/[MITgcm]/MITgcm/model/src/calc_phi_hyd.F
ViewVC logotype

Annotation of /MITgcm/model/src/calc_phi_hyd.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.32 - (hide annotations) (download)
Mon Jan 3 03:04:37 2005 UTC (19 years, 4 months ago) by jmc
Branch: MAIN
CVS Tags: checkpoint57m_post, checkpoint57g_pre, checkpoint57s_post, checkpoint57g_post, checkpoint57y_post, checkpoint57r_post, checkpoint57d_post, checkpoint57i_post, checkpoint58, checkpoint57n_post, checkpoint57z_post, checkpoint57l_post, checkpoint57t_post, checkpoint57v_post, checkpoint57f_post, checkpoint57h_pre, checkpoint57h_post, checkpoint57y_pre, checkpoint57c_post, checkpoint57c_pre, checkpoint57e_post, checkpoint57p_post, checkpint57u_post, checkpoint57q_post, eckpoint57e_pre, checkpoint57h_done, checkpoint57j_post, checkpoint57f_pre, checkpoint57o_post, checkpoint57k_post, checkpoint57w_post, checkpoint57x_post
Changes since 1.31: +2 -1 lines
really add diagnostics of RHO (include PACKAGES_CONFIG.h was missing)

1 jmc 1.32 C $Header: /u/gcmpack/MITgcm/model/src/calc_phi_hyd.F,v 1.31 2005/01/03 02:34:01 jmc Exp $
2 cnh 1.16 C $Name: $
3 cnh 1.1
4 jmc 1.32 #include "PACKAGES_CONFIG.h"
5 cnh 1.6 #include "CPP_OPTIONS.h"
6 cnh 1.1
7 cnh 1.16 CBOP
8     C !ROUTINE: CALC_PHI_HYD
9     C !INTERFACE:
10 adcroft 1.9 SUBROUTINE CALC_PHI_HYD(
11 jmc 1.29 I bi, bj, iMin, iMax, jMin, jMax, k,
12 mlosch 1.20 I tFld, sFld,
13 jmc 1.29 U phiHydF,
14     O phiHydC, dPhiHydX, dPhiHydY,
15 jmc 1.25 I myTime, myIter, myThid)
16 cnh 1.16 C !DESCRIPTION: \bv
17     C *==========================================================*
18 cnh 1.1 C | SUBROUTINE CALC_PHI_HYD |
19 jmc 1.11 C | o Integrate the hydrostatic relation to find the Hydros. |
20 cnh 1.16 C *==========================================================*
21 jmc 1.29 C | Potential (ocean: Pressure/rho ; atmos = geopotential)
22     C | On entry:
23     C | tFld,sFld are the current thermodynamics quantities
24     C | (unchanged on exit)
25     C | phiHydF(i,j) is the hydrostatic Potential anomaly
26     C | at middle between tracer points k-1,k
27     C | On exit:
28     C | phiHydC(i,j) is the hydrostatic Potential anomaly
29     C | at cell centers (tracer points), level k
30     C | phiHydF(i,j) is the hydrostatic Potential anomaly
31     C | at middle between tracer points k,k+1
32     C | dPhiHydX,Y hydrostatic Potential gradient (X&Y dir)
33     C | at cell centers (tracer points), level k
34     C | integr_GeoPot allows to select one integration method
35     C | 1= Finite volume form ; else= Finite difference form
36 cnh 1.16 C *==========================================================*
37     C \ev
38     C !USES:
39 cnh 1.1 IMPLICIT NONE
40     C == Global variables ==
41     #include "SIZE.h"
42     #include "GRID.h"
43     #include "EEPARAMS.h"
44     #include "PARAMS.h"
45 heimbach 1.13 #ifdef ALLOW_AUTODIFF_TAMC
46     #include "tamc.h"
47     #include "tamc_keys.h"
48     #endif /* ALLOW_AUTODIFF_TAMC */
49 adcroft 1.19 #include "SURFACE.h"
50 mlosch 1.20 #include "DYNVARS.h"
51 heimbach 1.13
52 cnh 1.16 C !INPUT/OUTPUT PARAMETERS:
53 cnh 1.1 C == Routine arguments ==
54 jmc 1.29 C bi, bj, k :: tile and level indices
55     C iMin,iMax,jMin,jMax :: computational domain
56     C tFld :: potential temperature
57     C sFld :: salinity
58     C phiHydF :: hydrostatic potential anomaly at middle between
59     C 2 centers (entry: Interf_k ; output: Interf_k+1)
60     C phiHydC :: hydrostatic potential anomaly at cell center
61     C dPhiHydX,Y :: gradient (X & Y dir.) of hydrostatic potential anom.
62     C myTime :: current time
63     C myIter :: current iteration number
64     C myThid :: thread number for this instance of the routine.
65     INTEGER bi,bj,iMin,iMax,jMin,jMax,k
66 mlosch 1.20 _RL tFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
67     _RL sFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
68 jmc 1.29 c _RL phiHyd(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
69     _RL phiHydF(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
70     _RL phiHydC(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
71 jmc 1.25 _RL dPhiHydX(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
72     _RL dPhiHydY(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
73     _RL myTime
74     INTEGER myIter, myThid
75 jmc 1.14
76 adcroft 1.9 #ifdef INCLUDE_PHIHYD_CALCULATION_CODE
77    
78 cnh 1.16 C !LOCAL VARIABLES:
79 cnh 1.1 C == Local variables ==
80 jmc 1.29 INTEGER i,j
81 jmc 1.14 _RL zero, one, half
82 adcroft 1.9 _RL alphaRho(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
83 jmc 1.29 _RL dRlocM,dRlocP, ddRloc, locAlpha
84     _RL ddPIm, ddPIp, rec_dRm, rec_dRp
85     _RL surfPhiFac
86 jmc 1.25 INTEGER iMnLoc,jMnLoc
87     PARAMETER ( zero= 0. _d 0 , one= 1. _d 0 , half= .5 _d 0 )
88 jmc 1.29 LOGICAL useDiagPhiRlow, addSurfPhiAnom
89 cnh 1.16 CEOP
90 jmc 1.27 useDiagPhiRlow = .TRUE.
91 jmc 1.29 addSurfPhiAnom = select_rStar.EQ.0 .AND. nonlinFreeSurf.GT.3
92     surfPhiFac = 0.
93     IF (addSurfPhiAnom) surfPhiFac = 1.
94 jmc 1.14
95     C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
96     C Atmosphere:
97 jmc 1.24 C integr_GeoPot => select one option for the integration of the Geopotential:
98 jmc 1.29 C = 0 : Energy Conserving Form, accurate with Topo full cell;
99     C = 1 : Finite Volume Form, with Part-Cell, linear in P by Half level;
100     C =2,3: Finite Difference Form, with Part-Cell,
101     C linear in P between 2 Tracer levels.
102     C can handle both cases: Tracer lev at the middle of InterFace_W
103     C and InterFace_W at the middle of Tracer lev;
104 jmc 1.14 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
105 adcroft 1.9
106 heimbach 1.13 #ifdef ALLOW_AUTODIFF_TAMC
107     act1 = bi - myBxLo(myThid)
108     max1 = myBxHi(myThid) - myBxLo(myThid) + 1
109    
110     act2 = bj - myByLo(myThid)
111     max2 = myByHi(myThid) - myByLo(myThid) + 1
112    
113     act3 = myThid - 1
114     max3 = nTx*nTy
115    
116     act4 = ikey_dynamics - 1
117    
118     ikey = (act1 + 1) + act2*max1
119     & + act3*max1*max2
120     & + act4*max1*max2*max3
121     #endif /* ALLOW_AUTODIFF_TAMC */
122    
123 jmc 1.29 C-- Initialize phiHydF to zero :
124     C note: atmospheric_loading or Phi_topo anomaly are incorporated
125     C later in S/R calc_grad_phi_hyd
126     IF (k.EQ.1) THEN
127     DO j=1-Oly,sNy+Oly
128     DO i=1-Olx,sNx+Olx
129     phiHydF(i,j) = 0.
130     ENDDO
131     ENDDO
132     ENDIF
133 jmc 1.25
134     C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
135 jmc 1.29 IF ( buoyancyRelation .EQ. 'OCEANIC' ) THEN
136 adcroft 1.9 C This is the hydrostatic pressure calculation for the Ocean
137     C which uses the FIND_RHO() routine to calculate density
138     C before integrating g*rho over the current layer/interface
139 jmc 1.25 #ifdef ALLOW_AUTODIFF_TAMC
140     CADJ GENERAL
141     #endif /* ALLOW_AUTODIFF_TAMC */
142 adcroft 1.9
143 jmc 1.29 C--- Calculate density
144 heimbach 1.13 #ifdef ALLOW_AUTODIFF_TAMC
145 heimbach 1.23 kkey = (ikey-1)*Nr + k
146     CADJ STORE tFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
147 mlosch 1.20 CADJ STORE sFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
148 heimbach 1.13 #endif /* ALLOW_AUTODIFF_TAMC */
149 mlosch 1.20 CALL FIND_RHO( bi, bj, iMin, iMax, jMin, jMax, k, k,
150     & tFld, sFld,
151 adcroft 1.9 & alphaRho, myThid)
152 adcroft 1.22
153 jmc 1.31 #ifdef ALLOW_DIAGNOSTICS
154     IF ( useDiagnostics )
155     & CALL DIAGNOSTICS_FILL(alphaRho,'RHOAnoma',k,1,2,bi,bj,myThid)
156     #endif
157    
158 adcroft 1.22 C Quasi-hydrostatic terms are added in as if they modify the buoyancy
159     IF (quasiHydrostatic) THEN
160     CALL QUASIHYDROSTATICTERMS(bi,bj,k,alphaRho,myThid)
161     ENDIF
162 adcroft 1.9
163 jmc 1.29 #ifdef NONLIN_FRSURF
164     IF (k.EQ.1 .AND. addSurfPhiAnom) THEN
165     DO j=jMin,jMax
166     DO i=iMin,iMax
167     phiHydF(i,j) = surfPhiFac*etaH(i,j,bi,bj)
168     & *gravity*alphaRho(i,j)*recip_rhoConst
169     ENDDO
170     ENDDO
171     ENDIF
172     #endif /* NONLIN_FRSURF */
173 jmc 1.27
174 jmc 1.29 C---- Hydrostatic pressure at cell centers
175 jmc 1.25
176     IF (integr_GeoPot.EQ.1) THEN
177     C -- Finite Volume Form
178    
179     DO j=jMin,jMax
180 adcroft 1.9 DO i=iMin,iMax
181    
182 jmc 1.25 C---------- This discretization is the "finite volume" form
183     C which has not been used to date since it does not
184     C conserve KE+PE exactly even though it is more natural
185     C
186 jmc 1.29 phiHydC(i,j)=phiHydF(i,j)
187     & + half*drF(k)*gravity*alphaRho(i,j)*recip_rhoConst
188     phiHydF(i,j)=phiHydF(i,j)
189     & + drF(k)*gravity*alphaRho(i,j)*recip_rhoConst
190 jmc 1.25 ENDDO
191     ENDDO
192    
193     ELSE
194     C -- Finite Difference Form
195    
196 jmc 1.29 dRlocM=half*drC(k)
197     IF (k.EQ.1) dRlocM=rF(k)-rC(k)
198     IF (k.EQ.Nr) THEN
199     dRlocP=rC(k)-rF(k+1)
200     ELSE
201     dRlocP=half*drC(k+1)
202     ENDIF
203    
204 jmc 1.25 DO j=jMin,jMax
205     DO i=iMin,iMax
206 adcroft 1.9
207     C---------- This discretization is the "energy conserving" form
208     C which has been used since at least Adcroft et al., MWR 1997
209     C
210 jmc 1.29 phiHydC(i,j)=phiHydF(i,j)
211     & +dRlocM*gravity*alphaRho(i,j)*recip_rhoConst
212     phiHydF(i,j)=phiHydC(i,j)
213     & +dRlocP*gravity*alphaRho(i,j)*recip_rhoConst
214 adcroft 1.9 ENDDO
215 jmc 1.25 ENDDO
216    
217     C -- end if integr_GeoPot = ...
218     ENDIF
219 adcroft 1.9
220 jmc 1.25 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
221 jmc 1.29 ELSEIF ( buoyancyRelation .EQ. 'OCEANICP' ) THEN
222 adcroft 1.19 C This is the hydrostatic pressure calculation for the Ocean
223     C which uses the FIND_RHO() routine to calculate density
224 jmc 1.25 C before integrating (1/rho)'*dp over the current layer/interface
225 mlosch 1.21 #ifdef ALLOW_AUTODIFF_TAMC
226     CADJ GENERAL
227     #endif /* ALLOW_AUTODIFF_TAMC */
228 adcroft 1.19
229 jmc 1.27 C-- Calculate density
230 adcroft 1.19 #ifdef ALLOW_AUTODIFF_TAMC
231     kkey = (ikey-1)*Nr + k
232 heimbach 1.23 CADJ STORE tFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
233 mlosch 1.20 CADJ STORE sFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
234 adcroft 1.19 #endif /* ALLOW_AUTODIFF_TAMC */
235 mlosch 1.20 CALL FIND_RHO( bi, bj, iMin, iMax, jMin, jMax, k, k,
236     & tFld, sFld,
237 adcroft 1.19 & alphaRho, myThid)
238 heimbach 1.23 #ifdef ALLOW_AUTODIFF_TAMC
239     CADJ STORE alphaRho (:,:) = comlev1_bibj_k, key=kkey, byte=isbyte
240     #endif /* ALLOW_AUTODIFF_TAMC */
241    
242 jmc 1.31 #ifdef ALLOW_DIAGNOSTICS
243     IF ( useDiagnostics )
244     & CALL DIAGNOSTICS_FILL(alphaRho,'RHOAnoma',k,1,2,bi,bj,myThid)
245     #endif
246    
247 jmc 1.27 C-- Calculate specific volume anomaly : alpha' = 1/rho - alpha_Cst
248     DO j=jMin,jMax
249     DO i=iMin,iMax
250     locAlpha=alphaRho(i,j)+rhoConst
251     alphaRho(i,j)=maskC(i,j,k,bi,bj)*
252     & (one/locAlpha - recip_rhoConst)
253     ENDDO
254     ENDDO
255    
256 jmc 1.25 C---- Hydrostatic pressure at cell centers
257    
258     IF (integr_GeoPot.EQ.1) THEN
259     C -- Finite Volume Form
260    
261     DO j=jMin,jMax
262 adcroft 1.19 DO i=iMin,iMax
263 jmc 1.25
264     C---------- This discretization is the "finite volume" form
265     C which has not been used to date since it does not
266     C conserve KE+PE exactly even though it is more natural
267     C
268 jmc 1.29 IF (k.EQ.ksurfC(i,j,bi,bj)) THEN
269     ddRloc = Ro_surf(i,j,bi,bj)-rC(k)
270     #ifdef NONLIN_FRSURF
271     ddRloc = ddRloc + surfPhiFac*etaH(i,j,bi,bj)
272     #endif
273     phiHydC(i,j) = ddRloc*alphaRho(i,j)
274     c--to reproduce results of c48d_post: uncomment those 4+1 lines
275     c phiHydC(i,j)=phiHydF(i,j)
276     c & +(hFacC(i,j,k,bi,bj)-half)*drF(k)*alphaRho(i,j)
277     c phiHydF(i,j)=phiHydF(i,j)
278     c & + hFacC(i,j,k,bi,bj)*drF(k)*alphaRho(i,j)
279     ELSE
280     phiHydC(i,j) = phiHydF(i,j) + half*drF(k)*alphaRho(i,j)
281     c phiHydF(i,j) = phiHydF(i,j) + drF(k)*alphaRho(i,j)
282     ENDIF
283     c-- and comment this last one:
284     phiHydF(i,j) = phiHydC(i,j) + half*drF(k)*alphaRho(i,j)
285     c-----
286 jmc 1.25 ENDDO
287     ENDDO
288    
289     ELSE
290 jmc 1.29 C -- Finite Difference Form, with Part-Cell Bathy
291    
292     dRlocM=half*drC(k)
293     IF (k.EQ.1) dRlocM=rF(k)-rC(k)
294     IF (k.EQ.Nr) THEN
295     dRlocP=rC(k)-rF(k+1)
296     ELSE
297     dRlocP=half*drC(k+1)
298     ENDIF
299     rec_dRm = one/(rF(k)-rC(k))
300     rec_dRp = one/(rC(k)-rF(k+1))
301 jmc 1.25
302     DO j=jMin,jMax
303     DO i=iMin,iMax
304 adcroft 1.9
305 adcroft 1.19 C---------- This discretization is the "energy conserving" form
306 mlosch 1.21
307 jmc 1.29 IF (k.EQ.ksurfC(i,j,bi,bj)) THEN
308     ddRloc = Ro_surf(i,j,bi,bj)-rC(k)
309     #ifdef NONLIN_FRSURF
310     ddRloc = ddRloc + surfPhiFac*etaH(i,j,bi,bj)
311     #endif
312     phiHydC(i,j) =( MAX(zero,ddRloc)*rec_dRm*dRlocM
313     & +MIN(zero,ddRloc)*rec_dRp*dRlocP
314     & )*alphaRho(i,j)
315     ELSE
316     phiHydC(i,j) = phiHydF(i,j) + dRlocM*alphaRho(i,j)
317     ENDIF
318     phiHydF(i,j) = phiHydC(i,j) + dRlocP*alphaRho(i,j)
319 adcroft 1.19 ENDDO
320 jmc 1.25 ENDDO
321    
322     C -- end if integr_GeoPot = ...
323     ENDIF
324 adcroft 1.9
325 jmc 1.29 ELSEIF ( buoyancyRelation .EQ. 'ATMOSPHERIC' ) THEN
326 jmc 1.14 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
327 adcroft 1.9 C This is the hydrostatic geopotential calculation for the Atmosphere
328     C The ideal gas law is used implicitly here rather than calculating
329     C the specific volume, analogous to the oceanic case.
330    
331 jmc 1.30 C-- virtual potential temperature anomaly (including water vapour effect)
332     DO j=jMin,jMax
333     DO i=iMin,iMax
334     alphaRho(i,j)=maskC(i,j,k,bi,bj)
335     & *( tFld(i,j,k,bi,bj)*(sFld(i,j,k,bi,bj)*atm_Rq+one)
336     & -tRef(k) )
337     ENDDO
338     ENDDO
339    
340 jmc 1.29 C--- Integrate d Phi / d pi
341 adcroft 1.9
342 jmc 1.29 IF (integr_GeoPot.EQ.0) THEN
343     C -- Energy Conserving Form, accurate with Full cell topo --
344 jmc 1.14 C------------ The integration for the first level phi(k=1) is the same
345     C for both the "finite volume" and energy conserving methods.
346 jmc 1.29 C *NOTE* o Working with geopotential Anomaly, the geopotential boundary
347 adcroft 1.17 C condition is simply Phi-prime(Ro_surf)=0.
348 jmc 1.14 C o convention ddPI > 0 (same as drF & drC)
349     C-----------------------------------------------------------------------
350 jmc 1.29 IF (k.EQ.1) THEN
351     ddPIm=atm_Cp*( ((rF( k )/atm_Po)**atm_kappa)
352     & -((rC( k )/atm_Po)**atm_kappa) )
353     ELSE
354     ddPIm=atm_Cp*( ((rC(k-1)/atm_Po)**atm_kappa)
355     & -((rC( k )/atm_Po)**atm_kappa) )*half
356     ENDIF
357     IF (k.EQ.Nr) THEN
358     ddPIp=atm_Cp*( ((rC( k )/atm_Po)**atm_kappa)
359     & -((rF(k+1)/atm_Po)**atm_kappa) )
360     ELSE
361     ddPIp=atm_Cp*( ((rC( k )/atm_Po)**atm_kappa)
362     & -((rC(k+1)/atm_Po)**atm_kappa) )*half
363     ENDIF
364 jmc 1.14 C-------- This discretization is the energy conserving form
365 jmc 1.29 DO j=jMin,jMax
366     DO i=iMin,iMax
367 jmc 1.30 phiHydC(i,j) = phiHydF(i,j) +ddPIm*alphaRho(i,j)
368     phiHydF(i,j) = phiHydC(i,j) +ddPIp*alphaRho(i,j)
369 jmc 1.14 ENDDO
370 jmc 1.29 ENDDO
371 jmc 1.14 C end: Energy Conserving Form, No hFac --
372 adcroft 1.9 C-----------------------------------------------------------------------
373 jmc 1.14
374 jmc 1.29 ELSEIF (integr_GeoPot.EQ.1) THEN
375     C -- Finite Volume Form, with Part-Cell Topo, linear in P by Half level
376 jmc 1.14 C---------
377     C Finite Volume formulation consistent with Partial Cell, linear in p by piece
378     C Note: a true Finite Volume form should be linear between 2 Interf_W :
379     C phi_C = (phi_W_k+ phi_W_k+1)/2 ; but not accurate in Stratosphere (low p)
380     C also: if Interface_W at the middle between tracer levels, this form
381     C is close to the Energy Cons. form in the Interior, except for the
382     C non-linearity in PI(p)
383     C---------
384 jmc 1.29 ddPIm=atm_Cp*( ((rF( k )/atm_Po)**atm_kappa)
385     & -((rC( k )/atm_Po)**atm_kappa) )
386     ddPIp=atm_Cp*( ((rC( k )/atm_Po)**atm_kappa)
387     & -((rF(k+1)/atm_Po)**atm_kappa) )
388     DO j=jMin,jMax
389     DO i=iMin,iMax
390     IF (k.EQ.ksurfC(i,j,bi,bj)) THEN
391     ddRloc = Ro_surf(i,j,bi,bj)-rC(k)
392     #ifdef NONLIN_FRSURF
393     ddRloc = ddRloc + surfPhiFac*etaH(i,j,bi,bj)
394     #endif
395     phiHydC(i,j) = ddRloc*recip_drF(k)*2. _d 0
396 jmc 1.30 & *ddPIm*alphaRho(i,j)
397 jmc 1.29 ELSE
398 jmc 1.30 phiHydC(i,j) = phiHydF(i,j) +ddPIm*alphaRho(i,j)
399 jmc 1.29 ENDIF
400 jmc 1.30 phiHydF(i,j) = phiHydC(i,j) +ddPIp*alphaRho(i,j)
401 adcroft 1.9 ENDDO
402 jmc 1.29 ENDDO
403     C end: Finite Volume Form, with Part-Cell Topo, linear in P by Half level
404 adcroft 1.9 C-----------------------------------------------------------------------
405    
406 jmc 1.29 ELSEIF ( integr_GeoPot.EQ.2
407     & .OR. integr_GeoPot.EQ.3 ) THEN
408     C -- Finite Difference Form, with Part-Cell Topo,
409     C works with Interface_W at the middle between 2.Tracer_Level
410     C and with Tracer_Level at the middle between 2.Interface_W.
411 jmc 1.14 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
412     C Finite Difference formulation consistent with Partial Cell,
413     C Valid & accurate if Interface_W at middle between tracer levels
414     C linear in p between 2 Tracer levels ; conserve energy in the Interior
415     C---------
416 jmc 1.29 IF (k.EQ.1) THEN
417     ddPIm=atm_Cp*( ((rF( k )/atm_Po)**atm_kappa)
418     & -((rC( k )/atm_Po)**atm_kappa) )
419     ELSE
420     ddPIm=atm_Cp*( ((rC(k-1)/atm_Po)**atm_kappa)
421     & -((rC( k )/atm_Po)**atm_kappa) )*half
422     ENDIF
423     IF (k.EQ.Nr) THEN
424     ddPIp=atm_Cp*( ((rC( k )/atm_Po)**atm_kappa)
425     & -((rF(k+1)/atm_Po)**atm_kappa) )
426     ELSE
427     ddPIp=atm_Cp*( ((rC( k )/atm_Po)**atm_kappa)
428     & -((rC(k+1)/atm_Po)**atm_kappa) )*half
429     ENDIF
430     rec_dRm = one/(rF(k)-rC(k))
431     rec_dRp = one/(rC(k)-rF(k+1))
432     DO j=jMin,jMax
433     DO i=iMin,iMax
434     IF (k.EQ.ksurfC(i,j,bi,bj)) THEN
435     ddRloc = Ro_surf(i,j,bi,bj)-rC(k)
436     #ifdef NONLIN_FRSURF
437     ddRloc = ddRloc + surfPhiFac*etaH(i,j,bi,bj)
438     #endif
439     phiHydC(i,j) =( MAX(zero,ddRloc)*rec_dRm*ddPIm
440     & +MIN(zero,ddRloc)*rec_dRp*ddPIp )
441 jmc 1.30 & *alphaRho(i,j)
442 jmc 1.29 ELSE
443 jmc 1.30 phiHydC(i,j) = phiHydF(i,j) +ddPIm*alphaRho(i,j)
444 jmc 1.29 ENDIF
445 jmc 1.30 phiHydF(i,j) = phiHydC(i,j) +ddPIp*alphaRho(i,j)
446 jmc 1.14 ENDDO
447 jmc 1.29 ENDDO
448     C end: Finite Difference Form, with Part-Cell Topo
449 jmc 1.14 C-----------------------------------------------------------------------
450 cnh 1.1
451 jmc 1.29 ELSE
452     STOP 'CALC_PHI_HYD: Bad integr_GeoPot option !'
453     ENDIF
454 cnh 1.6
455 jmc 1.14 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
456 adcroft 1.9 ELSE
457 jmc 1.24 STOP 'CALC_PHI_HYD: Bad value of buoyancyRelation !'
458 jmc 1.25 ENDIF
459    
460 jmc 1.29 C--- Diagnose Phi at boundary r=R_low :
461     C = Ocean bottom pressure (Ocean, Z-coord.)
462     C = Sea-surface height (Ocean, P-coord.)
463     C = Top atmosphere height (Atmos, P-coord.)
464     IF (useDiagPhiRlow) THEN
465     CALL DIAGS_PHI_RLOW(
466     I k, bi, bj, iMin,iMax, jMin,jMax,
467     I phiHydF, phiHydC, alphaRho, tFld, sFld,
468     I myTime, myIter, myThid)
469     ENDIF
470    
471     C--- Diagnose Full Hydrostatic Potential at cell center level
472     CALL DIAGS_PHI_HYD(
473     I k, bi, bj, iMin,iMax, jMin,jMax,
474     I phiHydC,
475     I myTime, myIter, myThid)
476    
477 jmc 1.25 IF (momPressureForcing) THEN
478     iMnLoc = MAX(1-Olx+1,iMin)
479     jMnLoc = MAX(1-Oly+1,jMin)
480     CALL CALC_GRAD_PHI_HYD(
481     I k, bi, bj, iMnLoc,iMax, jMnLoc,jMax,
482 jmc 1.29 I phiHydC, alphaRho, tFld, sFld,
483 jmc 1.25 O dPhiHydX, dPhiHydY,
484     I myTime, myIter, myThid)
485 cnh 1.5 ENDIF
486 cnh 1.1
487 jmc 1.14 #endif /* INCLUDE_PHIHYD_CALCULATION_CODE */
488 cnh 1.6
489 jmc 1.11 RETURN
490     END

  ViewVC Help
Powered by ViewVC 1.1.22