
459     & -((rF(k+1)/atm_Po)**atm_kappa) )
460     ELSE
461     ddPIp=atm_Cp*( ((rC( k )/atm_Po)**atm_kappa)
462 jmc 1.36 & -((rC(k+1)/atm_Po)**atm_kappa) )*half
463 jmc 1.29 ENDIF
464     rec_dRm = one/(rF(k)-rC(k))
465     rec_dRp = one/(rC(k)-rF(k+1))
466     DO j=jMin,jMax
467     DO i=iMin,iMax
468 jmc 1.37 IF (k.EQ.kSurfC(i,j,bi,bj)) THEN
469 jmc 1.29 ddRloc = Ro_surf(i,j,bi,bj)-rC(k)
470     #ifdef NONLIN_FRSURF
471     ddRloc = ddRloc + surfPhiFac*etaH(i,j,bi,bj)
472     #endif
473     phiHydC(i,j) =( MAX(zero,ddRloc)*rec_dRm*ddPIm
474     & +MIN(zero,ddRloc)*rec_dRp*ddPIp )
475 jmc 1.30 & *alphaRho(i,j)
476 jmc 1.29 ELSE
477 jmc 1.30 phiHydC(i,j) = phiHydF(i,j) +ddPIm*alphaRho(i,j)
478 jmc 1.29 ENDIF
479 jmc 1.30 phiHydF(i,j) = phiHydC(i,j) +ddPIp*alphaRho(i,j)
480 jmc 1.14 ENDDO
481 jmc 1.29 ENDDO
482     C end: Finite Difference Form, with Part-Cell Topo
483 jmc 1.14 C-----------------------------------------------------------------------
484 cnh 1.1
485 jmc 1.29 ELSE
486     STOP 'CALC_PHI_HYD: Bad integr_GeoPot option !'
487     ENDIF
488 cnh 1.6
489 jmc 1.14 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
490 adcroft 1.9 ELSE
491 jmc 1.24 STOP 'CALC_PHI_HYD: Bad value of buoyancyRelation !'
492 jmc 1.25 ENDIF
493    
494 jmc 1.29 C--- Diagnose Phi at boundary r=R_low :
495     C = Ocean bottom pressure (Ocean, Z-coord.)
496     C = Sea-surface height (Ocean, P-coord.)
497     C = Top atmosphere height (Atmos, P-coord.)
498     IF (useDiagPhiRlow) THEN
499     CALL DIAGS_PHI_RLOW(
500     I k, bi, bj, iMin,iMax, jMin,jMax,
501     I phiHydF, phiHydC, alphaRho, tFld, sFld,
502 jmc 1.36 I myTime, myIter, myThid)
503 jmc 1.29 ENDIF
504    
505     C--- Diagnose Full Hydrostatic Potential at cell center level
506     CALL DIAGS_PHI_HYD(
507     I k, bi, bj, iMin,iMax, jMin,jMax,
508     I phiHydC,
509     I myTime, myIter, myThid)
510    
511 jmc 1.36 IF (momPressureForcing) THEN
512 jmc 1.25 CALL CALC_GRAD_PHI_HYD(
513 jmc 1.35 I k, bi, bj, iMin,iMax, jMin,jMax,
514 jmc 1.29 I phiHydC, alphaRho, tFld, sFld,
515 jmc 1.25 O dPhiHydX, dPhiHydY,
516 jmc 1.36 I myTime, myIter, myThid)
517 cnh 1.5 ENDIF
518 cnh 1.1
519 jmc 1.14 #endif /* INCLUDE_PHIHYD_CALCULATION_CODE */
520 cnh 1.6
521 jmc 1.11 RETURN
522     END

  ViewVC Help
Powered by ViewVC 1.1.22