/[MITgcm]/MITgcm/model/src/calc_phi_hyd.F
ViewVC logotype

Annotation of /MITgcm/model/src/calc_phi_hyd.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.23 - (hide annotations) (download)
Fri Nov 15 03:01:21 2002 UTC (21 years, 6 months ago) by heimbach
Branch: MAIN
CVS Tags: checkpoint47a_post, checkpoint47b_post, checkpoint47
Changes since 1.22: +10 -4 lines
differentiable version of checkpoint46n_post
o external_fields_load now part of differentiation list
o pressure needs multiple storing;
  would be nice to have store_pressure at beginning or
  end of forward_step, e.g. by having phiHyd global (5-dim.)
  (NB: pressure is needed for certain cases in find_rho,
  which is also invoked through convective_adjustment).
o recomputations in find_rho for cases
 'JMD95'/'UNESCO' or 'MDJWF' are OK.
o #define ATMOSPHERIC_LOADING should be differentiable
o ini_forcing shifted to begining of initialise_varia

1 heimbach 1.23 C $Header: /u/gcmpack/MITgcm/model/src/calc_phi_hyd.F,v 1.22 2002/11/07 21:51:15 adcroft Exp $
2 cnh 1.16 C $Name: $
3 cnh 1.1
4 cnh 1.6 #include "CPP_OPTIONS.h"
5 cnh 1.1
6 cnh 1.16 CBOP
7     C !ROUTINE: CALC_PHI_HYD
8     C !INTERFACE:
9 adcroft 1.9 SUBROUTINE CALC_PHI_HYD(
10     I bi, bj, iMin, iMax, jMin, jMax, K,
11 mlosch 1.20 I tFld, sFld,
12 adcroft 1.9 U phiHyd,
13     I myThid)
14 cnh 1.16 C !DESCRIPTION: \bv
15     C *==========================================================*
16 cnh 1.1 C | SUBROUTINE CALC_PHI_HYD |
17 jmc 1.11 C | o Integrate the hydrostatic relation to find the Hydros. |
18 cnh 1.16 C *==========================================================*
19 jmc 1.11 C | Potential (ocean: Pressure/rho ; atmos = geopotential)|
20 adcroft 1.9 C | On entry: |
21 mlosch 1.20 C | tFld,sFld are the current thermodynamics quantities|
22 adcroft 1.9 C | (unchanged on exit) |
23 jmc 1.11 C | phiHyd(i,j,1:k-1) is the hydrostatic Potential |
24 adcroft 1.9 C | at cell centers (tracer points) |
25     C | - 1:k-1 layers are valid |
26     C | - k:Nr layers are invalid |
27 jmc 1.11 C | phiHyd(i,j,k) is the hydrostatic Potential |
28 jmc 1.14 C | (ocean only_^) at cell the interface k (w point above) |
29 adcroft 1.9 C | On exit: |
30 jmc 1.11 C | phiHyd(i,j,1:k) is the hydrostatic Potential |
31 adcroft 1.9 C | at cell centers (tracer points) |
32     C | - 1:k layers are valid |
33     C | - k+1:Nr layers are invalid |
34 jmc 1.11 C | phiHyd(i,j,k+1) is the hydrostatic Potential (P/rho) |
35 jmc 1.14 C | (ocean only-^) at cell the interface k+1 (w point below)|
36     C | Atmosphere: |
37     C | Integr_GeoPot allows to select one integration method |
38     C | (see the list below) |
39 cnh 1.16 C *==========================================================*
40     C \ev
41     C !USES:
42 cnh 1.1 IMPLICIT NONE
43     C == Global variables ==
44     #include "SIZE.h"
45     #include "GRID.h"
46     #include "EEPARAMS.h"
47     #include "PARAMS.h"
48 mlosch 1.18 #include "FFIELDS.h"
49 heimbach 1.13 #ifdef ALLOW_AUTODIFF_TAMC
50     #include "tamc.h"
51     #include "tamc_keys.h"
52     #endif /* ALLOW_AUTODIFF_TAMC */
53 adcroft 1.19 #include "SURFACE.h"
54 mlosch 1.20 #include "DYNVARS.h"
55 heimbach 1.13
56 cnh 1.16 C !INPUT/OUTPUT PARAMETERS:
57 cnh 1.1 C == Routine arguments ==
58     INTEGER bi,bj,iMin,iMax,jMin,jMax,K
59 mlosch 1.20 _RL tFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
60     _RL sFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
61 cnh 1.2 _RL phiHyd(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
62 adcroft 1.9 INTEGER myThid
63 jmc 1.14
64 adcroft 1.9 #ifdef INCLUDE_PHIHYD_CALCULATION_CODE
65    
66 cnh 1.16 C !LOCAL VARIABLES:
67 cnh 1.1 C == Local variables ==
68 jmc 1.14 INTEGER i,j, Kp1
69     _RL zero, one, half
70 adcroft 1.9 _RL alphaRho(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
71 adcroft 1.19 _RL dRloc,dRlocKp1,locAlpha
72 jmc 1.14 _RL ddPI, ddPIm, ddPIp, ratioRp, ratioRm
73 cnh 1.16 CEOP
74 jmc 1.14
75     zero = 0. _d 0
76     one = 1. _d 0
77     half = .5 _d 0
78    
79     C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
80     C Atmosphere:
81     C Integr_GeoPot => select one option for the integration of the Geopotential:
82     C = 0 : Energy Conserving Form, No hFac ;
83     C = 1 : Finite Volume Form, with hFac, linear in P by Half level;
84     C =2,3: Finite Difference Form, with hFac, linear in P between 2 Tracer levels
85     C 2 : case Tracer level at the middle of InterFace_W;
86     C 3 : case InterFace_W at the middle of Tracer levels;
87     C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
88 adcroft 1.9
89 heimbach 1.13 #ifdef ALLOW_AUTODIFF_TAMC
90     act1 = bi - myBxLo(myThid)
91     max1 = myBxHi(myThid) - myBxLo(myThid) + 1
92    
93     act2 = bj - myByLo(myThid)
94     max2 = myByHi(myThid) - myByLo(myThid) + 1
95    
96     act3 = myThid - 1
97     max3 = nTx*nTy
98    
99     act4 = ikey_dynamics - 1
100    
101     ikey = (act1 + 1) + act2*max1
102     & + act3*max1*max2
103     & + act4*max1*max2*max3
104     #endif /* ALLOW_AUTODIFF_TAMC */
105    
106 adcroft 1.9 IF ( buoyancyRelation .eq. 'OCEANIC' ) THEN
107     C This is the hydrostatic pressure calculation for the Ocean
108     C which uses the FIND_RHO() routine to calculate density
109     C before integrating g*rho over the current layer/interface
110    
111     dRloc=drC(k)
112     IF (k.EQ.1) dRloc=drF(1)
113     IF (k.EQ.Nr) THEN
114     dRlocKp1=0.
115     ELSE
116     dRlocKp1=drC(k+1)
117     ENDIF
118    
119     C-- If this is the top layer we impose the boundary condition
120     C P(z=eta) = P(atmospheric_loading)
121     IF (k.EQ.1) THEN
122     DO j=jMin,jMax
123     DO i=iMin,iMax
124 mlosch 1.18 #ifdef ATMOSPHERIC_LOADING
125     phiHyd(i,j,k)=pload(i,j,bi,bj)*recip_rhoConst
126     #else
127     phiHyd(i,j,k)=0. _d 0
128     #endif
129 adcroft 1.9 ENDDO
130     ENDDO
131     ENDIF
132    
133     C Calculate density
134 heimbach 1.13 #ifdef ALLOW_AUTODIFF_TAMC
135 heimbach 1.23 kkey = (ikey-1)*Nr + k
136     CADJ STORE tFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
137 mlosch 1.20 CADJ STORE sFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
138 heimbach 1.13 #endif /* ALLOW_AUTODIFF_TAMC */
139 mlosch 1.20 CALL FIND_RHO( bi, bj, iMin, iMax, jMin, jMax, k, k,
140     & tFld, sFld,
141 adcroft 1.9 & alphaRho, myThid)
142 adcroft 1.22
143     C Quasi-hydrostatic terms are added in as if they modify the buoyancy
144     IF (quasiHydrostatic) THEN
145     CALL QUASIHYDROSTATICTERMS(bi,bj,k,alphaRho,myThid)
146     ENDIF
147 adcroft 1.9
148     C Hydrostatic pressure at cell centers
149     DO j=jMin,jMax
150     DO i=iMin,iMax
151     #ifdef ALLOW_AUTODIFF_TAMC
152 jmc 1.14 c Patrick, is this directive correct or even necessary in
153 heimbach 1.13 c this new code?
154     c Yes, because of phiHyd(i,j,k+1)=phiHyd(i,j,k)+...
155     c within the k-loop.
156 adcroft 1.9 CADJ GENERAL
157     #endif /* ALLOW_AUTODIFF_TAMC */
158    
159 mlosch 1.21 CmlC---------- This discretization is the "finite volume" form
160     CmlC which has not been used to date since it does not
161     CmlC conserve KE+PE exactly even though it is more natural
162     CmlC
163     Cml IF ( K .EQ. kLowC(i,j,bi,bj) ) THEN
164     Cml phiHydLow(i,j,bi,bj) = phiHyd(i,j,k)
165     Cml & + hFacC(i,j,k,bi,bj)
166     Cml & *drF(K)*gravity*alphaRho(i,j)*recip_rhoConst
167     Cml & + gravity*etaN(i,j,bi,bj)
168     Cml ENDIF
169     Cml IF (k.LT.Nr) phiHyd(i,j,k+1)=phiHyd(i,j,k)+
170     Cml & drF(K)*gravity*alphaRho(i,j)*recip_rhoConst
171     Cml phiHyd(i,j,k)=phiHyd(i,j,k)+
172     Cml & 0.5*drF(K)*gravity*alphaRho(i,j)*recip_rhoConst
173     CmlC-----------------------------------------------------------------------
174 adcroft 1.9
175     C---------- This discretization is the "energy conserving" form
176     C which has been used since at least Adcroft et al., MWR 1997
177     C
178 mlosch 1.20
179 adcroft 1.9 phiHyd(i,j,k)=phiHyd(i,j,k)+
180 jmc 1.11 & 0.5*dRloc*gravity*alphaRho(i,j)*recip_rhoConst
181 adcroft 1.9 IF (k.LT.Nr) phiHyd(i,j,k+1)=phiHyd(i,j,k)+
182 jmc 1.11 & 0.5*dRlocKp1*gravity*alphaRho(i,j)*recip_rhoConst
183 adcroft 1.9 C-----------------------------------------------------------------------
184 mlosch 1.20
185     C---------- Compute bottom pressure deviation from gravity*rho0*H
186     C This has to be done starting from phiHyd at the current
187     C tracer point and .5 of the cell's thickness has to be
188     C substracted from hFacC
189     IF ( K .EQ. kLowC(i,j,bi,bj) ) THEN
190     phiHydLow(i,j,bi,bj) = phiHyd(i,j,k)
191 mlosch 1.21 & + (hFacC(i,j,k,bi,bj)-.5)*drF(K)
192 mlosch 1.20 & *gravity*alphaRho(i,j)*recip_rhoConst
193     & + gravity*etaN(i,j,bi,bj)
194     ENDIF
195     C-----------------------------------------------------------------------
196    
197 adcroft 1.9 ENDDO
198     ENDDO
199    
200 adcroft 1.19 ELSEIF ( buoyancyRelation .eq. 'OCEANICP' ) THEN
201     C This is the hydrostatic pressure calculation for the Ocean
202     C which uses the FIND_RHO() routine to calculate density
203     C before integrating g*rho over the current layer/interface
204 mlosch 1.21 #ifdef ALLOW_AUTODIFF_TAMC
205     CADJ GENERAL
206     #endif /* ALLOW_AUTODIFF_TAMC */
207 adcroft 1.19
208     dRloc=drC(k)
209     IF (k.EQ.1) dRloc=drF(1)
210     IF (k.EQ.Nr) THEN
211     dRlocKp1=0.
212     ELSE
213     dRlocKp1=drC(k+1)
214     ENDIF
215    
216     IF (k.EQ.1) THEN
217     DO j=jMin,jMax
218     DO i=iMin,iMax
219     phiHyd(i,j,k)=0.
220 heimbach 1.23 #ifdef ATMOSPHERIC_LOADING
221 adcroft 1.19 phiHyd(i,j,k)=pload(i,j,bi,bj)
222 heimbach 1.23 #endif
223 adcroft 1.19 ENDDO
224     ENDDO
225     ENDIF
226    
227     C Calculate density
228     #ifdef ALLOW_AUTODIFF_TAMC
229     kkey = (ikey-1)*Nr + k
230 heimbach 1.23 CADJ STORE tFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
231 mlosch 1.20 CADJ STORE sFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
232 adcroft 1.19 #endif /* ALLOW_AUTODIFF_TAMC */
233 mlosch 1.20 CALL FIND_RHO( bi, bj, iMin, iMax, jMin, jMax, k, k,
234     & tFld, sFld,
235 adcroft 1.19 & alphaRho, myThid)
236 heimbach 1.23 #ifdef ALLOW_AUTODIFF_TAMC
237     CADJ STORE alphaRho (:,:) = comlev1_bibj_k, key=kkey, byte=isbyte
238     #endif /* ALLOW_AUTODIFF_TAMC */
239    
240 adcroft 1.19
241     C Hydrostatic pressure at cell centers
242     DO j=jMin,jMax
243     DO i=iMin,iMax
244 mlosch 1.21 locAlpha=alphaRho(i,j)+rhoConst
245 adcroft 1.19 IF (locAlpha.NE.0.) locAlpha=maskC(i,j,k,bi,bj)/locAlpha
246    
247 mlosch 1.21 CmlC---------- This discretization is the "finite volume" form
248     CmlC which has not been used to date since it does not
249     CmlC conserve KE+PE exactly even though it is more natural
250     CmlC
251     Cml IF ( K .EQ. kLowC(i,j,bi,bj) ) THEN
252     Cml phiHydLow(i,j,bi,bj) = phiHyd(i,j,k)
253     Cml & + hFacC(i,j,k,bi,bj)*drF(K)*locAlpha
254     Cml & + Bo_surf(i,j,bi,bj)*etaN(i,j,bi,bj)
255     Cml ENDIF
256     Cml IF (k.LT.Nr) phiHyd(i,j,k+1)=phiHyd(i,j,k)+
257     Cml & drF(K)*locAlpha
258     Cml phiHyd(i,j,k)=phiHyd(i,j,k)+
259     Cml & 0.5*drF(K)*locAlpha
260     CmlC-----------------------------------------------------------------------
261 adcroft 1.9
262 adcroft 1.19 C---------- This discretization is the "energy conserving" form
263     C which has been used since at least Adcroft et al., MWR 1997
264     C
265 mlosch 1.21
266 adcroft 1.19 phiHyd(i,j,k)=phiHyd(i,j,k)+
267     & 0.5*dRloc*locAlpha
268     IF (k.LT.Nr) phiHyd(i,j,k+1)=phiHyd(i,j,k)+
269     & 0.5*dRlocKp1*locAlpha
270 mlosch 1.21
271 adcroft 1.19 C-----------------------------------------------------------------------
272 mlosch 1.20
273 mlosch 1.21 C---------- Compute gravity*(sea surface elevation) first
274 mlosch 1.20 C This has to be done starting from phiHyd at the current
275     C tracer point and .5 of the cell's thickness has to be
276     C substracted from hFacC
277     IF ( K .EQ. kLowC(i,j,bi,bj) ) THEN
278     phiHydLow(i,j,bi,bj) = phiHyd(i,j,k)
279     & + (hFacC(i,j,k,bi,bj)-0.5)*drF(k)*locAlpha
280     & + Bo_surf(i,j,bi,bj)*etaN(i,j,bi,bj)
281     ENDIF
282     C-----------------------------------------------------------------------
283    
284 adcroft 1.19 ENDDO
285     ENDDO
286 adcroft 1.9
287     ELSEIF ( buoyancyRelation .eq. 'ATMOSPHERIC' ) THEN
288 jmc 1.14 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
289 adcroft 1.9 C This is the hydrostatic geopotential calculation for the Atmosphere
290     C The ideal gas law is used implicitly here rather than calculating
291     C the specific volume, analogous to the oceanic case.
292    
293     C Integrate d Phi / d pi
294    
295 jmc 1.14 IF (Integr_GeoPot.EQ.0) THEN
296     C -- Energy Conserving Form, No hFac --
297     C------------ The integration for the first level phi(k=1) is the same
298     C for both the "finite volume" and energy conserving methods.
299 adcroft 1.17 Ci *NOTE* o Working with geopotential Anomaly, the geopotential boundary
300     C condition is simply Phi-prime(Ro_surf)=0.
301 jmc 1.14 C o convention ddPI > 0 (same as drF & drC)
302     C-----------------------------------------------------------------------
303 adcroft 1.9 IF (K.EQ.1) THEN
304 jmc 1.14 ddPIp=atm_cp*( ((rF(K)/atm_po)**atm_kappa)
305     & -((rC(K)/atm_po)**atm_kappa) )
306 adcroft 1.9 DO j=jMin,jMax
307 jmc 1.14 DO i=iMin,iMax
308     phiHyd(i,j,K)=
309     & ddPIp*maskC(i,j,K,bi,bj)
310 mlosch 1.20 & *(tFld(I,J,K,bi,bj)-tRef(K))
311 jmc 1.14 ENDDO
312     ENDDO
313     ELSE
314     C-------- This discretization is the energy conserving form
315     ddPI=atm_cp*( ((rC(K-1)/atm_po)**atm_kappa)
316     & -((rC( K )/atm_po)**atm_kappa) )*0.5
317     DO j=jMin,jMax
318     DO i=iMin,iMax
319     phiHyd(i,j,K)=phiHyd(i,j,K-1)
320     & +ddPI*maskC(i,j,K-1,bi,bj)
321 mlosch 1.20 & *(tFld(I,J,K-1,bi,bj)-tRef(K-1))
322 jmc 1.14 & +ddPI*maskC(i,j, K ,bi,bj)
323 mlosch 1.20 & *(tFld(I,J, K ,bi,bj)-tRef( K ))
324 jmc 1.14 C Old code (atmos-exact) looked like this
325     Cold phiHyd(i,j,K)=phiHyd(i,j,K-1) - ddPI*
326 mlosch 1.20 Cold & (tFld(I,J,K-1,bi,bj)+tFld(I,J,K,bi,bj)-2.*tRef(K))
327 jmc 1.14 ENDDO
328     ENDDO
329     ENDIF
330     C end: Energy Conserving Form, No hFac --
331 adcroft 1.9 C-----------------------------------------------------------------------
332 jmc 1.14
333     ELSEIF (Integr_GeoPot.EQ.1) THEN
334     C -- Finite Volume Form, with hFac, linear in P by Half level --
335     C---------
336     C Finite Volume formulation consistent with Partial Cell, linear in p by piece
337     C Note: a true Finite Volume form should be linear between 2 Interf_W :
338     C phi_C = (phi_W_k+ phi_W_k+1)/2 ; but not accurate in Stratosphere (low p)
339     C also: if Interface_W at the middle between tracer levels, this form
340     C is close to the Energy Cons. form in the Interior, except for the
341     C non-linearity in PI(p)
342     C---------
343     IF (K.EQ.1) THEN
344     ddPIp=atm_cp*( ((rF(K)/atm_po)**atm_kappa)
345     & -((rC(K)/atm_po)**atm_kappa) )
346     DO j=jMin,jMax
347     DO i=iMin,iMax
348     phiHyd(i,j,K) =
349 mlosch 1.18 & ddPIp*_hFacC(I,J, K ,bi,bj)
350 mlosch 1.20 & *(tFld(I,J, K ,bi,bj)-tRef( K ))
351 adcroft 1.9 ENDDO
352     ENDDO
353     ELSE
354 jmc 1.14 ddPIm=atm_cp*( ((rC(K-1)/atm_po)**atm_kappa)
355     & -((rF( K )/atm_po)**atm_kappa) )
356     ddPIp=atm_cp*( ((rF( K )/atm_po)**atm_kappa)
357     & -((rC( K )/atm_po)**atm_kappa) )
358     DO j=jMin,jMax
359     DO i=iMin,iMax
360     phiHyd(i,j,K) = phiHyd(i,j,K-1)
361 mlosch 1.18 & +ddPIm*_hFacC(I,J,K-1,bi,bj)
362 mlosch 1.20 & *(tFld(I,J,K-1,bi,bj)-tRef(K-1))
363 mlosch 1.18 & +ddPIp*_hFacC(I,J, K ,bi,bj)
364 mlosch 1.20 & *(tFld(I,J, K ,bi,bj)-tRef( K ))
365 jmc 1.14 ENDDO
366     ENDDO
367     ENDIF
368     C end: Finite Volume Form, with hFac, linear in P by Half level --
369 adcroft 1.9 C-----------------------------------------------------------------------
370    
371 jmc 1.14 ELSEIF (Integr_GeoPot.EQ.2) THEN
372     C -- Finite Difference Form, with hFac, Tracer Lev. = middle --
373     C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
374     C Finite Difference formulation consistent with Partial Cell,
375     C case Tracer level at the middle of InterFace_W
376     C linear between 2 Tracer levels ; conserve energy in the Interior
377     C---------
378     Kp1 = min(Nr,K+1)
379     IF (K.EQ.1) THEN
380     ddPIm=atm_cp*( ((rF( K )/atm_po)**atm_kappa)
381     & -((rC( K )/atm_po)**atm_kappa) ) * 2. _d 0
382     ddPIp=atm_cp*( ((rC( K )/atm_po)**atm_kappa)
383     & -((rC(Kp1)/atm_po)**atm_kappa) )
384     DO j=jMin,jMax
385     DO i=iMin,iMax
386     phiHyd(i,j,K) =
387 mlosch 1.18 & ( ddPIm*max(zero, _hFacC(i,j,K,bi,bj)-half)
388     & +ddPIp*min(zero, _hFacC(i,j,K,bi,bj)-half) )
389 mlosch 1.20 & *(tFld(i,j, K ,bi,bj)-tRef( K ))
390 jmc 1.14 & * maskC(i,j, K ,bi,bj)
391     ENDDO
392     ENDDO
393     ELSE
394     ddPIm=atm_cp*( ((rC(K-1)/atm_po)**atm_kappa)
395     & -((rC( K )/atm_po)**atm_kappa) )
396     ddPIp=atm_cp*( ((rC( K )/atm_po)**atm_kappa)
397     & -((rC(Kp1)/atm_po)**atm_kappa) )
398     DO j=jMin,jMax
399     DO i=iMin,iMax
400     phiHyd(i,j,K) = phiHyd(i,j,K-1)
401     & + ddPIm*0.5
402 mlosch 1.20 & *(tFld(i,j,K-1,bi,bj)-tRef(K-1))
403 jmc 1.14 & * maskC(i,j,K-1,bi,bj)
404 mlosch 1.18 & +(ddPIm*max(zero, _hFacC(i,j,K,bi,bj)-half)
405     & +ddPIp*min(zero, _hFacC(i,j,K,bi,bj)-half) )
406 mlosch 1.20 & *(tFld(i,j, K ,bi,bj)-tRef( K ))
407 jmc 1.14 & * maskC(i,j, K ,bi,bj)
408     ENDDO
409     ENDDO
410     ENDIF
411     C end: Finite Difference Form, with hFac, Tracer Lev. = middle --
412 adcroft 1.9 C-----------------------------------------------------------------------
413    
414 jmc 1.14 ELSEIF (Integr_GeoPot.EQ.3) THEN
415     C -- Finite Difference Form, with hFac, Interface_W = middle --
416     C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
417     C Finite Difference formulation consistent with Partial Cell,
418     C Valid & accurate if Interface_W at middle between tracer levels
419     C linear in p between 2 Tracer levels ; conserve energy in the Interior
420     C---------
421     Kp1 = min(Nr,K+1)
422     IF (K.EQ.1) THEN
423     ratioRm=0.5*drF(K)/(rF(k)-rC(K))
424     ratioRp=drF(K)*recip_drC(Kp1)
425     ddPIm=atm_cp*( ((rF( K )/atm_po)**atm_kappa)
426     & -((rC( K )/atm_po)**atm_kappa) ) * 2. _d 0
427     ddPIp=atm_cp*( ((rC( K )/atm_po)**atm_kappa)
428     & -((rC(Kp1)/atm_po)**atm_kappa) )
429     DO j=jMin,jMax
430     DO i=iMin,iMax
431     phiHyd(i,j,K) =
432 mlosch 1.18 & ( ddPIm*max(zero,(_hFacC(i,j,K,bi,bj)-one)*ratioRm+half)
433     & +ddPIp*min(zero, _hFacC(i,j,K,bi,bj)*ratioRp -half) )
434 mlosch 1.20 & *(tFld(i,j, K ,bi,bj)-tRef( K ))
435 jmc 1.14 & * maskC(i,j, K ,bi,bj)
436     ENDDO
437     ENDDO
438     ELSE
439     ratioRm=drF(K)*recip_drC(K)
440     ratioRp=drF(K)*recip_drC(Kp1)
441     ddPIm=atm_cp*( ((rC(K-1)/atm_po)**atm_kappa)
442     & -((rC( K )/atm_po)**atm_kappa) )
443     ddPIp=atm_cp*( ((rC( K )/atm_po)**atm_kappa)
444     & -((rC(Kp1)/atm_po)**atm_kappa) )
445 adcroft 1.9 DO j=jMin,jMax
446 jmc 1.14 DO i=iMin,iMax
447     phiHyd(i,j,K) = phiHyd(i,j,K-1)
448     & + ddPIm*0.5
449 mlosch 1.20 & *(tFld(i,j,K-1,bi,bj)-tRef(K-1))
450 jmc 1.14 & * maskC(i,j,K-1,bi,bj)
451 mlosch 1.18 & +(ddPIm*max(zero,(_hFacC(i,j,K,bi,bj)-one)*ratioRm+half)
452     & +ddPIp*min(zero, _hFacC(i,j,K,bi,bj)*ratioRp -half) )
453 mlosch 1.20 & *(tFld(i,j, K ,bi,bj)-tRef( K ))
454 jmc 1.14 & * maskC(i,j, K ,bi,bj)
455     ENDDO
456 adcroft 1.9 ENDDO
457     ENDIF
458 jmc 1.14 C end: Finite Difference Form, with hFac, Interface_W = middle --
459     C-----------------------------------------------------------------------
460 cnh 1.1
461 jmc 1.14 ELSE
462     STOP 'CALC_PHI_HYD: Bad Integr_GeoPot option !'
463     ENDIF
464 cnh 1.6
465 jmc 1.14 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
466 adcroft 1.9 ELSE
467     STOP 'CALC_PHI_HYD: We should never reach this point!'
468 cnh 1.5 ENDIF
469 cnh 1.1
470 jmc 1.14 #endif /* INCLUDE_PHIHYD_CALCULATION_CODE */
471 cnh 1.6
472 jmc 1.11 RETURN
473     END

  ViewVC Help
Powered by ViewVC 1.1.22