/[MITgcm]/MITgcm/model/src/calc_phi_hyd.F
ViewVC logotype

Annotation of /MITgcm/model/src/calc_phi_hyd.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.28 - (hide annotations) (download)
Tue Feb 11 02:31:32 2003 UTC (21 years, 3 months ago) by jmc
Branch: MAIN
CVS Tags: checkpoint48e_post, checkpoint48f_post
Changes since 1.27: +2 -2 lines
left from previous modifications.

1 jmc 1.28 C $Header: /u/gcmpack/MITgcm/model/src/calc_phi_hyd.F,v 1.27 2003/02/09 02:58:39 jmc Exp $
2 cnh 1.16 C $Name: $
3 cnh 1.1
4 cnh 1.6 #include "CPP_OPTIONS.h"
5 cnh 1.1
6 cnh 1.16 CBOP
7     C !ROUTINE: CALC_PHI_HYD
8     C !INTERFACE:
9 adcroft 1.9 SUBROUTINE CALC_PHI_HYD(
10     I bi, bj, iMin, iMax, jMin, jMax, K,
11 mlosch 1.20 I tFld, sFld,
12 adcroft 1.9 U phiHyd,
13 jmc 1.25 O dPhiHydX, dPhiHydY,
14     I myTime, myIter, myThid)
15 cnh 1.16 C !DESCRIPTION: \bv
16     C *==========================================================*
17 cnh 1.1 C | SUBROUTINE CALC_PHI_HYD |
18 jmc 1.11 C | o Integrate the hydrostatic relation to find the Hydros. |
19 cnh 1.16 C *==========================================================*
20 jmc 1.11 C | Potential (ocean: Pressure/rho ; atmos = geopotential)|
21 adcroft 1.9 C | On entry: |
22 mlosch 1.20 C | tFld,sFld are the current thermodynamics quantities|
23 adcroft 1.9 C | (unchanged on exit) |
24 jmc 1.11 C | phiHyd(i,j,1:k-1) is the hydrostatic Potential |
25 adcroft 1.9 C | at cell centers (tracer points) |
26     C | - 1:k-1 layers are valid |
27     C | - k:Nr layers are invalid |
28 jmc 1.11 C | phiHyd(i,j,k) is the hydrostatic Potential |
29 jmc 1.14 C | (ocean only_^) at cell the interface k (w point above) |
30 adcroft 1.9 C | On exit: |
31 jmc 1.11 C | phiHyd(i,j,1:k) is the hydrostatic Potential |
32 adcroft 1.9 C | at cell centers (tracer points) |
33     C | - 1:k layers are valid |
34     C | - k+1:Nr layers are invalid |
35 jmc 1.11 C | phiHyd(i,j,k+1) is the hydrostatic Potential (P/rho) |
36 jmc 1.14 C | (ocean only-^) at cell the interface k+1 (w point below)|
37     C | Atmosphere: |
38 jmc 1.24 C | integr_GeoPot allows to select one integration method |
39 jmc 1.14 C | (see the list below) |
40 cnh 1.16 C *==========================================================*
41     C \ev
42     C !USES:
43 cnh 1.1 IMPLICIT NONE
44     C == Global variables ==
45     #include "SIZE.h"
46     #include "GRID.h"
47     #include "EEPARAMS.h"
48     #include "PARAMS.h"
49 jmc 1.24 c #include "FFIELDS.h"
50 heimbach 1.13 #ifdef ALLOW_AUTODIFF_TAMC
51     #include "tamc.h"
52     #include "tamc_keys.h"
53     #endif /* ALLOW_AUTODIFF_TAMC */
54 adcroft 1.19 #include "SURFACE.h"
55 mlosch 1.20 #include "DYNVARS.h"
56 heimbach 1.13
57 cnh 1.16 C !INPUT/OUTPUT PARAMETERS:
58 cnh 1.1 C == Routine arguments ==
59     INTEGER bi,bj,iMin,iMax,jMin,jMax,K
60 mlosch 1.20 _RL tFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
61     _RL sFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
62 cnh 1.2 _RL phiHyd(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
63 jmc 1.25 _RL dPhiHydX(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
64     _RL dPhiHydY(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
65     _RL myTime
66     INTEGER myIter, myThid
67 jmc 1.14
68 adcroft 1.9 #ifdef INCLUDE_PHIHYD_CALCULATION_CODE
69    
70 cnh 1.16 C !LOCAL VARIABLES:
71 cnh 1.1 C == Local variables ==
72 jmc 1.14 INTEGER i,j, Kp1
73     _RL zero, one, half
74 adcroft 1.9 _RL alphaRho(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
75 adcroft 1.19 _RL dRloc,dRlocKp1,locAlpha
76 jmc 1.14 _RL ddPI, ddPIm, ddPIp, ratioRp, ratioRm
77 jmc 1.25 INTEGER iMnLoc,jMnLoc
78     PARAMETER ( zero= 0. _d 0 , one= 1. _d 0 , half= .5 _d 0 )
79 jmc 1.27 LOGICAL useDiagPhiRlow
80 cnh 1.16 CEOP
81 jmc 1.27 useDiagPhiRlow = .TRUE.
82 jmc 1.14
83     C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
84     C Atmosphere:
85 jmc 1.24 C integr_GeoPot => select one option for the integration of the Geopotential:
86 jmc 1.14 C = 0 : Energy Conserving Form, No hFac ;
87     C = 1 : Finite Volume Form, with hFac, linear in P by Half level;
88     C =2,3: Finite Difference Form, with hFac, linear in P between 2 Tracer levels
89     C 2 : case Tracer level at the middle of InterFace_W;
90     C 3 : case InterFace_W at the middle of Tracer levels;
91     C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
92 adcroft 1.9
93 heimbach 1.13 #ifdef ALLOW_AUTODIFF_TAMC
94     act1 = bi - myBxLo(myThid)
95     max1 = myBxHi(myThid) - myBxLo(myThid) + 1
96    
97     act2 = bj - myByLo(myThid)
98     max2 = myByHi(myThid) - myByLo(myThid) + 1
99    
100     act3 = myThid - 1
101     max3 = nTx*nTy
102    
103     act4 = ikey_dynamics - 1
104    
105     ikey = (act1 + 1) + act2*max1
106     & + act3*max1*max2
107     & + act4*max1*max2*max3
108     #endif /* ALLOW_AUTODIFF_TAMC */
109    
110 jmc 1.25
111     C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
112 adcroft 1.9 IF ( buoyancyRelation .eq. 'OCEANIC' ) THEN
113     C This is the hydrostatic pressure calculation for the Ocean
114     C which uses the FIND_RHO() routine to calculate density
115     C before integrating g*rho over the current layer/interface
116 jmc 1.25 #ifdef ALLOW_AUTODIFF_TAMC
117     CADJ GENERAL
118     #endif /* ALLOW_AUTODIFF_TAMC */
119 adcroft 1.9
120     dRloc=drC(k)
121     IF (k.EQ.1) dRloc=drF(1)
122     IF (k.EQ.Nr) THEN
123     dRlocKp1=0.
124     ELSE
125     dRlocKp1=drC(k+1)
126     ENDIF
127    
128     C-- If this is the top layer we impose the boundary condition
129     C P(z=eta) = P(atmospheric_loading)
130     IF (k.EQ.1) THEN
131     DO j=jMin,jMax
132     DO i=iMin,iMax
133 jmc 1.26 c phiHyd(i,j,k) = phi0surf(i,j,bi,bj)
134     phiHyd(i,j,k) = 0.
135 adcroft 1.9 ENDDO
136     ENDDO
137     ENDIF
138    
139     C Calculate density
140 heimbach 1.13 #ifdef ALLOW_AUTODIFF_TAMC
141 heimbach 1.23 kkey = (ikey-1)*Nr + k
142     CADJ STORE tFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
143 mlosch 1.20 CADJ STORE sFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
144 heimbach 1.13 #endif /* ALLOW_AUTODIFF_TAMC */
145 mlosch 1.20 CALL FIND_RHO( bi, bj, iMin, iMax, jMin, jMax, k, k,
146     & tFld, sFld,
147 adcroft 1.9 & alphaRho, myThid)
148 adcroft 1.22
149     C Quasi-hydrostatic terms are added in as if they modify the buoyancy
150     IF (quasiHydrostatic) THEN
151     CALL QUASIHYDROSTATICTERMS(bi,bj,k,alphaRho,myThid)
152     ENDIF
153 adcroft 1.9
154 jmc 1.27 C--- Diagnose Hydrostatic pressure at the bottom:
155     IF (useDiagPhiRlow) THEN
156     CALL DIAGS_PHI_RLOW(
157     I k, bi, bj, iMin,iMax, jMin,jMax,
158     I phiHyd, alphaRho, tFld, sFld,
159     I myTime, myIter, myThid)
160     ENDIF
161    
162 jmc 1.25 C--- Hydrostatic pressure at cell centers
163    
164     IF (integr_GeoPot.EQ.1) THEN
165     C -- Finite Volume Form
166    
167     DO j=jMin,jMax
168 adcroft 1.9 DO i=iMin,iMax
169    
170 jmc 1.25 C---------- This discretization is the "finite volume" form
171     C which has not been used to date since it does not
172     C conserve KE+PE exactly even though it is more natural
173     C
174     IF (k.LT.Nr) phiHyd(i,j,k+1)=phiHyd(i,j,k)
175     & + drF(K)*gravity*alphaRho(i,j)*recip_rhoConst
176 jmc 1.28 phiHyd(i,j,k)=phiHyd(i,j,k)
177 jmc 1.25 & + half*drF(K)*gravity*alphaRho(i,j)*recip_rhoConst
178    
179     ENDDO
180     ENDDO
181    
182     ELSE
183     C -- Finite Difference Form
184    
185     DO j=jMin,jMax
186     DO i=iMin,iMax
187 adcroft 1.9
188     C---------- This discretization is the "energy conserving" form
189     C which has been used since at least Adcroft et al., MWR 1997
190     C
191 jmc 1.25 phiHyd(i,j,k)=phiHyd(i,j,k)
192     & +half*dRloc*gravity*alphaRho(i,j)*recip_rhoConst
193     IF (k.LT.Nr) phiHyd(i,j,k+1)=phiHyd(i,j,k)
194     & +half*dRlocKp1*gravity*alphaRho(i,j)*recip_rhoConst
195 mlosch 1.20
196 adcroft 1.9 ENDDO
197 jmc 1.25 ENDDO
198    
199     C -- end if integr_GeoPot = ...
200     ENDIF
201 adcroft 1.9
202 jmc 1.25 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
203 adcroft 1.19 ELSEIF ( buoyancyRelation .eq. 'OCEANICP' ) THEN
204     C This is the hydrostatic pressure calculation for the Ocean
205     C which uses the FIND_RHO() routine to calculate density
206 jmc 1.25 C before integrating (1/rho)'*dp over the current layer/interface
207 mlosch 1.21 #ifdef ALLOW_AUTODIFF_TAMC
208     CADJ GENERAL
209     #endif /* ALLOW_AUTODIFF_TAMC */
210 adcroft 1.19
211     dRloc=drC(k)
212     IF (k.EQ.1) dRloc=drF(1)
213     IF (k.EQ.Nr) THEN
214     dRlocKp1=0.
215     ELSE
216     dRlocKp1=drC(k+1)
217     ENDIF
218    
219     IF (k.EQ.1) THEN
220     DO j=jMin,jMax
221     DO i=iMin,iMax
222 jmc 1.26 c phiHyd(i,j,k) = phi0surf(i,j,bi,bj)
223     phiHyd(i,j,k) = 0.
224 adcroft 1.19 ENDDO
225     ENDDO
226     ENDIF
227    
228 jmc 1.27 C-- Calculate density
229 adcroft 1.19 #ifdef ALLOW_AUTODIFF_TAMC
230     kkey = (ikey-1)*Nr + k
231 heimbach 1.23 CADJ STORE tFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
232 mlosch 1.20 CADJ STORE sFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
233 adcroft 1.19 #endif /* ALLOW_AUTODIFF_TAMC */
234 mlosch 1.20 CALL FIND_RHO( bi, bj, iMin, iMax, jMin, jMax, k, k,
235     & tFld, sFld,
236 adcroft 1.19 & alphaRho, myThid)
237 heimbach 1.23 #ifdef ALLOW_AUTODIFF_TAMC
238     CADJ STORE alphaRho (:,:) = comlev1_bibj_k, key=kkey, byte=isbyte
239     #endif /* ALLOW_AUTODIFF_TAMC */
240    
241 jmc 1.27 C-- Calculate specific volume anomaly : alpha' = 1/rho - alpha_Cst
242     DO j=jMin,jMax
243     DO i=iMin,iMax
244     locAlpha=alphaRho(i,j)+rhoConst
245     alphaRho(i,j)=maskC(i,j,k,bi,bj)*
246     & (one/locAlpha - recip_rhoConst)
247     ENDDO
248     ENDDO
249    
250     C--- Diagnose Sea-surface height (Hydrostatic geopotential at r=Rlow):
251     IF (useDiagPhiRlow) THEN
252     CALL DIAGS_PHI_RLOW(
253     I k, bi, bj, iMin,iMax, jMin,jMax,
254     I phiHyd, alphaRho, tFld, sFld,
255     I myTime, myIter, myThid)
256     ENDIF
257 adcroft 1.19
258 jmc 1.25 C---- Hydrostatic pressure at cell centers
259    
260     IF (integr_GeoPot.EQ.1) THEN
261     C -- Finite Volume Form
262    
263     DO j=jMin,jMax
264 adcroft 1.19 DO i=iMin,iMax
265 jmc 1.25
266     C---------- This discretization is the "finite volume" form
267     C which has not been used to date since it does not
268     C conserve KE+PE exactly even though it is more natural
269     C
270     IF (k.LT.Nr) phiHyd(i,j,k+1)=phiHyd(i,j,k)
271 jmc 1.27 & + hFacC(i,j,k,bi,bj)*drF(K)*alphaRho(i,j)
272 jmc 1.25 phiHyd(i,j,k)=phiHyd(i,j,k)
273 jmc 1.27 & +(hFacC(i,j,k,bi,bj)-half)*drF(K)*alphaRho(i,j)
274 adcroft 1.19
275 jmc 1.25 ENDDO
276     ENDDO
277    
278     ELSE
279     C -- Finite Difference Form
280    
281     DO j=jMin,jMax
282     DO i=iMin,iMax
283 adcroft 1.9
284 adcroft 1.19 C---------- This discretization is the "energy conserving" form
285 mlosch 1.21
286 jmc 1.25 phiHyd(i,j,k)=phiHyd(i,j,k)
287 jmc 1.27 & + half*dRloc*alphaRho(i,j)
288 jmc 1.25 IF (k.LT.Nr) phiHyd(i,j,k+1)=phiHyd(i,j,k)
289 jmc 1.27 & + half*dRlocKp1*alphaRho(i,j)
290 mlosch 1.20
291 adcroft 1.19 ENDDO
292 jmc 1.25 ENDDO
293    
294     C -- end if integr_GeoPot = ...
295     ENDIF
296 adcroft 1.9
297     ELSEIF ( buoyancyRelation .eq. 'ATMOSPHERIC' ) THEN
298 jmc 1.14 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
299 adcroft 1.9 C This is the hydrostatic geopotential calculation for the Atmosphere
300     C The ideal gas law is used implicitly here rather than calculating
301     C the specific volume, analogous to the oceanic case.
302    
303     C Integrate d Phi / d pi
304    
305 jmc 1.24 IF (integr_GeoPot.EQ.0) THEN
306 jmc 1.14 C -- Energy Conserving Form, No hFac --
307     C------------ The integration for the first level phi(k=1) is the same
308     C for both the "finite volume" and energy conserving methods.
309 adcroft 1.17 Ci *NOTE* o Working with geopotential Anomaly, the geopotential boundary
310     C condition is simply Phi-prime(Ro_surf)=0.
311 jmc 1.14 C o convention ddPI > 0 (same as drF & drC)
312     C-----------------------------------------------------------------------
313 adcroft 1.9 IF (K.EQ.1) THEN
314 jmc 1.24 ddPIp=atm_Cp*( ((rF(K)/atm_Po)**atm_kappa)
315     & -((rC(K)/atm_Po)**atm_kappa) )
316 adcroft 1.9 DO j=jMin,jMax
317 jmc 1.14 DO i=iMin,iMax
318 jmc 1.26 c phiHyd(i,j,K)= phi0surf(i,j,bi,bj)+
319     phiHyd(i,j,K)=
320 jmc 1.25 & ddPIp*maskC(i,j,K,bi,bj)
321 mlosch 1.20 & *(tFld(I,J,K,bi,bj)-tRef(K))
322 jmc 1.14 ENDDO
323     ENDDO
324     ELSE
325     C-------- This discretization is the energy conserving form
326 jmc 1.24 ddPI=atm_Cp*( ((rC(K-1)/atm_Po)**atm_kappa)
327     & -((rC( K )/atm_Po)**atm_kappa) )*0.5
328 jmc 1.14 DO j=jMin,jMax
329     DO i=iMin,iMax
330     phiHyd(i,j,K)=phiHyd(i,j,K-1)
331     & +ddPI*maskC(i,j,K-1,bi,bj)
332 mlosch 1.20 & *(tFld(I,J,K-1,bi,bj)-tRef(K-1))
333 jmc 1.14 & +ddPI*maskC(i,j, K ,bi,bj)
334 mlosch 1.20 & *(tFld(I,J, K ,bi,bj)-tRef( K ))
335 jmc 1.14 C Old code (atmos-exact) looked like this
336     Cold phiHyd(i,j,K)=phiHyd(i,j,K-1) - ddPI*
337 mlosch 1.20 Cold & (tFld(I,J,K-1,bi,bj)+tFld(I,J,K,bi,bj)-2.*tRef(K))
338 jmc 1.14 ENDDO
339     ENDDO
340     ENDIF
341     C end: Energy Conserving Form, No hFac --
342 adcroft 1.9 C-----------------------------------------------------------------------
343 jmc 1.14
344 jmc 1.24 ELSEIF (integr_GeoPot.EQ.1) THEN
345 jmc 1.14 C -- Finite Volume Form, with hFac, linear in P by Half level --
346     C---------
347     C Finite Volume formulation consistent with Partial Cell, linear in p by piece
348     C Note: a true Finite Volume form should be linear between 2 Interf_W :
349     C phi_C = (phi_W_k+ phi_W_k+1)/2 ; but not accurate in Stratosphere (low p)
350     C also: if Interface_W at the middle between tracer levels, this form
351     C is close to the Energy Cons. form in the Interior, except for the
352     C non-linearity in PI(p)
353     C---------
354     IF (K.EQ.1) THEN
355 jmc 1.24 ddPIp=atm_Cp*( ((rF(K)/atm_Po)**atm_kappa)
356     & -((rC(K)/atm_Po)**atm_kappa) )
357 jmc 1.14 DO j=jMin,jMax
358     DO i=iMin,iMax
359 jmc 1.26 c phiHyd(i,j,K)= phi0surf(i,j,bi,bj)+
360     phiHyd(i,j,K)=
361 jmc 1.25 & ddPIp*_hFacC(I,J, K ,bi,bj)
362 mlosch 1.20 & *(tFld(I,J, K ,bi,bj)-tRef( K ))
363 adcroft 1.9 ENDDO
364     ENDDO
365     ELSE
366 jmc 1.24 ddPIm=atm_Cp*( ((rC(K-1)/atm_Po)**atm_kappa)
367     & -((rF( K )/atm_Po)**atm_kappa) )
368     ddPIp=atm_Cp*( ((rF( K )/atm_Po)**atm_kappa)
369     & -((rC( K )/atm_Po)**atm_kappa) )
370 jmc 1.14 DO j=jMin,jMax
371     DO i=iMin,iMax
372     phiHyd(i,j,K) = phiHyd(i,j,K-1)
373 mlosch 1.18 & +ddPIm*_hFacC(I,J,K-1,bi,bj)
374 mlosch 1.20 & *(tFld(I,J,K-1,bi,bj)-tRef(K-1))
375 mlosch 1.18 & +ddPIp*_hFacC(I,J, K ,bi,bj)
376 mlosch 1.20 & *(tFld(I,J, K ,bi,bj)-tRef( K ))
377 jmc 1.14 ENDDO
378     ENDDO
379     ENDIF
380     C end: Finite Volume Form, with hFac, linear in P by Half level --
381 adcroft 1.9 C-----------------------------------------------------------------------
382    
383 jmc 1.24 ELSEIF (integr_GeoPot.EQ.2) THEN
384 jmc 1.14 C -- Finite Difference Form, with hFac, Tracer Lev. = middle --
385     C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
386     C Finite Difference formulation consistent with Partial Cell,
387     C case Tracer level at the middle of InterFace_W
388     C linear between 2 Tracer levels ; conserve energy in the Interior
389     C---------
390     Kp1 = min(Nr,K+1)
391     IF (K.EQ.1) THEN
392 jmc 1.24 ddPIm=atm_Cp*( ((rF( K )/atm_Po)**atm_kappa)
393     & -((rC( K )/atm_Po)**atm_kappa) ) * 2. _d 0
394     ddPIp=atm_Cp*( ((rC( K )/atm_Po)**atm_kappa)
395     & -((rC(Kp1)/atm_Po)**atm_kappa) )
396 jmc 1.14 DO j=jMin,jMax
397     DO i=iMin,iMax
398 jmc 1.26 c phiHyd(i,j,K)= phi0surf(i,j,bi,bj)+
399     phiHyd(i,j,K)=
400 jmc 1.25 & ( ddPIm*max(zero, _hFacC(i,j,K,bi,bj)-half)
401 mlosch 1.18 & +ddPIp*min(zero, _hFacC(i,j,K,bi,bj)-half) )
402 mlosch 1.20 & *(tFld(i,j, K ,bi,bj)-tRef( K ))
403 jmc 1.14 & * maskC(i,j, K ,bi,bj)
404     ENDDO
405     ENDDO
406     ELSE
407 jmc 1.24 ddPIm=atm_Cp*( ((rC(K-1)/atm_Po)**atm_kappa)
408     & -((rC( K )/atm_Po)**atm_kappa) )
409     ddPIp=atm_Cp*( ((rC( K )/atm_Po)**atm_kappa)
410     & -((rC(Kp1)/atm_Po)**atm_kappa) )
411 jmc 1.14 DO j=jMin,jMax
412     DO i=iMin,iMax
413     phiHyd(i,j,K) = phiHyd(i,j,K-1)
414     & + ddPIm*0.5
415 mlosch 1.20 & *(tFld(i,j,K-1,bi,bj)-tRef(K-1))
416 jmc 1.14 & * maskC(i,j,K-1,bi,bj)
417 mlosch 1.18 & +(ddPIm*max(zero, _hFacC(i,j,K,bi,bj)-half)
418     & +ddPIp*min(zero, _hFacC(i,j,K,bi,bj)-half) )
419 mlosch 1.20 & *(tFld(i,j, K ,bi,bj)-tRef( K ))
420 jmc 1.14 & * maskC(i,j, K ,bi,bj)
421     ENDDO
422     ENDDO
423     ENDIF
424     C end: Finite Difference Form, with hFac, Tracer Lev. = middle --
425 adcroft 1.9 C-----------------------------------------------------------------------
426    
427 jmc 1.24 ELSEIF (integr_GeoPot.EQ.3) THEN
428 jmc 1.14 C -- Finite Difference Form, with hFac, Interface_W = middle --
429     C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
430     C Finite Difference formulation consistent with Partial Cell,
431     C Valid & accurate if Interface_W at middle between tracer levels
432     C linear in p between 2 Tracer levels ; conserve energy in the Interior
433     C---------
434     Kp1 = min(Nr,K+1)
435     IF (K.EQ.1) THEN
436     ratioRm=0.5*drF(K)/(rF(k)-rC(K))
437     ratioRp=drF(K)*recip_drC(Kp1)
438 jmc 1.24 ddPIm=atm_Cp*( ((rF( K )/atm_Po)**atm_kappa)
439     & -((rC( K )/atm_Po)**atm_kappa) ) * 2. _d 0
440     ddPIp=atm_Cp*( ((rC( K )/atm_Po)**atm_kappa)
441     & -((rC(Kp1)/atm_Po)**atm_kappa) )
442 jmc 1.14 DO j=jMin,jMax
443     DO i=iMin,iMax
444 jmc 1.26 c phiHyd(i,j,K)= phi0surf(i,j,bi,bj)+
445     phiHyd(i,j,K)=
446 jmc 1.25 & ( ddPIm*max(zero,(_hFacC(i,j,K,bi,bj)-one)*ratioRm+half)
447 mlosch 1.18 & +ddPIp*min(zero, _hFacC(i,j,K,bi,bj)*ratioRp -half) )
448 mlosch 1.20 & *(tFld(i,j, K ,bi,bj)-tRef( K ))
449 jmc 1.14 & * maskC(i,j, K ,bi,bj)
450     ENDDO
451     ENDDO
452     ELSE
453     ratioRm=drF(K)*recip_drC(K)
454     ratioRp=drF(K)*recip_drC(Kp1)
455 jmc 1.24 ddPIm=atm_Cp*( ((rC(K-1)/atm_Po)**atm_kappa)
456     & -((rC( K )/atm_Po)**atm_kappa) )
457     ddPIp=atm_Cp*( ((rC( K )/atm_Po)**atm_kappa)
458     & -((rC(Kp1)/atm_Po)**atm_kappa) )
459 adcroft 1.9 DO j=jMin,jMax
460 jmc 1.14 DO i=iMin,iMax
461     phiHyd(i,j,K) = phiHyd(i,j,K-1)
462     & + ddPIm*0.5
463 mlosch 1.20 & *(tFld(i,j,K-1,bi,bj)-tRef(K-1))
464 jmc 1.14 & * maskC(i,j,K-1,bi,bj)
465 mlosch 1.18 & +(ddPIm*max(zero,(_hFacC(i,j,K,bi,bj)-one)*ratioRm+half)
466     & +ddPIp*min(zero, _hFacC(i,j,K,bi,bj)*ratioRp -half) )
467 mlosch 1.20 & *(tFld(i,j, K ,bi,bj)-tRef( K ))
468 jmc 1.14 & * maskC(i,j, K ,bi,bj)
469     ENDDO
470 adcroft 1.9 ENDDO
471     ENDIF
472 jmc 1.14 C end: Finite Difference Form, with hFac, Interface_W = middle --
473     C-----------------------------------------------------------------------
474 cnh 1.1
475 jmc 1.14 ELSE
476 jmc 1.24 STOP 'CALC_PHI_HYD: Bad integr_GeoPot option !'
477 jmc 1.14 ENDIF
478 cnh 1.6
479 jmc 1.14 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
480 adcroft 1.9 ELSE
481 jmc 1.24 STOP 'CALC_PHI_HYD: Bad value of buoyancyRelation !'
482 jmc 1.25 ENDIF
483    
484     IF (momPressureForcing) THEN
485     iMnLoc = MAX(1-Olx+1,iMin)
486     jMnLoc = MAX(1-Oly+1,jMin)
487     CALL CALC_GRAD_PHI_HYD(
488     I k, bi, bj, iMnLoc,iMax, jMnLoc,jMax,
489     I phiHyd, alphaRho, tFld, sFld,
490     O dPhiHydX, dPhiHydY,
491     I myTime, myIter, myThid)
492 cnh 1.5 ENDIF
493 cnh 1.1
494 jmc 1.14 #endif /* INCLUDE_PHIHYD_CALCULATION_CODE */
495 cnh 1.6
496 jmc 1.11 RETURN
497     END

  ViewVC Help
Powered by ViewVC 1.1.22