/[MITgcm]/MITgcm/model/src/calc_phi_hyd.F
ViewVC logotype

Annotation of /MITgcm/model/src/calc_phi_hyd.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.22 - (hide annotations) (download)
Thu Nov 7 21:51:15 2002 UTC (21 years, 6 months ago) by adcroft
Branch: MAIN
CVS Tags: checkpoint46n_post, checkpoint46m_post
Changes since 1.21: +6 -1 lines
Added new routine quasihydrostaticterms() and flag "quasihydrostatic"
which is false by default and enables QH mode. Exlcusive with nonhydrostatic
flag.

1 adcroft 1.22 C $Header: /u/gcmpack/MITgcm/model/src/calc_phi_hyd.F,v 1.21 2002/09/25 19:36:50 mlosch Exp $
2 cnh 1.16 C $Name: $
3 cnh 1.1
4 cnh 1.6 #include "CPP_OPTIONS.h"
5 cnh 1.1
6 cnh 1.16 CBOP
7     C !ROUTINE: CALC_PHI_HYD
8     C !INTERFACE:
9 adcroft 1.9 SUBROUTINE CALC_PHI_HYD(
10     I bi, bj, iMin, iMax, jMin, jMax, K,
11 mlosch 1.20 I tFld, sFld,
12 adcroft 1.9 U phiHyd,
13     I myThid)
14 cnh 1.16 C !DESCRIPTION: \bv
15     C *==========================================================*
16 cnh 1.1 C | SUBROUTINE CALC_PHI_HYD |
17 jmc 1.11 C | o Integrate the hydrostatic relation to find the Hydros. |
18 cnh 1.16 C *==========================================================*
19 jmc 1.11 C | Potential (ocean: Pressure/rho ; atmos = geopotential)|
20 adcroft 1.9 C | On entry: |
21 mlosch 1.20 C | tFld,sFld are the current thermodynamics quantities|
22 adcroft 1.9 C | (unchanged on exit) |
23 jmc 1.11 C | phiHyd(i,j,1:k-1) is the hydrostatic Potential |
24 adcroft 1.9 C | at cell centers (tracer points) |
25     C | - 1:k-1 layers are valid |
26     C | - k:Nr layers are invalid |
27 jmc 1.11 C | phiHyd(i,j,k) is the hydrostatic Potential |
28 jmc 1.14 C | (ocean only_^) at cell the interface k (w point above) |
29 adcroft 1.9 C | On exit: |
30 jmc 1.11 C | phiHyd(i,j,1:k) is the hydrostatic Potential |
31 adcroft 1.9 C | at cell centers (tracer points) |
32     C | - 1:k layers are valid |
33     C | - k+1:Nr layers are invalid |
34 jmc 1.11 C | phiHyd(i,j,k+1) is the hydrostatic Potential (P/rho) |
35 jmc 1.14 C | (ocean only-^) at cell the interface k+1 (w point below)|
36     C | Atmosphere: |
37     C | Integr_GeoPot allows to select one integration method |
38     C | (see the list below) |
39 cnh 1.16 C *==========================================================*
40     C \ev
41     C !USES:
42 cnh 1.1 IMPLICIT NONE
43     C == Global variables ==
44     #include "SIZE.h"
45     #include "GRID.h"
46     #include "EEPARAMS.h"
47     #include "PARAMS.h"
48 mlosch 1.18 #include "FFIELDS.h"
49 heimbach 1.13 #ifdef ALLOW_AUTODIFF_TAMC
50     #include "tamc.h"
51     #include "tamc_keys.h"
52     #endif /* ALLOW_AUTODIFF_TAMC */
53 adcroft 1.19 #include "SURFACE.h"
54 mlosch 1.20 #include "DYNVARS.h"
55 heimbach 1.13
56 cnh 1.16 C !INPUT/OUTPUT PARAMETERS:
57 cnh 1.1 C == Routine arguments ==
58     INTEGER bi,bj,iMin,iMax,jMin,jMax,K
59 mlosch 1.20 _RL tFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
60     _RL sFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
61 cnh 1.2 _RL phiHyd(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
62 adcroft 1.9 INTEGER myThid
63 jmc 1.14
64 adcroft 1.9 #ifdef INCLUDE_PHIHYD_CALCULATION_CODE
65    
66 cnh 1.16 C !LOCAL VARIABLES:
67 cnh 1.1 C == Local variables ==
68 jmc 1.14 INTEGER i,j, Kp1
69     _RL zero, one, half
70 adcroft 1.9 _RL alphaRho(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
71 adcroft 1.19 _RL dRloc,dRlocKp1,locAlpha
72 jmc 1.14 _RL ddPI, ddPIm, ddPIp, ratioRp, ratioRm
73 cnh 1.16 CEOP
74 jmc 1.14
75     zero = 0. _d 0
76     one = 1. _d 0
77     half = .5 _d 0
78    
79     C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
80     C Atmosphere:
81     C Integr_GeoPot => select one option for the integration of the Geopotential:
82     C = 0 : Energy Conserving Form, No hFac ;
83     C = 1 : Finite Volume Form, with hFac, linear in P by Half level;
84     C =2,3: Finite Difference Form, with hFac, linear in P between 2 Tracer levels
85     C 2 : case Tracer level at the middle of InterFace_W;
86     C 3 : case InterFace_W at the middle of Tracer levels;
87     C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
88 adcroft 1.9
89 heimbach 1.13 #ifdef ALLOW_AUTODIFF_TAMC
90     act1 = bi - myBxLo(myThid)
91     max1 = myBxHi(myThid) - myBxLo(myThid) + 1
92    
93     act2 = bj - myByLo(myThid)
94     max2 = myByHi(myThid) - myByLo(myThid) + 1
95    
96     act3 = myThid - 1
97     max3 = nTx*nTy
98    
99     act4 = ikey_dynamics - 1
100    
101     ikey = (act1 + 1) + act2*max1
102     & + act3*max1*max2
103     & + act4*max1*max2*max3
104     #endif /* ALLOW_AUTODIFF_TAMC */
105    
106 adcroft 1.9 IF ( buoyancyRelation .eq. 'OCEANIC' ) THEN
107     C This is the hydrostatic pressure calculation for the Ocean
108     C which uses the FIND_RHO() routine to calculate density
109     C before integrating g*rho over the current layer/interface
110    
111     dRloc=drC(k)
112     IF (k.EQ.1) dRloc=drF(1)
113     IF (k.EQ.Nr) THEN
114     dRlocKp1=0.
115     ELSE
116     dRlocKp1=drC(k+1)
117     ENDIF
118    
119     C-- If this is the top layer we impose the boundary condition
120     C P(z=eta) = P(atmospheric_loading)
121     IF (k.EQ.1) THEN
122     DO j=jMin,jMax
123     DO i=iMin,iMax
124 mlosch 1.18 #ifdef ATMOSPHERIC_LOADING
125     phiHyd(i,j,k)=pload(i,j,bi,bj)*recip_rhoConst
126     #else
127     phiHyd(i,j,k)=0. _d 0
128     #endif
129 adcroft 1.9 ENDDO
130     ENDDO
131     ENDIF
132    
133     C Calculate density
134 heimbach 1.13 #ifdef ALLOW_AUTODIFF_TAMC
135     kkey = (ikey-1)*Nr + k
136 mlosch 1.20 CADJ STORE tFld(:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
137     CADJ STORE sFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
138 heimbach 1.13 #endif /* ALLOW_AUTODIFF_TAMC */
139 mlosch 1.20 CALL FIND_RHO( bi, bj, iMin, iMax, jMin, jMax, k, k,
140     & tFld, sFld,
141 adcroft 1.9 & alphaRho, myThid)
142 adcroft 1.22
143     C Quasi-hydrostatic terms are added in as if they modify the buoyancy
144     IF (quasiHydrostatic) THEN
145     CALL QUASIHYDROSTATICTERMS(bi,bj,k,alphaRho,myThid)
146     ENDIF
147 adcroft 1.9
148     C Hydrostatic pressure at cell centers
149     DO j=jMin,jMax
150     DO i=iMin,iMax
151     #ifdef ALLOW_AUTODIFF_TAMC
152 jmc 1.14 c Patrick, is this directive correct or even necessary in
153 heimbach 1.13 c this new code?
154     c Yes, because of phiHyd(i,j,k+1)=phiHyd(i,j,k)+...
155     c within the k-loop.
156 adcroft 1.9 CADJ GENERAL
157     #endif /* ALLOW_AUTODIFF_TAMC */
158    
159 mlosch 1.21 CmlC---------- This discretization is the "finite volume" form
160     CmlC which has not been used to date since it does not
161     CmlC conserve KE+PE exactly even though it is more natural
162     CmlC
163     Cml IF ( K .EQ. kLowC(i,j,bi,bj) ) THEN
164     Cml phiHydLow(i,j,bi,bj) = phiHyd(i,j,k)
165     Cml & + hFacC(i,j,k,bi,bj)
166     Cml & *drF(K)*gravity*alphaRho(i,j)*recip_rhoConst
167     Cml & + gravity*etaN(i,j,bi,bj)
168     Cml ENDIF
169     Cml IF (k.LT.Nr) phiHyd(i,j,k+1)=phiHyd(i,j,k)+
170     Cml & drF(K)*gravity*alphaRho(i,j)*recip_rhoConst
171     Cml phiHyd(i,j,k)=phiHyd(i,j,k)+
172     Cml & 0.5*drF(K)*gravity*alphaRho(i,j)*recip_rhoConst
173     CmlC-----------------------------------------------------------------------
174 adcroft 1.9
175     C---------- This discretization is the "energy conserving" form
176     C which has been used since at least Adcroft et al., MWR 1997
177     C
178 mlosch 1.20
179 adcroft 1.9 phiHyd(i,j,k)=phiHyd(i,j,k)+
180 jmc 1.11 & 0.5*dRloc*gravity*alphaRho(i,j)*recip_rhoConst
181 adcroft 1.9 IF (k.LT.Nr) phiHyd(i,j,k+1)=phiHyd(i,j,k)+
182 jmc 1.11 & 0.5*dRlocKp1*gravity*alphaRho(i,j)*recip_rhoConst
183 adcroft 1.9 C-----------------------------------------------------------------------
184 mlosch 1.20
185     C---------- Compute bottom pressure deviation from gravity*rho0*H
186     C This has to be done starting from phiHyd at the current
187     C tracer point and .5 of the cell's thickness has to be
188     C substracted from hFacC
189     IF ( K .EQ. kLowC(i,j,bi,bj) ) THEN
190     phiHydLow(i,j,bi,bj) = phiHyd(i,j,k)
191 mlosch 1.21 & + (hFacC(i,j,k,bi,bj)-.5)*drF(K)
192 mlosch 1.20 & *gravity*alphaRho(i,j)*recip_rhoConst
193     & + gravity*etaN(i,j,bi,bj)
194     ENDIF
195     C-----------------------------------------------------------------------
196    
197 adcroft 1.9 ENDDO
198     ENDDO
199    
200 adcroft 1.19 ELSEIF ( buoyancyRelation .eq. 'OCEANICP' ) THEN
201     C This is the hydrostatic pressure calculation for the Ocean
202     C which uses the FIND_RHO() routine to calculate density
203     C before integrating g*rho over the current layer/interface
204 mlosch 1.21 #ifdef ALLOW_AUTODIFF_TAMC
205     CADJ GENERAL
206     #endif /* ALLOW_AUTODIFF_TAMC */
207 adcroft 1.19
208     dRloc=drC(k)
209     IF (k.EQ.1) dRloc=drF(1)
210     IF (k.EQ.Nr) THEN
211     dRlocKp1=0.
212     ELSE
213     dRlocKp1=drC(k+1)
214     ENDIF
215    
216     IF (k.EQ.1) THEN
217     DO j=jMin,jMax
218     DO i=iMin,iMax
219     phiHyd(i,j,k)=0.
220     phiHyd(i,j,k)=pload(i,j,bi,bj)
221     ENDDO
222     ENDDO
223     ENDIF
224    
225     C Calculate density
226     #ifdef ALLOW_AUTODIFF_TAMC
227     kkey = (ikey-1)*Nr + k
228 mlosch 1.20 CADJ STORE tFld(:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
229     CADJ STORE sFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
230 adcroft 1.19 #endif /* ALLOW_AUTODIFF_TAMC */
231 mlosch 1.20 CALL FIND_RHO( bi, bj, iMin, iMax, jMin, jMax, k, k,
232     & tFld, sFld,
233 adcroft 1.19 & alphaRho, myThid)
234    
235     C Hydrostatic pressure at cell centers
236     DO j=jMin,jMax
237     DO i=iMin,iMax
238 mlosch 1.21 locAlpha=alphaRho(i,j)+rhoConst
239 adcroft 1.19 IF (locAlpha.NE.0.) locAlpha=maskC(i,j,k,bi,bj)/locAlpha
240    
241 mlosch 1.21 CmlC---------- This discretization is the "finite volume" form
242     CmlC which has not been used to date since it does not
243     CmlC conserve KE+PE exactly even though it is more natural
244     CmlC
245     Cml IF ( K .EQ. kLowC(i,j,bi,bj) ) THEN
246     Cml phiHydLow(i,j,bi,bj) = phiHyd(i,j,k)
247     Cml & + hFacC(i,j,k,bi,bj)*drF(K)*locAlpha
248     Cml & + Bo_surf(i,j,bi,bj)*etaN(i,j,bi,bj)
249     Cml ENDIF
250     Cml IF (k.LT.Nr) phiHyd(i,j,k+1)=phiHyd(i,j,k)+
251     Cml & drF(K)*locAlpha
252     Cml phiHyd(i,j,k)=phiHyd(i,j,k)+
253     Cml & 0.5*drF(K)*locAlpha
254     CmlC-----------------------------------------------------------------------
255 adcroft 1.9
256 adcroft 1.19 C---------- This discretization is the "energy conserving" form
257     C which has been used since at least Adcroft et al., MWR 1997
258     C
259 mlosch 1.21
260 adcroft 1.19 phiHyd(i,j,k)=phiHyd(i,j,k)+
261     & 0.5*dRloc*locAlpha
262     IF (k.LT.Nr) phiHyd(i,j,k+1)=phiHyd(i,j,k)+
263     & 0.5*dRlocKp1*locAlpha
264 mlosch 1.21
265 adcroft 1.19 C-----------------------------------------------------------------------
266 mlosch 1.20
267 mlosch 1.21 C---------- Compute gravity*(sea surface elevation) first
268 mlosch 1.20 C This has to be done starting from phiHyd at the current
269     C tracer point and .5 of the cell's thickness has to be
270     C substracted from hFacC
271     IF ( K .EQ. kLowC(i,j,bi,bj) ) THEN
272     phiHydLow(i,j,bi,bj) = phiHyd(i,j,k)
273     & + (hFacC(i,j,k,bi,bj)-0.5)*drF(k)*locAlpha
274     & + Bo_surf(i,j,bi,bj)*etaN(i,j,bi,bj)
275     ENDIF
276     C-----------------------------------------------------------------------
277    
278 adcroft 1.19 ENDDO
279     ENDDO
280 adcroft 1.9
281     ELSEIF ( buoyancyRelation .eq. 'ATMOSPHERIC' ) THEN
282 jmc 1.14 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
283 adcroft 1.9 C This is the hydrostatic geopotential calculation for the Atmosphere
284     C The ideal gas law is used implicitly here rather than calculating
285     C the specific volume, analogous to the oceanic case.
286    
287     C Integrate d Phi / d pi
288    
289 jmc 1.14 IF (Integr_GeoPot.EQ.0) THEN
290     C -- Energy Conserving Form, No hFac --
291     C------------ The integration for the first level phi(k=1) is the same
292     C for both the "finite volume" and energy conserving methods.
293 adcroft 1.17 Ci *NOTE* o Working with geopotential Anomaly, the geopotential boundary
294     C condition is simply Phi-prime(Ro_surf)=0.
295 jmc 1.14 C o convention ddPI > 0 (same as drF & drC)
296     C-----------------------------------------------------------------------
297 adcroft 1.9 IF (K.EQ.1) THEN
298 jmc 1.14 ddPIp=atm_cp*( ((rF(K)/atm_po)**atm_kappa)
299     & -((rC(K)/atm_po)**atm_kappa) )
300 adcroft 1.9 DO j=jMin,jMax
301 jmc 1.14 DO i=iMin,iMax
302     phiHyd(i,j,K)=
303     & ddPIp*maskC(i,j,K,bi,bj)
304 mlosch 1.20 & *(tFld(I,J,K,bi,bj)-tRef(K))
305 jmc 1.14 ENDDO
306     ENDDO
307     ELSE
308     C-------- This discretization is the energy conserving form
309     ddPI=atm_cp*( ((rC(K-1)/atm_po)**atm_kappa)
310     & -((rC( K )/atm_po)**atm_kappa) )*0.5
311     DO j=jMin,jMax
312     DO i=iMin,iMax
313     phiHyd(i,j,K)=phiHyd(i,j,K-1)
314     & +ddPI*maskC(i,j,K-1,bi,bj)
315 mlosch 1.20 & *(tFld(I,J,K-1,bi,bj)-tRef(K-1))
316 jmc 1.14 & +ddPI*maskC(i,j, K ,bi,bj)
317 mlosch 1.20 & *(tFld(I,J, K ,bi,bj)-tRef( K ))
318 jmc 1.14 C Old code (atmos-exact) looked like this
319     Cold phiHyd(i,j,K)=phiHyd(i,j,K-1) - ddPI*
320 mlosch 1.20 Cold & (tFld(I,J,K-1,bi,bj)+tFld(I,J,K,bi,bj)-2.*tRef(K))
321 jmc 1.14 ENDDO
322     ENDDO
323     ENDIF
324     C end: Energy Conserving Form, No hFac --
325 adcroft 1.9 C-----------------------------------------------------------------------
326 jmc 1.14
327     ELSEIF (Integr_GeoPot.EQ.1) THEN
328     C -- Finite Volume Form, with hFac, linear in P by Half level --
329     C---------
330     C Finite Volume formulation consistent with Partial Cell, linear in p by piece
331     C Note: a true Finite Volume form should be linear between 2 Interf_W :
332     C phi_C = (phi_W_k+ phi_W_k+1)/2 ; but not accurate in Stratosphere (low p)
333     C also: if Interface_W at the middle between tracer levels, this form
334     C is close to the Energy Cons. form in the Interior, except for the
335     C non-linearity in PI(p)
336     C---------
337     IF (K.EQ.1) THEN
338     ddPIp=atm_cp*( ((rF(K)/atm_po)**atm_kappa)
339     & -((rC(K)/atm_po)**atm_kappa) )
340     DO j=jMin,jMax
341     DO i=iMin,iMax
342     phiHyd(i,j,K) =
343 mlosch 1.18 & ddPIp*_hFacC(I,J, K ,bi,bj)
344 mlosch 1.20 & *(tFld(I,J, K ,bi,bj)-tRef( K ))
345 adcroft 1.9 ENDDO
346     ENDDO
347     ELSE
348 jmc 1.14 ddPIm=atm_cp*( ((rC(K-1)/atm_po)**atm_kappa)
349     & -((rF( K )/atm_po)**atm_kappa) )
350     ddPIp=atm_cp*( ((rF( K )/atm_po)**atm_kappa)
351     & -((rC( K )/atm_po)**atm_kappa) )
352     DO j=jMin,jMax
353     DO i=iMin,iMax
354     phiHyd(i,j,K) = phiHyd(i,j,K-1)
355 mlosch 1.18 & +ddPIm*_hFacC(I,J,K-1,bi,bj)
356 mlosch 1.20 & *(tFld(I,J,K-1,bi,bj)-tRef(K-1))
357 mlosch 1.18 & +ddPIp*_hFacC(I,J, K ,bi,bj)
358 mlosch 1.20 & *(tFld(I,J, K ,bi,bj)-tRef( K ))
359 jmc 1.14 ENDDO
360     ENDDO
361     ENDIF
362     C end: Finite Volume Form, with hFac, linear in P by Half level --
363 adcroft 1.9 C-----------------------------------------------------------------------
364    
365 jmc 1.14 ELSEIF (Integr_GeoPot.EQ.2) THEN
366     C -- Finite Difference Form, with hFac, Tracer Lev. = middle --
367     C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
368     C Finite Difference formulation consistent with Partial Cell,
369     C case Tracer level at the middle of InterFace_W
370     C linear between 2 Tracer levels ; conserve energy in the Interior
371     C---------
372     Kp1 = min(Nr,K+1)
373     IF (K.EQ.1) THEN
374     ddPIm=atm_cp*( ((rF( K )/atm_po)**atm_kappa)
375     & -((rC( K )/atm_po)**atm_kappa) ) * 2. _d 0
376     ddPIp=atm_cp*( ((rC( K )/atm_po)**atm_kappa)
377     & -((rC(Kp1)/atm_po)**atm_kappa) )
378     DO j=jMin,jMax
379     DO i=iMin,iMax
380     phiHyd(i,j,K) =
381 mlosch 1.18 & ( ddPIm*max(zero, _hFacC(i,j,K,bi,bj)-half)
382     & +ddPIp*min(zero, _hFacC(i,j,K,bi,bj)-half) )
383 mlosch 1.20 & *(tFld(i,j, K ,bi,bj)-tRef( K ))
384 jmc 1.14 & * maskC(i,j, K ,bi,bj)
385     ENDDO
386     ENDDO
387     ELSE
388     ddPIm=atm_cp*( ((rC(K-1)/atm_po)**atm_kappa)
389     & -((rC( K )/atm_po)**atm_kappa) )
390     ddPIp=atm_cp*( ((rC( K )/atm_po)**atm_kappa)
391     & -((rC(Kp1)/atm_po)**atm_kappa) )
392     DO j=jMin,jMax
393     DO i=iMin,iMax
394     phiHyd(i,j,K) = phiHyd(i,j,K-1)
395     & + ddPIm*0.5
396 mlosch 1.20 & *(tFld(i,j,K-1,bi,bj)-tRef(K-1))
397 jmc 1.14 & * maskC(i,j,K-1,bi,bj)
398 mlosch 1.18 & +(ddPIm*max(zero, _hFacC(i,j,K,bi,bj)-half)
399     & +ddPIp*min(zero, _hFacC(i,j,K,bi,bj)-half) )
400 mlosch 1.20 & *(tFld(i,j, K ,bi,bj)-tRef( K ))
401 jmc 1.14 & * maskC(i,j, K ,bi,bj)
402     ENDDO
403     ENDDO
404     ENDIF
405     C end: Finite Difference Form, with hFac, Tracer Lev. = middle --
406 adcroft 1.9 C-----------------------------------------------------------------------
407    
408 jmc 1.14 ELSEIF (Integr_GeoPot.EQ.3) THEN
409     C -- Finite Difference Form, with hFac, Interface_W = middle --
410     C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
411     C Finite Difference formulation consistent with Partial Cell,
412     C Valid & accurate if Interface_W at middle between tracer levels
413     C linear in p between 2 Tracer levels ; conserve energy in the Interior
414     C---------
415     Kp1 = min(Nr,K+1)
416     IF (K.EQ.1) THEN
417     ratioRm=0.5*drF(K)/(rF(k)-rC(K))
418     ratioRp=drF(K)*recip_drC(Kp1)
419     ddPIm=atm_cp*( ((rF( K )/atm_po)**atm_kappa)
420     & -((rC( K )/atm_po)**atm_kappa) ) * 2. _d 0
421     ddPIp=atm_cp*( ((rC( K )/atm_po)**atm_kappa)
422     & -((rC(Kp1)/atm_po)**atm_kappa) )
423     DO j=jMin,jMax
424     DO i=iMin,iMax
425     phiHyd(i,j,K) =
426 mlosch 1.18 & ( ddPIm*max(zero,(_hFacC(i,j,K,bi,bj)-one)*ratioRm+half)
427     & +ddPIp*min(zero, _hFacC(i,j,K,bi,bj)*ratioRp -half) )
428 mlosch 1.20 & *(tFld(i,j, K ,bi,bj)-tRef( K ))
429 jmc 1.14 & * maskC(i,j, K ,bi,bj)
430     ENDDO
431     ENDDO
432     ELSE
433     ratioRm=drF(K)*recip_drC(K)
434     ratioRp=drF(K)*recip_drC(Kp1)
435     ddPIm=atm_cp*( ((rC(K-1)/atm_po)**atm_kappa)
436     & -((rC( K )/atm_po)**atm_kappa) )
437     ddPIp=atm_cp*( ((rC( K )/atm_po)**atm_kappa)
438     & -((rC(Kp1)/atm_po)**atm_kappa) )
439 adcroft 1.9 DO j=jMin,jMax
440 jmc 1.14 DO i=iMin,iMax
441     phiHyd(i,j,K) = phiHyd(i,j,K-1)
442     & + ddPIm*0.5
443 mlosch 1.20 & *(tFld(i,j,K-1,bi,bj)-tRef(K-1))
444 jmc 1.14 & * maskC(i,j,K-1,bi,bj)
445 mlosch 1.18 & +(ddPIm*max(zero,(_hFacC(i,j,K,bi,bj)-one)*ratioRm+half)
446     & +ddPIp*min(zero, _hFacC(i,j,K,bi,bj)*ratioRp -half) )
447 mlosch 1.20 & *(tFld(i,j, K ,bi,bj)-tRef( K ))
448 jmc 1.14 & * maskC(i,j, K ,bi,bj)
449     ENDDO
450 adcroft 1.9 ENDDO
451     ENDIF
452 jmc 1.14 C end: Finite Difference Form, with hFac, Interface_W = middle --
453     C-----------------------------------------------------------------------
454 cnh 1.1
455 jmc 1.14 ELSE
456     STOP 'CALC_PHI_HYD: Bad Integr_GeoPot option !'
457     ENDIF
458 cnh 1.6
459 jmc 1.14 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
460 adcroft 1.9 ELSE
461     STOP 'CALC_PHI_HYD: We should never reach this point!'
462 cnh 1.5 ENDIF
463 cnh 1.1
464 jmc 1.14 #endif /* INCLUDE_PHIHYD_CALCULATION_CODE */
465 cnh 1.6
466 jmc 1.11 RETURN
467     END

  ViewVC Help
Powered by ViewVC 1.1.22