/[MITgcm]/MITgcm/model/src/calc_phi_hyd.F
ViewVC logotype

Annotation of /MITgcm/model/src/calc_phi_hyd.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.31 - (hide annotations) (download)
Mon Jan 3 02:34:01 2005 UTC (19 years, 5 months ago) by jmc
Branch: MAIN
Changes since 1.30: +11 -1 lines
add diagnostics of RHO (-rhoConst)

1 jmc 1.31 C $Header: /u/gcmpack/MITgcm/model/src/calc_phi_hyd.F,v 1.30 2003/08/01 04:03:54 jmc Exp $
2 cnh 1.16 C $Name: $
3 cnh 1.1
4 cnh 1.6 #include "CPP_OPTIONS.h"
5 cnh 1.1
6 cnh 1.16 CBOP
7     C !ROUTINE: CALC_PHI_HYD
8     C !INTERFACE:
9 adcroft 1.9 SUBROUTINE CALC_PHI_HYD(
10 jmc 1.29 I bi, bj, iMin, iMax, jMin, jMax, k,
11 mlosch 1.20 I tFld, sFld,
12 jmc 1.29 U phiHydF,
13     O phiHydC, dPhiHydX, dPhiHydY,
14 jmc 1.25 I myTime, myIter, myThid)
15 cnh 1.16 C !DESCRIPTION: \bv
16     C *==========================================================*
17 cnh 1.1 C | SUBROUTINE CALC_PHI_HYD |
18 jmc 1.11 C | o Integrate the hydrostatic relation to find the Hydros. |
19 cnh 1.16 C *==========================================================*
20 jmc 1.29 C | Potential (ocean: Pressure/rho ; atmos = geopotential)
21     C | On entry:
22     C | tFld,sFld are the current thermodynamics quantities
23     C | (unchanged on exit)
24     C | phiHydF(i,j) is the hydrostatic Potential anomaly
25     C | at middle between tracer points k-1,k
26     C | On exit:
27     C | phiHydC(i,j) is the hydrostatic Potential anomaly
28     C | at cell centers (tracer points), level k
29     C | phiHydF(i,j) is the hydrostatic Potential anomaly
30     C | at middle between tracer points k,k+1
31     C | dPhiHydX,Y hydrostatic Potential gradient (X&Y dir)
32     C | at cell centers (tracer points), level k
33     C | integr_GeoPot allows to select one integration method
34     C | 1= Finite volume form ; else= Finite difference form
35 cnh 1.16 C *==========================================================*
36     C \ev
37     C !USES:
38 cnh 1.1 IMPLICIT NONE
39     C == Global variables ==
40     #include "SIZE.h"
41     #include "GRID.h"
42     #include "EEPARAMS.h"
43     #include "PARAMS.h"
44 heimbach 1.13 #ifdef ALLOW_AUTODIFF_TAMC
45     #include "tamc.h"
46     #include "tamc_keys.h"
47     #endif /* ALLOW_AUTODIFF_TAMC */
48 adcroft 1.19 #include "SURFACE.h"
49 mlosch 1.20 #include "DYNVARS.h"
50 heimbach 1.13
51 cnh 1.16 C !INPUT/OUTPUT PARAMETERS:
52 cnh 1.1 C == Routine arguments ==
53 jmc 1.29 C bi, bj, k :: tile and level indices
54     C iMin,iMax,jMin,jMax :: computational domain
55     C tFld :: potential temperature
56     C sFld :: salinity
57     C phiHydF :: hydrostatic potential anomaly at middle between
58     C 2 centers (entry: Interf_k ; output: Interf_k+1)
59     C phiHydC :: hydrostatic potential anomaly at cell center
60     C dPhiHydX,Y :: gradient (X & Y dir.) of hydrostatic potential anom.
61     C myTime :: current time
62     C myIter :: current iteration number
63     C myThid :: thread number for this instance of the routine.
64     INTEGER bi,bj,iMin,iMax,jMin,jMax,k
65 mlosch 1.20 _RL tFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
66     _RL sFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
67 jmc 1.29 c _RL phiHyd(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
68     _RL phiHydF(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
69     _RL phiHydC(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
70 jmc 1.25 _RL dPhiHydX(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
71     _RL dPhiHydY(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
72     _RL myTime
73     INTEGER myIter, myThid
74 jmc 1.14
75 adcroft 1.9 #ifdef INCLUDE_PHIHYD_CALCULATION_CODE
76    
77 cnh 1.16 C !LOCAL VARIABLES:
78 cnh 1.1 C == Local variables ==
79 jmc 1.29 INTEGER i,j
80 jmc 1.14 _RL zero, one, half
81 adcroft 1.9 _RL alphaRho(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
82 jmc 1.29 _RL dRlocM,dRlocP, ddRloc, locAlpha
83     _RL ddPIm, ddPIp, rec_dRm, rec_dRp
84     _RL surfPhiFac
85 jmc 1.25 INTEGER iMnLoc,jMnLoc
86     PARAMETER ( zero= 0. _d 0 , one= 1. _d 0 , half= .5 _d 0 )
87 jmc 1.29 LOGICAL useDiagPhiRlow, addSurfPhiAnom
88 cnh 1.16 CEOP
89 jmc 1.27 useDiagPhiRlow = .TRUE.
90 jmc 1.29 addSurfPhiAnom = select_rStar.EQ.0 .AND. nonlinFreeSurf.GT.3
91     surfPhiFac = 0.
92     IF (addSurfPhiAnom) surfPhiFac = 1.
93 jmc 1.14
94     C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
95     C Atmosphere:
96 jmc 1.24 C integr_GeoPot => select one option for the integration of the Geopotential:
97 jmc 1.29 C = 0 : Energy Conserving Form, accurate with Topo full cell;
98     C = 1 : Finite Volume Form, with Part-Cell, linear in P by Half level;
99     C =2,3: Finite Difference Form, with Part-Cell,
100     C linear in P between 2 Tracer levels.
101     C can handle both cases: Tracer lev at the middle of InterFace_W
102     C and InterFace_W at the middle of Tracer lev;
103 jmc 1.14 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
104 adcroft 1.9
105 heimbach 1.13 #ifdef ALLOW_AUTODIFF_TAMC
106     act1 = bi - myBxLo(myThid)
107     max1 = myBxHi(myThid) - myBxLo(myThid) + 1
108    
109     act2 = bj - myByLo(myThid)
110     max2 = myByHi(myThid) - myByLo(myThid) + 1
111    
112     act3 = myThid - 1
113     max3 = nTx*nTy
114    
115     act4 = ikey_dynamics - 1
116    
117     ikey = (act1 + 1) + act2*max1
118     & + act3*max1*max2
119     & + act4*max1*max2*max3
120     #endif /* ALLOW_AUTODIFF_TAMC */
121    
122 jmc 1.29 C-- Initialize phiHydF to zero :
123     C note: atmospheric_loading or Phi_topo anomaly are incorporated
124     C later in S/R calc_grad_phi_hyd
125     IF (k.EQ.1) THEN
126     DO j=1-Oly,sNy+Oly
127     DO i=1-Olx,sNx+Olx
128     phiHydF(i,j) = 0.
129     ENDDO
130     ENDDO
131     ENDIF
132 jmc 1.25
133     C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
134 jmc 1.29 IF ( buoyancyRelation .EQ. 'OCEANIC' ) THEN
135 adcroft 1.9 C This is the hydrostatic pressure calculation for the Ocean
136     C which uses the FIND_RHO() routine to calculate density
137     C before integrating g*rho over the current layer/interface
138 jmc 1.25 #ifdef ALLOW_AUTODIFF_TAMC
139     CADJ GENERAL
140     #endif /* ALLOW_AUTODIFF_TAMC */
141 adcroft 1.9
142 jmc 1.29 C--- Calculate density
143 heimbach 1.13 #ifdef ALLOW_AUTODIFF_TAMC
144 heimbach 1.23 kkey = (ikey-1)*Nr + k
145     CADJ STORE tFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
146 mlosch 1.20 CADJ STORE sFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
147 heimbach 1.13 #endif /* ALLOW_AUTODIFF_TAMC */
148 mlosch 1.20 CALL FIND_RHO( bi, bj, iMin, iMax, jMin, jMax, k, k,
149     & tFld, sFld,
150 adcroft 1.9 & alphaRho, myThid)
151 adcroft 1.22
152 jmc 1.31 #ifdef ALLOW_DIAGNOSTICS
153     IF ( useDiagnostics )
154     & CALL DIAGNOSTICS_FILL(alphaRho,'RHOAnoma',k,1,2,bi,bj,myThid)
155     #endif
156    
157 adcroft 1.22 C Quasi-hydrostatic terms are added in as if they modify the buoyancy
158     IF (quasiHydrostatic) THEN
159     CALL QUASIHYDROSTATICTERMS(bi,bj,k,alphaRho,myThid)
160     ENDIF
161 adcroft 1.9
162 jmc 1.29 #ifdef NONLIN_FRSURF
163     IF (k.EQ.1 .AND. addSurfPhiAnom) THEN
164     DO j=jMin,jMax
165     DO i=iMin,iMax
166     phiHydF(i,j) = surfPhiFac*etaH(i,j,bi,bj)
167     & *gravity*alphaRho(i,j)*recip_rhoConst
168     ENDDO
169     ENDDO
170     ENDIF
171     #endif /* NONLIN_FRSURF */
172 jmc 1.27
173 jmc 1.29 C---- Hydrostatic pressure at cell centers
174 jmc 1.25
175     IF (integr_GeoPot.EQ.1) THEN
176     C -- Finite Volume Form
177    
178     DO j=jMin,jMax
179 adcroft 1.9 DO i=iMin,iMax
180    
181 jmc 1.25 C---------- This discretization is the "finite volume" form
182     C which has not been used to date since it does not
183     C conserve KE+PE exactly even though it is more natural
184     C
185 jmc 1.29 phiHydC(i,j)=phiHydF(i,j)
186     & + half*drF(k)*gravity*alphaRho(i,j)*recip_rhoConst
187     phiHydF(i,j)=phiHydF(i,j)
188     & + drF(k)*gravity*alphaRho(i,j)*recip_rhoConst
189 jmc 1.25 ENDDO
190     ENDDO
191    
192     ELSE
193     C -- Finite Difference Form
194    
195 jmc 1.29 dRlocM=half*drC(k)
196     IF (k.EQ.1) dRlocM=rF(k)-rC(k)
197     IF (k.EQ.Nr) THEN
198     dRlocP=rC(k)-rF(k+1)
199     ELSE
200     dRlocP=half*drC(k+1)
201     ENDIF
202    
203 jmc 1.25 DO j=jMin,jMax
204     DO i=iMin,iMax
205 adcroft 1.9
206     C---------- This discretization is the "energy conserving" form
207     C which has been used since at least Adcroft et al., MWR 1997
208     C
209 jmc 1.29 phiHydC(i,j)=phiHydF(i,j)
210     & +dRlocM*gravity*alphaRho(i,j)*recip_rhoConst
211     phiHydF(i,j)=phiHydC(i,j)
212     & +dRlocP*gravity*alphaRho(i,j)*recip_rhoConst
213 adcroft 1.9 ENDDO
214 jmc 1.25 ENDDO
215    
216     C -- end if integr_GeoPot = ...
217     ENDIF
218 adcroft 1.9
219 jmc 1.25 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
220 jmc 1.29 ELSEIF ( buoyancyRelation .EQ. 'OCEANICP' ) THEN
221 adcroft 1.19 C This is the hydrostatic pressure calculation for the Ocean
222     C which uses the FIND_RHO() routine to calculate density
223 jmc 1.25 C before integrating (1/rho)'*dp over the current layer/interface
224 mlosch 1.21 #ifdef ALLOW_AUTODIFF_TAMC
225     CADJ GENERAL
226     #endif /* ALLOW_AUTODIFF_TAMC */
227 adcroft 1.19
228 jmc 1.27 C-- Calculate density
229 adcroft 1.19 #ifdef ALLOW_AUTODIFF_TAMC
230     kkey = (ikey-1)*Nr + k
231 heimbach 1.23 CADJ STORE tFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
232 mlosch 1.20 CADJ STORE sFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
233 adcroft 1.19 #endif /* ALLOW_AUTODIFF_TAMC */
234 mlosch 1.20 CALL FIND_RHO( bi, bj, iMin, iMax, jMin, jMax, k, k,
235     & tFld, sFld,
236 adcroft 1.19 & alphaRho, myThid)
237 heimbach 1.23 #ifdef ALLOW_AUTODIFF_TAMC
238     CADJ STORE alphaRho (:,:) = comlev1_bibj_k, key=kkey, byte=isbyte
239     #endif /* ALLOW_AUTODIFF_TAMC */
240    
241 jmc 1.31 #ifdef ALLOW_DIAGNOSTICS
242     IF ( useDiagnostics )
243     & CALL DIAGNOSTICS_FILL(alphaRho,'RHOAnoma',k,1,2,bi,bj,myThid)
244     #endif
245    
246 jmc 1.27 C-- Calculate specific volume anomaly : alpha' = 1/rho - alpha_Cst
247     DO j=jMin,jMax
248     DO i=iMin,iMax
249     locAlpha=alphaRho(i,j)+rhoConst
250     alphaRho(i,j)=maskC(i,j,k,bi,bj)*
251     & (one/locAlpha - recip_rhoConst)
252     ENDDO
253     ENDDO
254    
255 jmc 1.25 C---- Hydrostatic pressure at cell centers
256    
257     IF (integr_GeoPot.EQ.1) THEN
258     C -- Finite Volume Form
259    
260     DO j=jMin,jMax
261 adcroft 1.19 DO i=iMin,iMax
262 jmc 1.25
263     C---------- This discretization is the "finite volume" form
264     C which has not been used to date since it does not
265     C conserve KE+PE exactly even though it is more natural
266     C
267 jmc 1.29 IF (k.EQ.ksurfC(i,j,bi,bj)) THEN
268     ddRloc = Ro_surf(i,j,bi,bj)-rC(k)
269     #ifdef NONLIN_FRSURF
270     ddRloc = ddRloc + surfPhiFac*etaH(i,j,bi,bj)
271     #endif
272     phiHydC(i,j) = ddRloc*alphaRho(i,j)
273     c--to reproduce results of c48d_post: uncomment those 4+1 lines
274     c phiHydC(i,j)=phiHydF(i,j)
275     c & +(hFacC(i,j,k,bi,bj)-half)*drF(k)*alphaRho(i,j)
276     c phiHydF(i,j)=phiHydF(i,j)
277     c & + hFacC(i,j,k,bi,bj)*drF(k)*alphaRho(i,j)
278     ELSE
279     phiHydC(i,j) = phiHydF(i,j) + half*drF(k)*alphaRho(i,j)
280     c phiHydF(i,j) = phiHydF(i,j) + drF(k)*alphaRho(i,j)
281     ENDIF
282     c-- and comment this last one:
283     phiHydF(i,j) = phiHydC(i,j) + half*drF(k)*alphaRho(i,j)
284     c-----
285 jmc 1.25 ENDDO
286     ENDDO
287    
288     ELSE
289 jmc 1.29 C -- Finite Difference Form, with Part-Cell Bathy
290    
291     dRlocM=half*drC(k)
292     IF (k.EQ.1) dRlocM=rF(k)-rC(k)
293     IF (k.EQ.Nr) THEN
294     dRlocP=rC(k)-rF(k+1)
295     ELSE
296     dRlocP=half*drC(k+1)
297     ENDIF
298     rec_dRm = one/(rF(k)-rC(k))
299     rec_dRp = one/(rC(k)-rF(k+1))
300 jmc 1.25
301     DO j=jMin,jMax
302     DO i=iMin,iMax
303 adcroft 1.9
304 adcroft 1.19 C---------- This discretization is the "energy conserving" form
305 mlosch 1.21
306 jmc 1.29 IF (k.EQ.ksurfC(i,j,bi,bj)) THEN
307     ddRloc = Ro_surf(i,j,bi,bj)-rC(k)
308     #ifdef NONLIN_FRSURF
309     ddRloc = ddRloc + surfPhiFac*etaH(i,j,bi,bj)
310     #endif
311     phiHydC(i,j) =( MAX(zero,ddRloc)*rec_dRm*dRlocM
312     & +MIN(zero,ddRloc)*rec_dRp*dRlocP
313     & )*alphaRho(i,j)
314     ELSE
315     phiHydC(i,j) = phiHydF(i,j) + dRlocM*alphaRho(i,j)
316     ENDIF
317     phiHydF(i,j) = phiHydC(i,j) + dRlocP*alphaRho(i,j)
318 adcroft 1.19 ENDDO
319 jmc 1.25 ENDDO
320    
321     C -- end if integr_GeoPot = ...
322     ENDIF
323 adcroft 1.9
324 jmc 1.29 ELSEIF ( buoyancyRelation .EQ. 'ATMOSPHERIC' ) THEN
325 jmc 1.14 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
326 adcroft 1.9 C This is the hydrostatic geopotential calculation for the Atmosphere
327     C The ideal gas law is used implicitly here rather than calculating
328     C the specific volume, analogous to the oceanic case.
329    
330 jmc 1.30 C-- virtual potential temperature anomaly (including water vapour effect)
331     DO j=jMin,jMax
332     DO i=iMin,iMax
333     alphaRho(i,j)=maskC(i,j,k,bi,bj)
334     & *( tFld(i,j,k,bi,bj)*(sFld(i,j,k,bi,bj)*atm_Rq+one)
335     & -tRef(k) )
336     ENDDO
337     ENDDO
338    
339 jmc 1.29 C--- Integrate d Phi / d pi
340 adcroft 1.9
341 jmc 1.29 IF (integr_GeoPot.EQ.0) THEN
342     C -- Energy Conserving Form, accurate with Full cell topo --
343 jmc 1.14 C------------ The integration for the first level phi(k=1) is the same
344     C for both the "finite volume" and energy conserving methods.
345 jmc 1.29 C *NOTE* o Working with geopotential Anomaly, the geopotential boundary
346 adcroft 1.17 C condition is simply Phi-prime(Ro_surf)=0.
347 jmc 1.14 C o convention ddPI > 0 (same as drF & drC)
348     C-----------------------------------------------------------------------
349 jmc 1.29 IF (k.EQ.1) THEN
350     ddPIm=atm_Cp*( ((rF( k )/atm_Po)**atm_kappa)
351     & -((rC( k )/atm_Po)**atm_kappa) )
352     ELSE
353     ddPIm=atm_Cp*( ((rC(k-1)/atm_Po)**atm_kappa)
354     & -((rC( k )/atm_Po)**atm_kappa) )*half
355     ENDIF
356     IF (k.EQ.Nr) THEN
357     ddPIp=atm_Cp*( ((rC( k )/atm_Po)**atm_kappa)
358     & -((rF(k+1)/atm_Po)**atm_kappa) )
359     ELSE
360     ddPIp=atm_Cp*( ((rC( k )/atm_Po)**atm_kappa)
361     & -((rC(k+1)/atm_Po)**atm_kappa) )*half
362     ENDIF
363 jmc 1.14 C-------- This discretization is the energy conserving form
364 jmc 1.29 DO j=jMin,jMax
365     DO i=iMin,iMax
366 jmc 1.30 phiHydC(i,j) = phiHydF(i,j) +ddPIm*alphaRho(i,j)
367     phiHydF(i,j) = phiHydC(i,j) +ddPIp*alphaRho(i,j)
368 jmc 1.14 ENDDO
369 jmc 1.29 ENDDO
370 jmc 1.14 C end: Energy Conserving Form, No hFac --
371 adcroft 1.9 C-----------------------------------------------------------------------
372 jmc 1.14
373 jmc 1.29 ELSEIF (integr_GeoPot.EQ.1) THEN
374     C -- Finite Volume Form, with Part-Cell Topo, linear in P by Half level
375 jmc 1.14 C---------
376     C Finite Volume formulation consistent with Partial Cell, linear in p by piece
377     C Note: a true Finite Volume form should be linear between 2 Interf_W :
378     C phi_C = (phi_W_k+ phi_W_k+1)/2 ; but not accurate in Stratosphere (low p)
379     C also: if Interface_W at the middle between tracer levels, this form
380     C is close to the Energy Cons. form in the Interior, except for the
381     C non-linearity in PI(p)
382     C---------
383 jmc 1.29 ddPIm=atm_Cp*( ((rF( k )/atm_Po)**atm_kappa)
384     & -((rC( k )/atm_Po)**atm_kappa) )
385     ddPIp=atm_Cp*( ((rC( k )/atm_Po)**atm_kappa)
386     & -((rF(k+1)/atm_Po)**atm_kappa) )
387     DO j=jMin,jMax
388     DO i=iMin,iMax
389     IF (k.EQ.ksurfC(i,j,bi,bj)) THEN
390     ddRloc = Ro_surf(i,j,bi,bj)-rC(k)
391     #ifdef NONLIN_FRSURF
392     ddRloc = ddRloc + surfPhiFac*etaH(i,j,bi,bj)
393     #endif
394     phiHydC(i,j) = ddRloc*recip_drF(k)*2. _d 0
395 jmc 1.30 & *ddPIm*alphaRho(i,j)
396 jmc 1.29 ELSE
397 jmc 1.30 phiHydC(i,j) = phiHydF(i,j) +ddPIm*alphaRho(i,j)
398 jmc 1.29 ENDIF
399 jmc 1.30 phiHydF(i,j) = phiHydC(i,j) +ddPIp*alphaRho(i,j)
400 adcroft 1.9 ENDDO
401 jmc 1.29 ENDDO
402     C end: Finite Volume Form, with Part-Cell Topo, linear in P by Half level
403 adcroft 1.9 C-----------------------------------------------------------------------
404    
405 jmc 1.29 ELSEIF ( integr_GeoPot.EQ.2
406     & .OR. integr_GeoPot.EQ.3 ) THEN
407     C -- Finite Difference Form, with Part-Cell Topo,
408     C works with Interface_W at the middle between 2.Tracer_Level
409     C and with Tracer_Level at the middle between 2.Interface_W.
410 jmc 1.14 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
411     C Finite Difference formulation consistent with Partial Cell,
412     C Valid & accurate if Interface_W at middle between tracer levels
413     C linear in p between 2 Tracer levels ; conserve energy in the Interior
414     C---------
415 jmc 1.29 IF (k.EQ.1) THEN
416     ddPIm=atm_Cp*( ((rF( k )/atm_Po)**atm_kappa)
417     & -((rC( k )/atm_Po)**atm_kappa) )
418     ELSE
419     ddPIm=atm_Cp*( ((rC(k-1)/atm_Po)**atm_kappa)
420     & -((rC( k )/atm_Po)**atm_kappa) )*half
421     ENDIF
422     IF (k.EQ.Nr) THEN
423     ddPIp=atm_Cp*( ((rC( k )/atm_Po)**atm_kappa)
424     & -((rF(k+1)/atm_Po)**atm_kappa) )
425     ELSE
426     ddPIp=atm_Cp*( ((rC( k )/atm_Po)**atm_kappa)
427     & -((rC(k+1)/atm_Po)**atm_kappa) )*half
428     ENDIF
429     rec_dRm = one/(rF(k)-rC(k))
430     rec_dRp = one/(rC(k)-rF(k+1))
431     DO j=jMin,jMax
432     DO i=iMin,iMax
433     IF (k.EQ.ksurfC(i,j,bi,bj)) THEN
434     ddRloc = Ro_surf(i,j,bi,bj)-rC(k)
435     #ifdef NONLIN_FRSURF
436     ddRloc = ddRloc + surfPhiFac*etaH(i,j,bi,bj)
437     #endif
438     phiHydC(i,j) =( MAX(zero,ddRloc)*rec_dRm*ddPIm
439     & +MIN(zero,ddRloc)*rec_dRp*ddPIp )
440 jmc 1.30 & *alphaRho(i,j)
441 jmc 1.29 ELSE
442 jmc 1.30 phiHydC(i,j) = phiHydF(i,j) +ddPIm*alphaRho(i,j)
443 jmc 1.29 ENDIF
444 jmc 1.30 phiHydF(i,j) = phiHydC(i,j) +ddPIp*alphaRho(i,j)
445 jmc 1.14 ENDDO
446 jmc 1.29 ENDDO
447     C end: Finite Difference Form, with Part-Cell Topo
448 jmc 1.14 C-----------------------------------------------------------------------
449 cnh 1.1
450 jmc 1.29 ELSE
451     STOP 'CALC_PHI_HYD: Bad integr_GeoPot option !'
452     ENDIF
453 cnh 1.6
454 jmc 1.14 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
455 adcroft 1.9 ELSE
456 jmc 1.24 STOP 'CALC_PHI_HYD: Bad value of buoyancyRelation !'
457 jmc 1.25 ENDIF
458    
459 jmc 1.29 C--- Diagnose Phi at boundary r=R_low :
460     C = Ocean bottom pressure (Ocean, Z-coord.)
461     C = Sea-surface height (Ocean, P-coord.)
462     C = Top atmosphere height (Atmos, P-coord.)
463     IF (useDiagPhiRlow) THEN
464     CALL DIAGS_PHI_RLOW(
465     I k, bi, bj, iMin,iMax, jMin,jMax,
466     I phiHydF, phiHydC, alphaRho, tFld, sFld,
467     I myTime, myIter, myThid)
468     ENDIF
469    
470     C--- Diagnose Full Hydrostatic Potential at cell center level
471     CALL DIAGS_PHI_HYD(
472     I k, bi, bj, iMin,iMax, jMin,jMax,
473     I phiHydC,
474     I myTime, myIter, myThid)
475    
476 jmc 1.25 IF (momPressureForcing) THEN
477     iMnLoc = MAX(1-Olx+1,iMin)
478     jMnLoc = MAX(1-Oly+1,jMin)
479     CALL CALC_GRAD_PHI_HYD(
480     I k, bi, bj, iMnLoc,iMax, jMnLoc,jMax,
481 jmc 1.29 I phiHydC, alphaRho, tFld, sFld,
482 jmc 1.25 O dPhiHydX, dPhiHydY,
483     I myTime, myIter, myThid)
484 cnh 1.5 ENDIF
485 cnh 1.1
486 jmc 1.14 #endif /* INCLUDE_PHIHYD_CALCULATION_CODE */
487 cnh 1.6
488 jmc 1.11 RETURN
489     END

  ViewVC Help
Powered by ViewVC 1.1.22