/[MITgcm]/MITgcm/model/src/calc_phi_hyd.F
ViewVC logotype

Annotation of /MITgcm/model/src/calc_phi_hyd.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.36 - (hide annotations) (download)
Mon Aug 11 22:25:52 2008 UTC (15 years, 9 months ago) by jmc
Branch: MAIN
CVS Tags: checkpoint61c
Changes since 1.35: +34 -29 lines
replace calls to "FIND_RHO" with recent version "FIND_RHO_2D"

1 jmc 1.36 C $Header: /u/gcmpack/MITgcm/model/src/calc_phi_hyd.F,v 1.35 2007/02/05 03:20:39 jmc Exp $
2 cnh 1.16 C $Name: $
3 cnh 1.1
4 jmc 1.32 #include "PACKAGES_CONFIG.h"
5 cnh 1.6 #include "CPP_OPTIONS.h"
6 cnh 1.1
7 cnh 1.16 CBOP
8     C !ROUTINE: CALC_PHI_HYD
9     C !INTERFACE:
10 adcroft 1.9 SUBROUTINE CALC_PHI_HYD(
11 jmc 1.29 I bi, bj, iMin, iMax, jMin, jMax, k,
12 mlosch 1.20 I tFld, sFld,
13 jmc 1.29 U phiHydF,
14     O phiHydC, dPhiHydX, dPhiHydY,
15 jmc 1.25 I myTime, myIter, myThid)
16 cnh 1.16 C !DESCRIPTION: \bv
17     C *==========================================================*
18 cnh 1.1 C | SUBROUTINE CALC_PHI_HYD |
19 jmc 1.36 C | o Integrate the hydrostatic relation to find the Hydros. |
20 cnh 1.16 C *==========================================================*
21 jmc 1.29 C | Potential (ocean: Pressure/rho ; atmos = geopotential)
22     C | On entry:
23     C | tFld,sFld are the current thermodynamics quantities
24     C | (unchanged on exit)
25     C | phiHydF(i,j) is the hydrostatic Potential anomaly
26 jmc 1.36 C | at middle between tracer points k-1,k
27 jmc 1.29 C | On exit:
28     C | phiHydC(i,j) is the hydrostatic Potential anomaly
29     C | at cell centers (tracer points), level k
30     C | phiHydF(i,j) is the hydrostatic Potential anomaly
31 jmc 1.36 C | at middle between tracer points k,k+1
32 jmc 1.29 C | dPhiHydX,Y hydrostatic Potential gradient (X&Y dir)
33     C | at cell centers (tracer points), level k
34     C | integr_GeoPot allows to select one integration method
35     C | 1= Finite volume form ; else= Finite difference form
36 cnh 1.16 C *==========================================================*
37     C \ev
38     C !USES:
39 cnh 1.1 IMPLICIT NONE
40     C == Global variables ==
41     #include "SIZE.h"
42     #include "GRID.h"
43     #include "EEPARAMS.h"
44     #include "PARAMS.h"
45 heimbach 1.13 #ifdef ALLOW_AUTODIFF_TAMC
46     #include "tamc.h"
47     #include "tamc_keys.h"
48     #endif /* ALLOW_AUTODIFF_TAMC */
49 adcroft 1.19 #include "SURFACE.h"
50 mlosch 1.20 #include "DYNVARS.h"
51 heimbach 1.13
52 cnh 1.16 C !INPUT/OUTPUT PARAMETERS:
53 cnh 1.1 C == Routine arguments ==
54 jmc 1.36 C bi, bj, k :: tile and level indices
55 jmc 1.29 C iMin,iMax,jMin,jMax :: computational domain
56     C tFld :: potential temperature
57     C sFld :: salinity
58     C phiHydF :: hydrostatic potential anomaly at middle between
59     C 2 centers (entry: Interf_k ; output: Interf_k+1)
60     C phiHydC :: hydrostatic potential anomaly at cell center
61     C dPhiHydX,Y :: gradient (X & Y dir.) of hydrostatic potential anom.
62     C myTime :: current time
63     C myIter :: current iteration number
64     C myThid :: thread number for this instance of the routine.
65     INTEGER bi,bj,iMin,iMax,jMin,jMax,k
66 mlosch 1.20 _RL tFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
67     _RL sFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
68 jmc 1.29 c _RL phiHyd(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
69     _RL phiHydF(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
70     _RL phiHydC(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
71 jmc 1.25 _RL dPhiHydX(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
72     _RL dPhiHydY(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
73     _RL myTime
74     INTEGER myIter, myThid
75 jmc 1.36
76 adcroft 1.9 #ifdef INCLUDE_PHIHYD_CALCULATION_CODE
77    
78 cnh 1.16 C !LOCAL VARIABLES:
79 cnh 1.1 C == Local variables ==
80 jmc 1.29 INTEGER i,j
81 jmc 1.14 _RL zero, one, half
82 adcroft 1.9 _RL alphaRho(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
83 jmc 1.29 _RL dRlocM,dRlocP, ddRloc, locAlpha
84     _RL ddPIm, ddPIp, rec_dRm, rec_dRp
85     _RL surfPhiFac
86 jmc 1.25 PARAMETER ( zero= 0. _d 0 , one= 1. _d 0 , half= .5 _d 0 )
87 jmc 1.29 LOGICAL useDiagPhiRlow, addSurfPhiAnom
88 cnh 1.16 CEOP
89 jmc 1.27 useDiagPhiRlow = .TRUE.
90 jmc 1.29 addSurfPhiAnom = select_rStar.EQ.0 .AND. nonlinFreeSurf.GT.3
91     surfPhiFac = 0.
92     IF (addSurfPhiAnom) surfPhiFac = 1.
93 jmc 1.14
94     C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
95 jmc 1.36 C Atmosphere:
96 jmc 1.24 C integr_GeoPot => select one option for the integration of the Geopotential:
97 jmc 1.29 C = 0 : Energy Conserving Form, accurate with Topo full cell;
98     C = 1 : Finite Volume Form, with Part-Cell, linear in P by Half level;
99 jmc 1.36 C =2,3: Finite Difference Form, with Part-Cell,
100 jmc 1.29 C linear in P between 2 Tracer levels.
101 jmc 1.36 C can handle both cases: Tracer lev at the middle of InterFace_W
102 jmc 1.29 C and InterFace_W at the middle of Tracer lev;
103 jmc 1.14 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
104 adcroft 1.9
105 heimbach 1.13 #ifdef ALLOW_AUTODIFF_TAMC
106     act1 = bi - myBxLo(myThid)
107     max1 = myBxHi(myThid) - myBxLo(myThid) + 1
108    
109     act2 = bj - myByLo(myThid)
110     max2 = myByHi(myThid) - myByLo(myThid) + 1
111    
112     act3 = myThid - 1
113     max3 = nTx*nTy
114    
115     act4 = ikey_dynamics - 1
116    
117     ikey = (act1 + 1) + act2*max1
118     & + act3*max1*max2
119     & + act4*max1*max2*max3
120     #endif /* ALLOW_AUTODIFF_TAMC */
121    
122 jmc 1.36 C-- Initialize phiHydF to zero :
123 jmc 1.29 C note: atmospheric_loading or Phi_topo anomaly are incorporated
124     C later in S/R calc_grad_phi_hyd
125     IF (k.EQ.1) THEN
126     DO j=1-Oly,sNy+Oly
127     DO i=1-Olx,sNx+Olx
128     phiHydF(i,j) = 0.
129     ENDDO
130     ENDDO
131     ENDIF
132 jmc 1.25
133     C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
134 jmc 1.29 IF ( buoyancyRelation .EQ. 'OCEANIC' ) THEN
135 adcroft 1.9 C This is the hydrostatic pressure calculation for the Ocean
136     C which uses the FIND_RHO() routine to calculate density
137     C before integrating g*rho over the current layer/interface
138 jmc 1.25 #ifdef ALLOW_AUTODIFF_TAMC
139     CADJ GENERAL
140     #endif /* ALLOW_AUTODIFF_TAMC */
141 adcroft 1.9
142 jmc 1.29 C--- Calculate density
143 heimbach 1.13 #ifdef ALLOW_AUTODIFF_TAMC
144 heimbach 1.23 kkey = (ikey-1)*Nr + k
145     CADJ STORE tFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
146 mlosch 1.20 CADJ STORE sFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
147 heimbach 1.13 #endif /* ALLOW_AUTODIFF_TAMC */
148 jmc 1.36 CALL FIND_RHO_2D(
149     I iMin, iMax, jMin, jMax, k,
150     I tFld(1-OLx,1-OLy,k,bi,bj), sFld(1-OLx,1-OLy,k,bi,bj),
151     O alphaRho,
152     I k, bi, bj, myThid )
153    
154 mlosch 1.33 #ifdef ALLOW_SHELFICE
155 jmc 1.36 C mask rho, so that there is no contribution of phiHyd from
156 mlosch 1.33 C overlying shelfice (whose density we do not know)
157     IF ( useShelfIce ) THEN
158     DO j=jMin,jMax
159     DO i=iMin,iMax
160     alphaRho(i,j) = alphaRho(i,j)*maskC(i,j,k,bi,bj)
161     ENDDO
162     ENDDO
163     ENDIF
164     #endif /* ALLOW_SHELFICE */
165 adcroft 1.22
166 jmc 1.31 #ifdef ALLOW_DIAGNOSTICS
167     IF ( useDiagnostics )
168     & CALL DIAGNOSTICS_FILL(alphaRho,'RHOAnoma',k,1,2,bi,bj,myThid)
169     #endif
170    
171 jmc 1.34 #ifdef ALLOW_MOM_COMMON
172 adcroft 1.22 C Quasi-hydrostatic terms are added in as if they modify the buoyancy
173     IF (quasiHydrostatic) THEN
174 jmc 1.34 CALL MOM_QUASIHYDROSTATIC(bi,bj,k,uVel,vVel,alphaRho,myThid)
175 adcroft 1.22 ENDIF
176 jmc 1.34 #endif /* ALLOW_MOM_COMMON */
177 adcroft 1.9
178 jmc 1.29 #ifdef NONLIN_FRSURF
179     IF (k.EQ.1 .AND. addSurfPhiAnom) THEN
180     DO j=jMin,jMax
181     DO i=iMin,iMax
182     phiHydF(i,j) = surfPhiFac*etaH(i,j,bi,bj)
183     & *gravity*alphaRho(i,j)*recip_rhoConst
184     ENDDO
185     ENDDO
186     ENDIF
187     #endif /* NONLIN_FRSURF */
188 jmc 1.27
189 jmc 1.29 C---- Hydrostatic pressure at cell centers
190 jmc 1.25
191     IF (integr_GeoPot.EQ.1) THEN
192     C -- Finite Volume Form
193    
194     DO j=jMin,jMax
195 adcroft 1.9 DO i=iMin,iMax
196    
197 jmc 1.25 C---------- This discretization is the "finite volume" form
198     C which has not been used to date since it does not
199     C conserve KE+PE exactly even though it is more natural
200     C
201 jmc 1.29 phiHydC(i,j)=phiHydF(i,j)
202     & + half*drF(k)*gravity*alphaRho(i,j)*recip_rhoConst
203     phiHydF(i,j)=phiHydF(i,j)
204     & + drF(k)*gravity*alphaRho(i,j)*recip_rhoConst
205 jmc 1.25 ENDDO
206     ENDDO
207    
208     ELSE
209     C -- Finite Difference Form
210    
211 jmc 1.29 dRlocM=half*drC(k)
212     IF (k.EQ.1) dRlocM=rF(k)-rC(k)
213     IF (k.EQ.Nr) THEN
214     dRlocP=rC(k)-rF(k+1)
215     ELSE
216     dRlocP=half*drC(k+1)
217     ENDIF
218    
219 jmc 1.25 DO j=jMin,jMax
220     DO i=iMin,iMax
221 adcroft 1.9
222     C---------- This discretization is the "energy conserving" form
223     C which has been used since at least Adcroft et al., MWR 1997
224     C
225 jmc 1.29 phiHydC(i,j)=phiHydF(i,j)
226     & +dRlocM*gravity*alphaRho(i,j)*recip_rhoConst
227     phiHydF(i,j)=phiHydC(i,j)
228     & +dRlocP*gravity*alphaRho(i,j)*recip_rhoConst
229 adcroft 1.9 ENDDO
230 jmc 1.25 ENDDO
231    
232     C -- end if integr_GeoPot = ...
233     ENDIF
234 jmc 1.36
235 jmc 1.25 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
236 jmc 1.29 ELSEIF ( buoyancyRelation .EQ. 'OCEANICP' ) THEN
237 adcroft 1.19 C This is the hydrostatic pressure calculation for the Ocean
238     C which uses the FIND_RHO() routine to calculate density
239 jmc 1.25 C before integrating (1/rho)'*dp over the current layer/interface
240 mlosch 1.21 #ifdef ALLOW_AUTODIFF_TAMC
241     CADJ GENERAL
242     #endif /* ALLOW_AUTODIFF_TAMC */
243 adcroft 1.19
244 jmc 1.27 C-- Calculate density
245 adcroft 1.19 #ifdef ALLOW_AUTODIFF_TAMC
246     kkey = (ikey-1)*Nr + k
247 heimbach 1.23 CADJ STORE tFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
248 mlosch 1.20 CADJ STORE sFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
249 adcroft 1.19 #endif /* ALLOW_AUTODIFF_TAMC */
250 jmc 1.36 CALL FIND_RHO_2D(
251     I iMin, iMax, jMin, jMax, k,
252     I tFld(1-OLx,1-OLy,k,bi,bj), sFld(1-OLx,1-OLy,k,bi,bj),
253     O alphaRho,
254     I k, bi, bj, myThid )
255 heimbach 1.23 #ifdef ALLOW_AUTODIFF_TAMC
256     CADJ STORE alphaRho (:,:) = comlev1_bibj_k, key=kkey, byte=isbyte
257     #endif /* ALLOW_AUTODIFF_TAMC */
258    
259 jmc 1.31 #ifdef ALLOW_DIAGNOSTICS
260     IF ( useDiagnostics )
261     & CALL DIAGNOSTICS_FILL(alphaRho,'RHOAnoma',k,1,2,bi,bj,myThid)
262     #endif
263    
264 jmc 1.27 C-- Calculate specific volume anomaly : alpha' = 1/rho - alpha_Cst
265     DO j=jMin,jMax
266     DO i=iMin,iMax
267     locAlpha=alphaRho(i,j)+rhoConst
268     alphaRho(i,j)=maskC(i,j,k,bi,bj)*
269     & (one/locAlpha - recip_rhoConst)
270     ENDDO
271     ENDDO
272    
273 jmc 1.25 C---- Hydrostatic pressure at cell centers
274    
275     IF (integr_GeoPot.EQ.1) THEN
276     C -- Finite Volume Form
277    
278     DO j=jMin,jMax
279 adcroft 1.19 DO i=iMin,iMax
280 jmc 1.25
281     C---------- This discretization is the "finite volume" form
282     C which has not been used to date since it does not
283     C conserve KE+PE exactly even though it is more natural
284     C
285 jmc 1.29 IF (k.EQ.ksurfC(i,j,bi,bj)) THEN
286     ddRloc = Ro_surf(i,j,bi,bj)-rC(k)
287     #ifdef NONLIN_FRSURF
288     ddRloc = ddRloc + surfPhiFac*etaH(i,j,bi,bj)
289     #endif
290     phiHydC(i,j) = ddRloc*alphaRho(i,j)
291 jmc 1.36 c--to reproduce results of c48d_post: uncomment those 4+1 lines
292 jmc 1.29 c phiHydC(i,j)=phiHydF(i,j)
293     c & +(hFacC(i,j,k,bi,bj)-half)*drF(k)*alphaRho(i,j)
294     c phiHydF(i,j)=phiHydF(i,j)
295     c & + hFacC(i,j,k,bi,bj)*drF(k)*alphaRho(i,j)
296     ELSE
297     phiHydC(i,j) = phiHydF(i,j) + half*drF(k)*alphaRho(i,j)
298     c phiHydF(i,j) = phiHydF(i,j) + drF(k)*alphaRho(i,j)
299     ENDIF
300     c-- and comment this last one:
301     phiHydF(i,j) = phiHydC(i,j) + half*drF(k)*alphaRho(i,j)
302     c-----
303 jmc 1.25 ENDDO
304     ENDDO
305    
306     ELSE
307 jmc 1.29 C -- Finite Difference Form, with Part-Cell Bathy
308    
309     dRlocM=half*drC(k)
310     IF (k.EQ.1) dRlocM=rF(k)-rC(k)
311     IF (k.EQ.Nr) THEN
312     dRlocP=rC(k)-rF(k+1)
313     ELSE
314     dRlocP=half*drC(k+1)
315     ENDIF
316     rec_dRm = one/(rF(k)-rC(k))
317     rec_dRp = one/(rC(k)-rF(k+1))
318 jmc 1.25
319     DO j=jMin,jMax
320     DO i=iMin,iMax
321 adcroft 1.9
322 adcroft 1.19 C---------- This discretization is the "energy conserving" form
323 mlosch 1.21
324 jmc 1.29 IF (k.EQ.ksurfC(i,j,bi,bj)) THEN
325     ddRloc = Ro_surf(i,j,bi,bj)-rC(k)
326     #ifdef NONLIN_FRSURF
327     ddRloc = ddRloc + surfPhiFac*etaH(i,j,bi,bj)
328     #endif
329     phiHydC(i,j) =( MAX(zero,ddRloc)*rec_dRm*dRlocM
330     & +MIN(zero,ddRloc)*rec_dRp*dRlocP
331     & )*alphaRho(i,j)
332     ELSE
333     phiHydC(i,j) = phiHydF(i,j) + dRlocM*alphaRho(i,j)
334     ENDIF
335     phiHydF(i,j) = phiHydC(i,j) + dRlocP*alphaRho(i,j)
336 adcroft 1.19 ENDDO
337 jmc 1.25 ENDDO
338    
339     C -- end if integr_GeoPot = ...
340     ENDIF
341 adcroft 1.9
342 jmc 1.29 ELSEIF ( buoyancyRelation .EQ. 'ATMOSPHERIC' ) THEN
343 jmc 1.14 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
344 adcroft 1.9 C This is the hydrostatic geopotential calculation for the Atmosphere
345     C The ideal gas law is used implicitly here rather than calculating
346     C the specific volume, analogous to the oceanic case.
347    
348 jmc 1.30 C-- virtual potential temperature anomaly (including water vapour effect)
349     DO j=jMin,jMax
350     DO i=iMin,iMax
351     alphaRho(i,j)=maskC(i,j,k,bi,bj)
352 jmc 1.36 & *( tFld(i,j,k,bi,bj)*(sFld(i,j,k,bi,bj)*atm_Rq+one)
353 jmc 1.30 & -tRef(k) )
354     ENDDO
355     ENDDO
356    
357 jmc 1.29 C--- Integrate d Phi / d pi
358 adcroft 1.9
359 jmc 1.29 IF (integr_GeoPot.EQ.0) THEN
360     C -- Energy Conserving Form, accurate with Full cell topo --
361 jmc 1.14 C------------ The integration for the first level phi(k=1) is the same
362     C for both the "finite volume" and energy conserving methods.
363 jmc 1.36 C *NOTE* o Working with geopotential Anomaly, the geopotential boundary
364 adcroft 1.17 C condition is simply Phi-prime(Ro_surf)=0.
365 jmc 1.14 C o convention ddPI > 0 (same as drF & drC)
366     C-----------------------------------------------------------------------
367 jmc 1.29 IF (k.EQ.1) THEN
368     ddPIm=atm_Cp*( ((rF( k )/atm_Po)**atm_kappa)
369     & -((rC( k )/atm_Po)**atm_kappa) )
370     ELSE
371     ddPIm=atm_Cp*( ((rC(k-1)/atm_Po)**atm_kappa)
372     & -((rC( k )/atm_Po)**atm_kappa) )*half
373     ENDIF
374     IF (k.EQ.Nr) THEN
375     ddPIp=atm_Cp*( ((rC( k )/atm_Po)**atm_kappa)
376     & -((rF(k+1)/atm_Po)**atm_kappa) )
377     ELSE
378     ddPIp=atm_Cp*( ((rC( k )/atm_Po)**atm_kappa)
379 jmc 1.36 & -((rC(k+1)/atm_Po)**atm_kappa) )*half
380 jmc 1.29 ENDIF
381 jmc 1.14 C-------- This discretization is the energy conserving form
382 jmc 1.29 DO j=jMin,jMax
383     DO i=iMin,iMax
384 jmc 1.30 phiHydC(i,j) = phiHydF(i,j) +ddPIm*alphaRho(i,j)
385     phiHydF(i,j) = phiHydC(i,j) +ddPIp*alphaRho(i,j)
386 jmc 1.14 ENDDO
387 jmc 1.29 ENDDO
388 jmc 1.14 C end: Energy Conserving Form, No hFac --
389 adcroft 1.9 C-----------------------------------------------------------------------
390 jmc 1.14
391 jmc 1.29 ELSEIF (integr_GeoPot.EQ.1) THEN
392     C -- Finite Volume Form, with Part-Cell Topo, linear in P by Half level
393 jmc 1.14 C---------
394     C Finite Volume formulation consistent with Partial Cell, linear in p by piece
395     C Note: a true Finite Volume form should be linear between 2 Interf_W :
396     C phi_C = (phi_W_k+ phi_W_k+1)/2 ; but not accurate in Stratosphere (low p)
397     C also: if Interface_W at the middle between tracer levels, this form
398 jmc 1.36 C is close to the Energy Cons. form in the Interior, except for the
399 jmc 1.14 C non-linearity in PI(p)
400     C---------
401 jmc 1.29 ddPIm=atm_Cp*( ((rF( k )/atm_Po)**atm_kappa)
402     & -((rC( k )/atm_Po)**atm_kappa) )
403     ddPIp=atm_Cp*( ((rC( k )/atm_Po)**atm_kappa)
404     & -((rF(k+1)/atm_Po)**atm_kappa) )
405     DO j=jMin,jMax
406     DO i=iMin,iMax
407     IF (k.EQ.ksurfC(i,j,bi,bj)) THEN
408     ddRloc = Ro_surf(i,j,bi,bj)-rC(k)
409     #ifdef NONLIN_FRSURF
410     ddRloc = ddRloc + surfPhiFac*etaH(i,j,bi,bj)
411     #endif
412     phiHydC(i,j) = ddRloc*recip_drF(k)*2. _d 0
413 jmc 1.30 & *ddPIm*alphaRho(i,j)
414 jmc 1.29 ELSE
415 jmc 1.30 phiHydC(i,j) = phiHydF(i,j) +ddPIm*alphaRho(i,j)
416 jmc 1.29 ENDIF
417 jmc 1.30 phiHydF(i,j) = phiHydC(i,j) +ddPIp*alphaRho(i,j)
418 adcroft 1.9 ENDDO
419 jmc 1.29 ENDDO
420     C end: Finite Volume Form, with Part-Cell Topo, linear in P by Half level
421 adcroft 1.9 C-----------------------------------------------------------------------
422    
423 jmc 1.29 ELSEIF ( integr_GeoPot.EQ.2
424     & .OR. integr_GeoPot.EQ.3 ) THEN
425 jmc 1.36 C -- Finite Difference Form, with Part-Cell Topo,
426 jmc 1.29 C works with Interface_W at the middle between 2.Tracer_Level
427     C and with Tracer_Level at the middle between 2.Interface_W.
428 jmc 1.14 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
429     C Finite Difference formulation consistent with Partial Cell,
430     C Valid & accurate if Interface_W at middle between tracer levels
431 jmc 1.36 C linear in p between 2 Tracer levels ; conserve energy in the Interior
432 jmc 1.14 C---------
433 jmc 1.29 IF (k.EQ.1) THEN
434     ddPIm=atm_Cp*( ((rF( k )/atm_Po)**atm_kappa)
435     & -((rC( k )/atm_Po)**atm_kappa) )
436     ELSE
437     ddPIm=atm_Cp*( ((rC(k-1)/atm_Po)**atm_kappa)
438     & -((rC( k )/atm_Po)**atm_kappa) )*half
439     ENDIF
440     IF (k.EQ.Nr) THEN
441     ddPIp=atm_Cp*( ((rC( k )/atm_Po)**atm_kappa)
442     & -((rF(k+1)/atm_Po)**atm_kappa) )
443     ELSE
444     ddPIp=atm_Cp*( ((rC( k )/atm_Po)**atm_kappa)
445 jmc 1.36 & -((rC(k+1)/atm_Po)**atm_kappa) )*half
446 jmc 1.29 ENDIF
447     rec_dRm = one/(rF(k)-rC(k))
448     rec_dRp = one/(rC(k)-rF(k+1))
449     DO j=jMin,jMax
450     DO i=iMin,iMax
451     IF (k.EQ.ksurfC(i,j,bi,bj)) THEN
452     ddRloc = Ro_surf(i,j,bi,bj)-rC(k)
453     #ifdef NONLIN_FRSURF
454     ddRloc = ddRloc + surfPhiFac*etaH(i,j,bi,bj)
455     #endif
456     phiHydC(i,j) =( MAX(zero,ddRloc)*rec_dRm*ddPIm
457     & +MIN(zero,ddRloc)*rec_dRp*ddPIp )
458 jmc 1.30 & *alphaRho(i,j)
459 jmc 1.29 ELSE
460 jmc 1.30 phiHydC(i,j) = phiHydF(i,j) +ddPIm*alphaRho(i,j)
461 jmc 1.29 ENDIF
462 jmc 1.30 phiHydF(i,j) = phiHydC(i,j) +ddPIp*alphaRho(i,j)
463 jmc 1.14 ENDDO
464 jmc 1.29 ENDDO
465     C end: Finite Difference Form, with Part-Cell Topo
466 jmc 1.14 C-----------------------------------------------------------------------
467 cnh 1.1
468 jmc 1.29 ELSE
469     STOP 'CALC_PHI_HYD: Bad integr_GeoPot option !'
470     ENDIF
471 cnh 1.6
472 jmc 1.14 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
473 adcroft 1.9 ELSE
474 jmc 1.24 STOP 'CALC_PHI_HYD: Bad value of buoyancyRelation !'
475 jmc 1.25 ENDIF
476    
477 jmc 1.29 C--- Diagnose Phi at boundary r=R_low :
478     C = Ocean bottom pressure (Ocean, Z-coord.)
479     C = Sea-surface height (Ocean, P-coord.)
480     C = Top atmosphere height (Atmos, P-coord.)
481     IF (useDiagPhiRlow) THEN
482     CALL DIAGS_PHI_RLOW(
483     I k, bi, bj, iMin,iMax, jMin,jMax,
484     I phiHydF, phiHydC, alphaRho, tFld, sFld,
485 jmc 1.36 I myTime, myIter, myThid)
486 jmc 1.29 ENDIF
487    
488     C--- Diagnose Full Hydrostatic Potential at cell center level
489     CALL DIAGS_PHI_HYD(
490     I k, bi, bj, iMin,iMax, jMin,jMax,
491     I phiHydC,
492     I myTime, myIter, myThid)
493    
494 jmc 1.36 IF (momPressureForcing) THEN
495 jmc 1.25 CALL CALC_GRAD_PHI_HYD(
496 jmc 1.35 I k, bi, bj, iMin,iMax, jMin,jMax,
497 jmc 1.29 I phiHydC, alphaRho, tFld, sFld,
498 jmc 1.25 O dPhiHydX, dPhiHydY,
499 jmc 1.36 I myTime, myIter, myThid)
500 cnh 1.5 ENDIF
501 cnh 1.1
502 jmc 1.14 #endif /* INCLUDE_PHIHYD_CALCULATION_CODE */
503 cnh 1.6
504 jmc 1.11 RETURN
505     END

  ViewVC Help
Powered by ViewVC 1.1.22