/[MITgcm]/MITgcm/model/src/calc_phi_hyd.F
ViewVC logotype

Annotation of /MITgcm/model/src/calc_phi_hyd.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.33 - (hide annotations) (download)
Tue Feb 7 11:47:49 2006 UTC (18 years, 3 months ago) by mlosch
Branch: MAIN
CVS Tags: checkpoint58b_post, checkpoint58a_post
Changes since 1.32: +12 -1 lines
o add hooks for new package shelfice, painless

1 mlosch 1.33 C $Header: /u/gcmpack/MITgcm/model/src/calc_phi_hyd.F,v 1.32 2005/01/03 03:04:37 jmc Exp $
2 cnh 1.16 C $Name: $
3 cnh 1.1
4 jmc 1.32 #include "PACKAGES_CONFIG.h"
5 cnh 1.6 #include "CPP_OPTIONS.h"
6 cnh 1.1
7 cnh 1.16 CBOP
8     C !ROUTINE: CALC_PHI_HYD
9     C !INTERFACE:
10 adcroft 1.9 SUBROUTINE CALC_PHI_HYD(
11 jmc 1.29 I bi, bj, iMin, iMax, jMin, jMax, k,
12 mlosch 1.20 I tFld, sFld,
13 jmc 1.29 U phiHydF,
14     O phiHydC, dPhiHydX, dPhiHydY,
15 jmc 1.25 I myTime, myIter, myThid)
16 cnh 1.16 C !DESCRIPTION: \bv
17     C *==========================================================*
18 cnh 1.1 C | SUBROUTINE CALC_PHI_HYD |
19 jmc 1.11 C | o Integrate the hydrostatic relation to find the Hydros. |
20 cnh 1.16 C *==========================================================*
21 jmc 1.29 C | Potential (ocean: Pressure/rho ; atmos = geopotential)
22     C | On entry:
23     C | tFld,sFld are the current thermodynamics quantities
24     C | (unchanged on exit)
25     C | phiHydF(i,j) is the hydrostatic Potential anomaly
26     C | at middle between tracer points k-1,k
27     C | On exit:
28     C | phiHydC(i,j) is the hydrostatic Potential anomaly
29     C | at cell centers (tracer points), level k
30     C | phiHydF(i,j) is the hydrostatic Potential anomaly
31     C | at middle between tracer points k,k+1
32     C | dPhiHydX,Y hydrostatic Potential gradient (X&Y dir)
33     C | at cell centers (tracer points), level k
34     C | integr_GeoPot allows to select one integration method
35     C | 1= Finite volume form ; else= Finite difference form
36 cnh 1.16 C *==========================================================*
37     C \ev
38     C !USES:
39 cnh 1.1 IMPLICIT NONE
40     C == Global variables ==
41     #include "SIZE.h"
42     #include "GRID.h"
43     #include "EEPARAMS.h"
44     #include "PARAMS.h"
45 heimbach 1.13 #ifdef ALLOW_AUTODIFF_TAMC
46     #include "tamc.h"
47     #include "tamc_keys.h"
48     #endif /* ALLOW_AUTODIFF_TAMC */
49 adcroft 1.19 #include "SURFACE.h"
50 mlosch 1.20 #include "DYNVARS.h"
51 heimbach 1.13
52 cnh 1.16 C !INPUT/OUTPUT PARAMETERS:
53 cnh 1.1 C == Routine arguments ==
54 jmc 1.29 C bi, bj, k :: tile and level indices
55     C iMin,iMax,jMin,jMax :: computational domain
56     C tFld :: potential temperature
57     C sFld :: salinity
58     C phiHydF :: hydrostatic potential anomaly at middle between
59     C 2 centers (entry: Interf_k ; output: Interf_k+1)
60     C phiHydC :: hydrostatic potential anomaly at cell center
61     C dPhiHydX,Y :: gradient (X & Y dir.) of hydrostatic potential anom.
62     C myTime :: current time
63     C myIter :: current iteration number
64     C myThid :: thread number for this instance of the routine.
65     INTEGER bi,bj,iMin,iMax,jMin,jMax,k
66 mlosch 1.20 _RL tFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
67     _RL sFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
68 jmc 1.29 c _RL phiHyd(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
69     _RL phiHydF(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
70     _RL phiHydC(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
71 jmc 1.25 _RL dPhiHydX(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
72     _RL dPhiHydY(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
73     _RL myTime
74     INTEGER myIter, myThid
75 jmc 1.14
76 adcroft 1.9 #ifdef INCLUDE_PHIHYD_CALCULATION_CODE
77    
78 cnh 1.16 C !LOCAL VARIABLES:
79 cnh 1.1 C == Local variables ==
80 jmc 1.29 INTEGER i,j
81 jmc 1.14 _RL zero, one, half
82 adcroft 1.9 _RL alphaRho(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
83 jmc 1.29 _RL dRlocM,dRlocP, ddRloc, locAlpha
84     _RL ddPIm, ddPIp, rec_dRm, rec_dRp
85     _RL surfPhiFac
86 jmc 1.25 INTEGER iMnLoc,jMnLoc
87     PARAMETER ( zero= 0. _d 0 , one= 1. _d 0 , half= .5 _d 0 )
88 jmc 1.29 LOGICAL useDiagPhiRlow, addSurfPhiAnom
89 cnh 1.16 CEOP
90 jmc 1.27 useDiagPhiRlow = .TRUE.
91 jmc 1.29 addSurfPhiAnom = select_rStar.EQ.0 .AND. nonlinFreeSurf.GT.3
92     surfPhiFac = 0.
93     IF (addSurfPhiAnom) surfPhiFac = 1.
94 jmc 1.14
95     C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
96     C Atmosphere:
97 jmc 1.24 C integr_GeoPot => select one option for the integration of the Geopotential:
98 jmc 1.29 C = 0 : Energy Conserving Form, accurate with Topo full cell;
99     C = 1 : Finite Volume Form, with Part-Cell, linear in P by Half level;
100     C =2,3: Finite Difference Form, with Part-Cell,
101     C linear in P between 2 Tracer levels.
102     C can handle both cases: Tracer lev at the middle of InterFace_W
103     C and InterFace_W at the middle of Tracer lev;
104 jmc 1.14 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
105 adcroft 1.9
106 heimbach 1.13 #ifdef ALLOW_AUTODIFF_TAMC
107     act1 = bi - myBxLo(myThid)
108     max1 = myBxHi(myThid) - myBxLo(myThid) + 1
109    
110     act2 = bj - myByLo(myThid)
111     max2 = myByHi(myThid) - myByLo(myThid) + 1
112    
113     act3 = myThid - 1
114     max3 = nTx*nTy
115    
116     act4 = ikey_dynamics - 1
117    
118     ikey = (act1 + 1) + act2*max1
119     & + act3*max1*max2
120     & + act4*max1*max2*max3
121     #endif /* ALLOW_AUTODIFF_TAMC */
122    
123 jmc 1.29 C-- Initialize phiHydF to zero :
124     C note: atmospheric_loading or Phi_topo anomaly are incorporated
125     C later in S/R calc_grad_phi_hyd
126     IF (k.EQ.1) THEN
127     DO j=1-Oly,sNy+Oly
128     DO i=1-Olx,sNx+Olx
129     phiHydF(i,j) = 0.
130     ENDDO
131     ENDDO
132     ENDIF
133 jmc 1.25
134     C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
135 jmc 1.29 IF ( buoyancyRelation .EQ. 'OCEANIC' ) THEN
136 adcroft 1.9 C This is the hydrostatic pressure calculation for the Ocean
137     C which uses the FIND_RHO() routine to calculate density
138     C before integrating g*rho over the current layer/interface
139 jmc 1.25 #ifdef ALLOW_AUTODIFF_TAMC
140     CADJ GENERAL
141     #endif /* ALLOW_AUTODIFF_TAMC */
142 adcroft 1.9
143 jmc 1.29 C--- Calculate density
144 heimbach 1.13 #ifdef ALLOW_AUTODIFF_TAMC
145 heimbach 1.23 kkey = (ikey-1)*Nr + k
146     CADJ STORE tFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
147 mlosch 1.20 CADJ STORE sFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
148 heimbach 1.13 #endif /* ALLOW_AUTODIFF_TAMC */
149 mlosch 1.20 CALL FIND_RHO( bi, bj, iMin, iMax, jMin, jMax, k, k,
150     & tFld, sFld,
151 adcroft 1.9 & alphaRho, myThid)
152 mlosch 1.33 #ifdef ALLOW_SHELFICE
153     C mask rho, so that there is no contribution of phiHyd from
154     C overlying shelfice (whose density we do not know)
155     IF ( useShelfIce ) THEN
156     DO j=jMin,jMax
157     DO i=iMin,iMax
158     alphaRho(i,j) = alphaRho(i,j)*maskC(i,j,k,bi,bj)
159     ENDDO
160     ENDDO
161     ENDIF
162     #endif /* ALLOW_SHELFICE */
163 adcroft 1.22
164 jmc 1.31 #ifdef ALLOW_DIAGNOSTICS
165     IF ( useDiagnostics )
166     & CALL DIAGNOSTICS_FILL(alphaRho,'RHOAnoma',k,1,2,bi,bj,myThid)
167     #endif
168    
169 adcroft 1.22 C Quasi-hydrostatic terms are added in as if they modify the buoyancy
170     IF (quasiHydrostatic) THEN
171     CALL QUASIHYDROSTATICTERMS(bi,bj,k,alphaRho,myThid)
172     ENDIF
173 adcroft 1.9
174 jmc 1.29 #ifdef NONLIN_FRSURF
175     IF (k.EQ.1 .AND. addSurfPhiAnom) THEN
176     DO j=jMin,jMax
177     DO i=iMin,iMax
178     phiHydF(i,j) = surfPhiFac*etaH(i,j,bi,bj)
179     & *gravity*alphaRho(i,j)*recip_rhoConst
180     ENDDO
181     ENDDO
182     ENDIF
183     #endif /* NONLIN_FRSURF */
184 jmc 1.27
185 jmc 1.29 C---- Hydrostatic pressure at cell centers
186 jmc 1.25
187     IF (integr_GeoPot.EQ.1) THEN
188     C -- Finite Volume Form
189    
190     DO j=jMin,jMax
191 adcroft 1.9 DO i=iMin,iMax
192    
193 jmc 1.25 C---------- This discretization is the "finite volume" form
194     C which has not been used to date since it does not
195     C conserve KE+PE exactly even though it is more natural
196     C
197 jmc 1.29 phiHydC(i,j)=phiHydF(i,j)
198     & + half*drF(k)*gravity*alphaRho(i,j)*recip_rhoConst
199     phiHydF(i,j)=phiHydF(i,j)
200     & + drF(k)*gravity*alphaRho(i,j)*recip_rhoConst
201 jmc 1.25 ENDDO
202     ENDDO
203    
204     ELSE
205     C -- Finite Difference Form
206    
207 jmc 1.29 dRlocM=half*drC(k)
208     IF (k.EQ.1) dRlocM=rF(k)-rC(k)
209     IF (k.EQ.Nr) THEN
210     dRlocP=rC(k)-rF(k+1)
211     ELSE
212     dRlocP=half*drC(k+1)
213     ENDIF
214    
215 jmc 1.25 DO j=jMin,jMax
216     DO i=iMin,iMax
217 adcroft 1.9
218     C---------- This discretization is the "energy conserving" form
219     C which has been used since at least Adcroft et al., MWR 1997
220     C
221 jmc 1.29 phiHydC(i,j)=phiHydF(i,j)
222     & +dRlocM*gravity*alphaRho(i,j)*recip_rhoConst
223     phiHydF(i,j)=phiHydC(i,j)
224     & +dRlocP*gravity*alphaRho(i,j)*recip_rhoConst
225 adcroft 1.9 ENDDO
226 jmc 1.25 ENDDO
227    
228     C -- end if integr_GeoPot = ...
229     ENDIF
230 adcroft 1.9
231 jmc 1.25 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
232 jmc 1.29 ELSEIF ( buoyancyRelation .EQ. 'OCEANICP' ) THEN
233 adcroft 1.19 C This is the hydrostatic pressure calculation for the Ocean
234     C which uses the FIND_RHO() routine to calculate density
235 jmc 1.25 C before integrating (1/rho)'*dp over the current layer/interface
236 mlosch 1.21 #ifdef ALLOW_AUTODIFF_TAMC
237     CADJ GENERAL
238     #endif /* ALLOW_AUTODIFF_TAMC */
239 adcroft 1.19
240 jmc 1.27 C-- Calculate density
241 adcroft 1.19 #ifdef ALLOW_AUTODIFF_TAMC
242     kkey = (ikey-1)*Nr + k
243 heimbach 1.23 CADJ STORE tFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
244 mlosch 1.20 CADJ STORE sFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
245 adcroft 1.19 #endif /* ALLOW_AUTODIFF_TAMC */
246 mlosch 1.20 CALL FIND_RHO( bi, bj, iMin, iMax, jMin, jMax, k, k,
247     & tFld, sFld,
248 adcroft 1.19 & alphaRho, myThid)
249 heimbach 1.23 #ifdef ALLOW_AUTODIFF_TAMC
250     CADJ STORE alphaRho (:,:) = comlev1_bibj_k, key=kkey, byte=isbyte
251     #endif /* ALLOW_AUTODIFF_TAMC */
252    
253 jmc 1.31 #ifdef ALLOW_DIAGNOSTICS
254     IF ( useDiagnostics )
255     & CALL DIAGNOSTICS_FILL(alphaRho,'RHOAnoma',k,1,2,bi,bj,myThid)
256     #endif
257    
258 jmc 1.27 C-- Calculate specific volume anomaly : alpha' = 1/rho - alpha_Cst
259     DO j=jMin,jMax
260     DO i=iMin,iMax
261     locAlpha=alphaRho(i,j)+rhoConst
262     alphaRho(i,j)=maskC(i,j,k,bi,bj)*
263     & (one/locAlpha - recip_rhoConst)
264     ENDDO
265     ENDDO
266    
267 jmc 1.25 C---- Hydrostatic pressure at cell centers
268    
269     IF (integr_GeoPot.EQ.1) THEN
270     C -- Finite Volume Form
271    
272     DO j=jMin,jMax
273 adcroft 1.19 DO i=iMin,iMax
274 jmc 1.25
275     C---------- This discretization is the "finite volume" form
276     C which has not been used to date since it does not
277     C conserve KE+PE exactly even though it is more natural
278     C
279 jmc 1.29 IF (k.EQ.ksurfC(i,j,bi,bj)) THEN
280     ddRloc = Ro_surf(i,j,bi,bj)-rC(k)
281     #ifdef NONLIN_FRSURF
282     ddRloc = ddRloc + surfPhiFac*etaH(i,j,bi,bj)
283     #endif
284     phiHydC(i,j) = ddRloc*alphaRho(i,j)
285     c--to reproduce results of c48d_post: uncomment those 4+1 lines
286     c phiHydC(i,j)=phiHydF(i,j)
287     c & +(hFacC(i,j,k,bi,bj)-half)*drF(k)*alphaRho(i,j)
288     c phiHydF(i,j)=phiHydF(i,j)
289     c & + hFacC(i,j,k,bi,bj)*drF(k)*alphaRho(i,j)
290     ELSE
291     phiHydC(i,j) = phiHydF(i,j) + half*drF(k)*alphaRho(i,j)
292     c phiHydF(i,j) = phiHydF(i,j) + drF(k)*alphaRho(i,j)
293     ENDIF
294     c-- and comment this last one:
295     phiHydF(i,j) = phiHydC(i,j) + half*drF(k)*alphaRho(i,j)
296     c-----
297 jmc 1.25 ENDDO
298     ENDDO
299    
300     ELSE
301 jmc 1.29 C -- Finite Difference Form, with Part-Cell Bathy
302    
303     dRlocM=half*drC(k)
304     IF (k.EQ.1) dRlocM=rF(k)-rC(k)
305     IF (k.EQ.Nr) THEN
306     dRlocP=rC(k)-rF(k+1)
307     ELSE
308     dRlocP=half*drC(k+1)
309     ENDIF
310     rec_dRm = one/(rF(k)-rC(k))
311     rec_dRp = one/(rC(k)-rF(k+1))
312 jmc 1.25
313     DO j=jMin,jMax
314     DO i=iMin,iMax
315 adcroft 1.9
316 adcroft 1.19 C---------- This discretization is the "energy conserving" form
317 mlosch 1.21
318 jmc 1.29 IF (k.EQ.ksurfC(i,j,bi,bj)) THEN
319     ddRloc = Ro_surf(i,j,bi,bj)-rC(k)
320     #ifdef NONLIN_FRSURF
321     ddRloc = ddRloc + surfPhiFac*etaH(i,j,bi,bj)
322     #endif
323     phiHydC(i,j) =( MAX(zero,ddRloc)*rec_dRm*dRlocM
324     & +MIN(zero,ddRloc)*rec_dRp*dRlocP
325     & )*alphaRho(i,j)
326     ELSE
327     phiHydC(i,j) = phiHydF(i,j) + dRlocM*alphaRho(i,j)
328     ENDIF
329     phiHydF(i,j) = phiHydC(i,j) + dRlocP*alphaRho(i,j)
330 adcroft 1.19 ENDDO
331 jmc 1.25 ENDDO
332    
333     C -- end if integr_GeoPot = ...
334     ENDIF
335 adcroft 1.9
336 jmc 1.29 ELSEIF ( buoyancyRelation .EQ. 'ATMOSPHERIC' ) THEN
337 jmc 1.14 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
338 adcroft 1.9 C This is the hydrostatic geopotential calculation for the Atmosphere
339     C The ideal gas law is used implicitly here rather than calculating
340     C the specific volume, analogous to the oceanic case.
341    
342 jmc 1.30 C-- virtual potential temperature anomaly (including water vapour effect)
343     DO j=jMin,jMax
344     DO i=iMin,iMax
345     alphaRho(i,j)=maskC(i,j,k,bi,bj)
346     & *( tFld(i,j,k,bi,bj)*(sFld(i,j,k,bi,bj)*atm_Rq+one)
347     & -tRef(k) )
348     ENDDO
349     ENDDO
350    
351 jmc 1.29 C--- Integrate d Phi / d pi
352 adcroft 1.9
353 jmc 1.29 IF (integr_GeoPot.EQ.0) THEN
354     C -- Energy Conserving Form, accurate with Full cell topo --
355 jmc 1.14 C------------ The integration for the first level phi(k=1) is the same
356     C for both the "finite volume" and energy conserving methods.
357 jmc 1.29 C *NOTE* o Working with geopotential Anomaly, the geopotential boundary
358 adcroft 1.17 C condition is simply Phi-prime(Ro_surf)=0.
359 jmc 1.14 C o convention ddPI > 0 (same as drF & drC)
360     C-----------------------------------------------------------------------
361 jmc 1.29 IF (k.EQ.1) THEN
362     ddPIm=atm_Cp*( ((rF( k )/atm_Po)**atm_kappa)
363     & -((rC( k )/atm_Po)**atm_kappa) )
364     ELSE
365     ddPIm=atm_Cp*( ((rC(k-1)/atm_Po)**atm_kappa)
366     & -((rC( k )/atm_Po)**atm_kappa) )*half
367     ENDIF
368     IF (k.EQ.Nr) THEN
369     ddPIp=atm_Cp*( ((rC( k )/atm_Po)**atm_kappa)
370     & -((rF(k+1)/atm_Po)**atm_kappa) )
371     ELSE
372     ddPIp=atm_Cp*( ((rC( k )/atm_Po)**atm_kappa)
373     & -((rC(k+1)/atm_Po)**atm_kappa) )*half
374     ENDIF
375 jmc 1.14 C-------- This discretization is the energy conserving form
376 jmc 1.29 DO j=jMin,jMax
377     DO i=iMin,iMax
378 jmc 1.30 phiHydC(i,j) = phiHydF(i,j) +ddPIm*alphaRho(i,j)
379     phiHydF(i,j) = phiHydC(i,j) +ddPIp*alphaRho(i,j)
380 jmc 1.14 ENDDO
381 jmc 1.29 ENDDO
382 jmc 1.14 C end: Energy Conserving Form, No hFac --
383 adcroft 1.9 C-----------------------------------------------------------------------
384 jmc 1.14
385 jmc 1.29 ELSEIF (integr_GeoPot.EQ.1) THEN
386     C -- Finite Volume Form, with Part-Cell Topo, linear in P by Half level
387 jmc 1.14 C---------
388     C Finite Volume formulation consistent with Partial Cell, linear in p by piece
389     C Note: a true Finite Volume form should be linear between 2 Interf_W :
390     C phi_C = (phi_W_k+ phi_W_k+1)/2 ; but not accurate in Stratosphere (low p)
391     C also: if Interface_W at the middle between tracer levels, this form
392     C is close to the Energy Cons. form in the Interior, except for the
393     C non-linearity in PI(p)
394     C---------
395 jmc 1.29 ddPIm=atm_Cp*( ((rF( k )/atm_Po)**atm_kappa)
396     & -((rC( k )/atm_Po)**atm_kappa) )
397     ddPIp=atm_Cp*( ((rC( k )/atm_Po)**atm_kappa)
398     & -((rF(k+1)/atm_Po)**atm_kappa) )
399     DO j=jMin,jMax
400     DO i=iMin,iMax
401     IF (k.EQ.ksurfC(i,j,bi,bj)) THEN
402     ddRloc = Ro_surf(i,j,bi,bj)-rC(k)
403     #ifdef NONLIN_FRSURF
404     ddRloc = ddRloc + surfPhiFac*etaH(i,j,bi,bj)
405     #endif
406     phiHydC(i,j) = ddRloc*recip_drF(k)*2. _d 0
407 jmc 1.30 & *ddPIm*alphaRho(i,j)
408 jmc 1.29 ELSE
409 jmc 1.30 phiHydC(i,j) = phiHydF(i,j) +ddPIm*alphaRho(i,j)
410 jmc 1.29 ENDIF
411 jmc 1.30 phiHydF(i,j) = phiHydC(i,j) +ddPIp*alphaRho(i,j)
412 adcroft 1.9 ENDDO
413 jmc 1.29 ENDDO
414     C end: Finite Volume Form, with Part-Cell Topo, linear in P by Half level
415 adcroft 1.9 C-----------------------------------------------------------------------
416    
417 jmc 1.29 ELSEIF ( integr_GeoPot.EQ.2
418     & .OR. integr_GeoPot.EQ.3 ) THEN
419     C -- Finite Difference Form, with Part-Cell Topo,
420     C works with Interface_W at the middle between 2.Tracer_Level
421     C and with Tracer_Level at the middle between 2.Interface_W.
422 jmc 1.14 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
423     C Finite Difference formulation consistent with Partial Cell,
424     C Valid & accurate if Interface_W at middle between tracer levels
425     C linear in p between 2 Tracer levels ; conserve energy in the Interior
426     C---------
427 jmc 1.29 IF (k.EQ.1) THEN
428     ddPIm=atm_Cp*( ((rF( k )/atm_Po)**atm_kappa)
429     & -((rC( k )/atm_Po)**atm_kappa) )
430     ELSE
431     ddPIm=atm_Cp*( ((rC(k-1)/atm_Po)**atm_kappa)
432     & -((rC( k )/atm_Po)**atm_kappa) )*half
433     ENDIF
434     IF (k.EQ.Nr) THEN
435     ddPIp=atm_Cp*( ((rC( k )/atm_Po)**atm_kappa)
436     & -((rF(k+1)/atm_Po)**atm_kappa) )
437     ELSE
438     ddPIp=atm_Cp*( ((rC( k )/atm_Po)**atm_kappa)
439     & -((rC(k+1)/atm_Po)**atm_kappa) )*half
440     ENDIF
441     rec_dRm = one/(rF(k)-rC(k))
442     rec_dRp = one/(rC(k)-rF(k+1))
443     DO j=jMin,jMax
444     DO i=iMin,iMax
445     IF (k.EQ.ksurfC(i,j,bi,bj)) THEN
446     ddRloc = Ro_surf(i,j,bi,bj)-rC(k)
447     #ifdef NONLIN_FRSURF
448     ddRloc = ddRloc + surfPhiFac*etaH(i,j,bi,bj)
449     #endif
450     phiHydC(i,j) =( MAX(zero,ddRloc)*rec_dRm*ddPIm
451     & +MIN(zero,ddRloc)*rec_dRp*ddPIp )
452 jmc 1.30 & *alphaRho(i,j)
453 jmc 1.29 ELSE
454 jmc 1.30 phiHydC(i,j) = phiHydF(i,j) +ddPIm*alphaRho(i,j)
455 jmc 1.29 ENDIF
456 jmc 1.30 phiHydF(i,j) = phiHydC(i,j) +ddPIp*alphaRho(i,j)
457 jmc 1.14 ENDDO
458 jmc 1.29 ENDDO
459     C end: Finite Difference Form, with Part-Cell Topo
460 jmc 1.14 C-----------------------------------------------------------------------
461 cnh 1.1
462 jmc 1.29 ELSE
463     STOP 'CALC_PHI_HYD: Bad integr_GeoPot option !'
464     ENDIF
465 cnh 1.6
466 jmc 1.14 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
467 adcroft 1.9 ELSE
468 jmc 1.24 STOP 'CALC_PHI_HYD: Bad value of buoyancyRelation !'
469 jmc 1.25 ENDIF
470    
471 jmc 1.29 C--- Diagnose Phi at boundary r=R_low :
472     C = Ocean bottom pressure (Ocean, Z-coord.)
473     C = Sea-surface height (Ocean, P-coord.)
474     C = Top atmosphere height (Atmos, P-coord.)
475     IF (useDiagPhiRlow) THEN
476     CALL DIAGS_PHI_RLOW(
477     I k, bi, bj, iMin,iMax, jMin,jMax,
478     I phiHydF, phiHydC, alphaRho, tFld, sFld,
479     I myTime, myIter, myThid)
480     ENDIF
481    
482     C--- Diagnose Full Hydrostatic Potential at cell center level
483     CALL DIAGS_PHI_HYD(
484     I k, bi, bj, iMin,iMax, jMin,jMax,
485     I phiHydC,
486     I myTime, myIter, myThid)
487    
488 jmc 1.25 IF (momPressureForcing) THEN
489     iMnLoc = MAX(1-Olx+1,iMin)
490     jMnLoc = MAX(1-Oly+1,jMin)
491     CALL CALC_GRAD_PHI_HYD(
492     I k, bi, bj, iMnLoc,iMax, jMnLoc,jMax,
493 jmc 1.29 I phiHydC, alphaRho, tFld, sFld,
494 jmc 1.25 O dPhiHydX, dPhiHydY,
495     I myTime, myIter, myThid)
496 cnh 1.5 ENDIF
497 cnh 1.1
498 jmc 1.14 #endif /* INCLUDE_PHIHYD_CALCULATION_CODE */
499 cnh 1.6
500 jmc 1.11 RETURN
501     END

  ViewVC Help
Powered by ViewVC 1.1.22