/[MITgcm]/MITgcm/model/src/calc_phi_hyd.F
ViewVC logotype

Annotation of /MITgcm/model/src/calc_phi_hyd.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.21 - (hide annotations) (download)
Wed Sep 25 19:36:50 2002 UTC (21 years, 8 months ago) by mlosch
Branch: MAIN
CVS Tags: checkpoint46l_post, checkpoint46l_pre, checkpoint46j_pre, checkpoint46j_post, checkpoint46k_post, checkpoint46i_post, checkpoint46h_post
Changes since 1.20: +38 -25 lines
o cleaned up the use of rhoNil and rhoConst.
  - rhoNil should only appear in the LINEAR equation of state, everywhere
    else rhoNil is replaced by rhoConst, e.g. find_rho computes rho-rhoConst
    and the dynamical equations are all divided by rhoConst
o introduced new parameter rhoConstFresh, a reference density of fresh
  water, to remove the fresh water flux's dependence on rhoNil. The default
  value is 999.8 kg/m^3
o cleanup up external_forcing.F and external_forcing_surf.F
  - can now be used by both OCEANIC and OCEANICP

1 mlosch 1.21 C $Header: /u/gcmpack/MITgcm/model/src/calc_phi_hyd.F,v 1.20 2002/09/18 16:38:01 mlosch Exp $
2 cnh 1.16 C $Name: $
3 cnh 1.1
4 cnh 1.6 #include "CPP_OPTIONS.h"
5 cnh 1.1
6 cnh 1.16 CBOP
7     C !ROUTINE: CALC_PHI_HYD
8     C !INTERFACE:
9 adcroft 1.9 SUBROUTINE CALC_PHI_HYD(
10     I bi, bj, iMin, iMax, jMin, jMax, K,
11 mlosch 1.20 I tFld, sFld,
12 adcroft 1.9 U phiHyd,
13     I myThid)
14 cnh 1.16 C !DESCRIPTION: \bv
15     C *==========================================================*
16 cnh 1.1 C | SUBROUTINE CALC_PHI_HYD |
17 jmc 1.11 C | o Integrate the hydrostatic relation to find the Hydros. |
18 cnh 1.16 C *==========================================================*
19 jmc 1.11 C | Potential (ocean: Pressure/rho ; atmos = geopotential)|
20 adcroft 1.9 C | On entry: |
21 mlosch 1.20 C | tFld,sFld are the current thermodynamics quantities|
22 adcroft 1.9 C | (unchanged on exit) |
23 jmc 1.11 C | phiHyd(i,j,1:k-1) is the hydrostatic Potential |
24 adcroft 1.9 C | at cell centers (tracer points) |
25     C | - 1:k-1 layers are valid |
26     C | - k:Nr layers are invalid |
27 jmc 1.11 C | phiHyd(i,j,k) is the hydrostatic Potential |
28 jmc 1.14 C | (ocean only_^) at cell the interface k (w point above) |
29 adcroft 1.9 C | On exit: |
30 jmc 1.11 C | phiHyd(i,j,1:k) is the hydrostatic Potential |
31 adcroft 1.9 C | at cell centers (tracer points) |
32     C | - 1:k layers are valid |
33     C | - k+1:Nr layers are invalid |
34 jmc 1.11 C | phiHyd(i,j,k+1) is the hydrostatic Potential (P/rho) |
35 jmc 1.14 C | (ocean only-^) at cell the interface k+1 (w point below)|
36     C | Atmosphere: |
37     C | Integr_GeoPot allows to select one integration method |
38     C | (see the list below) |
39 cnh 1.16 C *==========================================================*
40     C \ev
41     C !USES:
42 cnh 1.1 IMPLICIT NONE
43     C == Global variables ==
44     #include "SIZE.h"
45     #include "GRID.h"
46     #include "EEPARAMS.h"
47     #include "PARAMS.h"
48 mlosch 1.18 #include "FFIELDS.h"
49 heimbach 1.13 #ifdef ALLOW_AUTODIFF_TAMC
50     #include "tamc.h"
51     #include "tamc_keys.h"
52     #endif /* ALLOW_AUTODIFF_TAMC */
53 adcroft 1.19 #include "SURFACE.h"
54 mlosch 1.20 #include "DYNVARS.h"
55 heimbach 1.13
56 cnh 1.16 C !INPUT/OUTPUT PARAMETERS:
57 cnh 1.1 C == Routine arguments ==
58     INTEGER bi,bj,iMin,iMax,jMin,jMax,K
59 mlosch 1.20 _RL tFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
60     _RL sFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
61 cnh 1.2 _RL phiHyd(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
62 adcroft 1.9 INTEGER myThid
63 jmc 1.14
64 adcroft 1.9 #ifdef INCLUDE_PHIHYD_CALCULATION_CODE
65    
66 cnh 1.16 C !LOCAL VARIABLES:
67 cnh 1.1 C == Local variables ==
68 jmc 1.14 INTEGER i,j, Kp1
69     _RL zero, one, half
70 adcroft 1.9 _RL alphaRho(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
71 adcroft 1.19 _RL dRloc,dRlocKp1,locAlpha
72 jmc 1.14 _RL ddPI, ddPIm, ddPIp, ratioRp, ratioRm
73 cnh 1.16 CEOP
74 jmc 1.14
75     zero = 0. _d 0
76     one = 1. _d 0
77     half = .5 _d 0
78    
79     C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
80     C Atmosphere:
81     C Integr_GeoPot => select one option for the integration of the Geopotential:
82     C = 0 : Energy Conserving Form, No hFac ;
83     C = 1 : Finite Volume Form, with hFac, linear in P by Half level;
84     C =2,3: Finite Difference Form, with hFac, linear in P between 2 Tracer levels
85     C 2 : case Tracer level at the middle of InterFace_W;
86     C 3 : case InterFace_W at the middle of Tracer levels;
87     C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
88 adcroft 1.9
89 heimbach 1.13 #ifdef ALLOW_AUTODIFF_TAMC
90     act1 = bi - myBxLo(myThid)
91     max1 = myBxHi(myThid) - myBxLo(myThid) + 1
92    
93     act2 = bj - myByLo(myThid)
94     max2 = myByHi(myThid) - myByLo(myThid) + 1
95    
96     act3 = myThid - 1
97     max3 = nTx*nTy
98    
99     act4 = ikey_dynamics - 1
100    
101     ikey = (act1 + 1) + act2*max1
102     & + act3*max1*max2
103     & + act4*max1*max2*max3
104     #endif /* ALLOW_AUTODIFF_TAMC */
105    
106 adcroft 1.9 IF ( buoyancyRelation .eq. 'OCEANIC' ) THEN
107     C This is the hydrostatic pressure calculation for the Ocean
108     C which uses the FIND_RHO() routine to calculate density
109     C before integrating g*rho over the current layer/interface
110    
111     dRloc=drC(k)
112     IF (k.EQ.1) dRloc=drF(1)
113     IF (k.EQ.Nr) THEN
114     dRlocKp1=0.
115     ELSE
116     dRlocKp1=drC(k+1)
117     ENDIF
118    
119     C-- If this is the top layer we impose the boundary condition
120     C P(z=eta) = P(atmospheric_loading)
121     IF (k.EQ.1) THEN
122     DO j=jMin,jMax
123     DO i=iMin,iMax
124 mlosch 1.18 #ifdef ATMOSPHERIC_LOADING
125     phiHyd(i,j,k)=pload(i,j,bi,bj)*recip_rhoConst
126     #else
127     phiHyd(i,j,k)=0. _d 0
128     #endif
129 adcroft 1.9 ENDDO
130     ENDDO
131     ENDIF
132    
133     C Calculate density
134 heimbach 1.13 #ifdef ALLOW_AUTODIFF_TAMC
135     kkey = (ikey-1)*Nr + k
136 mlosch 1.20 CADJ STORE tFld(:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
137     CADJ STORE sFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
138 heimbach 1.13 #endif /* ALLOW_AUTODIFF_TAMC */
139 mlosch 1.20 CALL FIND_RHO( bi, bj, iMin, iMax, jMin, jMax, k, k,
140     & tFld, sFld,
141 adcroft 1.9 & alphaRho, myThid)
142    
143     C Hydrostatic pressure at cell centers
144     DO j=jMin,jMax
145     DO i=iMin,iMax
146     #ifdef ALLOW_AUTODIFF_TAMC
147 jmc 1.14 c Patrick, is this directive correct or even necessary in
148 heimbach 1.13 c this new code?
149     c Yes, because of phiHyd(i,j,k+1)=phiHyd(i,j,k)+...
150     c within the k-loop.
151 adcroft 1.9 CADJ GENERAL
152     #endif /* ALLOW_AUTODIFF_TAMC */
153    
154 mlosch 1.21 CmlC---------- This discretization is the "finite volume" form
155     CmlC which has not been used to date since it does not
156     CmlC conserve KE+PE exactly even though it is more natural
157     CmlC
158     Cml IF ( K .EQ. kLowC(i,j,bi,bj) ) THEN
159     Cml phiHydLow(i,j,bi,bj) = phiHyd(i,j,k)
160     Cml & + hFacC(i,j,k,bi,bj)
161     Cml & *drF(K)*gravity*alphaRho(i,j)*recip_rhoConst
162     Cml & + gravity*etaN(i,j,bi,bj)
163     Cml ENDIF
164     Cml IF (k.LT.Nr) phiHyd(i,j,k+1)=phiHyd(i,j,k)+
165     Cml & drF(K)*gravity*alphaRho(i,j)*recip_rhoConst
166     Cml phiHyd(i,j,k)=phiHyd(i,j,k)+
167     Cml & 0.5*drF(K)*gravity*alphaRho(i,j)*recip_rhoConst
168     CmlC-----------------------------------------------------------------------
169 adcroft 1.9
170     C---------- This discretization is the "energy conserving" form
171     C which has been used since at least Adcroft et al., MWR 1997
172     C
173 mlosch 1.20
174 adcroft 1.9 phiHyd(i,j,k)=phiHyd(i,j,k)+
175 jmc 1.11 & 0.5*dRloc*gravity*alphaRho(i,j)*recip_rhoConst
176 adcroft 1.9 IF (k.LT.Nr) phiHyd(i,j,k+1)=phiHyd(i,j,k)+
177 jmc 1.11 & 0.5*dRlocKp1*gravity*alphaRho(i,j)*recip_rhoConst
178 adcroft 1.9 C-----------------------------------------------------------------------
179 mlosch 1.20
180     C---------- Compute bottom pressure deviation from gravity*rho0*H
181     C This has to be done starting from phiHyd at the current
182     C tracer point and .5 of the cell's thickness has to be
183     C substracted from hFacC
184     IF ( K .EQ. kLowC(i,j,bi,bj) ) THEN
185     phiHydLow(i,j,bi,bj) = phiHyd(i,j,k)
186 mlosch 1.21 & + (hFacC(i,j,k,bi,bj)-.5)*drF(K)
187 mlosch 1.20 & *gravity*alphaRho(i,j)*recip_rhoConst
188     & + gravity*etaN(i,j,bi,bj)
189     ENDIF
190     C-----------------------------------------------------------------------
191    
192 adcroft 1.9 ENDDO
193     ENDDO
194    
195 adcroft 1.19 ELSEIF ( buoyancyRelation .eq. 'OCEANICP' ) THEN
196     C This is the hydrostatic pressure calculation for the Ocean
197     C which uses the FIND_RHO() routine to calculate density
198     C before integrating g*rho over the current layer/interface
199 mlosch 1.21 #ifdef ALLOW_AUTODIFF_TAMC
200     CADJ GENERAL
201     #endif /* ALLOW_AUTODIFF_TAMC */
202 adcroft 1.19
203     dRloc=drC(k)
204     IF (k.EQ.1) dRloc=drF(1)
205     IF (k.EQ.Nr) THEN
206     dRlocKp1=0.
207     ELSE
208     dRlocKp1=drC(k+1)
209     ENDIF
210    
211     IF (k.EQ.1) THEN
212     DO j=jMin,jMax
213     DO i=iMin,iMax
214     phiHyd(i,j,k)=0.
215     phiHyd(i,j,k)=pload(i,j,bi,bj)
216     ENDDO
217     ENDDO
218     ENDIF
219    
220     C Calculate density
221     #ifdef ALLOW_AUTODIFF_TAMC
222     kkey = (ikey-1)*Nr + k
223 mlosch 1.20 CADJ STORE tFld(:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
224     CADJ STORE sFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
225 adcroft 1.19 #endif /* ALLOW_AUTODIFF_TAMC */
226 mlosch 1.20 CALL FIND_RHO( bi, bj, iMin, iMax, jMin, jMax, k, k,
227     & tFld, sFld,
228 adcroft 1.19 & alphaRho, myThid)
229    
230     C Hydrostatic pressure at cell centers
231     DO j=jMin,jMax
232     DO i=iMin,iMax
233 mlosch 1.21 locAlpha=alphaRho(i,j)+rhoConst
234 adcroft 1.19 IF (locAlpha.NE.0.) locAlpha=maskC(i,j,k,bi,bj)/locAlpha
235    
236 mlosch 1.21 CmlC---------- This discretization is the "finite volume" form
237     CmlC which has not been used to date since it does not
238     CmlC conserve KE+PE exactly even though it is more natural
239     CmlC
240     Cml IF ( K .EQ. kLowC(i,j,bi,bj) ) THEN
241     Cml phiHydLow(i,j,bi,bj) = phiHyd(i,j,k)
242     Cml & + hFacC(i,j,k,bi,bj)*drF(K)*locAlpha
243     Cml & + Bo_surf(i,j,bi,bj)*etaN(i,j,bi,bj)
244     Cml ENDIF
245     Cml IF (k.LT.Nr) phiHyd(i,j,k+1)=phiHyd(i,j,k)+
246     Cml & drF(K)*locAlpha
247     Cml phiHyd(i,j,k)=phiHyd(i,j,k)+
248     Cml & 0.5*drF(K)*locAlpha
249     CmlC-----------------------------------------------------------------------
250 adcroft 1.9
251 adcroft 1.19 C---------- This discretization is the "energy conserving" form
252     C which has been used since at least Adcroft et al., MWR 1997
253     C
254 mlosch 1.21
255 adcroft 1.19 phiHyd(i,j,k)=phiHyd(i,j,k)+
256     & 0.5*dRloc*locAlpha
257     IF (k.LT.Nr) phiHyd(i,j,k+1)=phiHyd(i,j,k)+
258     & 0.5*dRlocKp1*locAlpha
259 mlosch 1.21
260 adcroft 1.19 C-----------------------------------------------------------------------
261 mlosch 1.20
262 mlosch 1.21 C---------- Compute gravity*(sea surface elevation) first
263 mlosch 1.20 C This has to be done starting from phiHyd at the current
264     C tracer point and .5 of the cell's thickness has to be
265     C substracted from hFacC
266     IF ( K .EQ. kLowC(i,j,bi,bj) ) THEN
267     phiHydLow(i,j,bi,bj) = phiHyd(i,j,k)
268     & + (hFacC(i,j,k,bi,bj)-0.5)*drF(k)*locAlpha
269     & + Bo_surf(i,j,bi,bj)*etaN(i,j,bi,bj)
270     ENDIF
271     C-----------------------------------------------------------------------
272    
273 adcroft 1.19 ENDDO
274     ENDDO
275 adcroft 1.9
276     ELSEIF ( buoyancyRelation .eq. 'ATMOSPHERIC' ) THEN
277 jmc 1.14 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
278 adcroft 1.9 C This is the hydrostatic geopotential calculation for the Atmosphere
279     C The ideal gas law is used implicitly here rather than calculating
280     C the specific volume, analogous to the oceanic case.
281    
282     C Integrate d Phi / d pi
283    
284 jmc 1.14 IF (Integr_GeoPot.EQ.0) THEN
285     C -- Energy Conserving Form, No hFac --
286     C------------ The integration for the first level phi(k=1) is the same
287     C for both the "finite volume" and energy conserving methods.
288 adcroft 1.17 Ci *NOTE* o Working with geopotential Anomaly, the geopotential boundary
289     C condition is simply Phi-prime(Ro_surf)=0.
290 jmc 1.14 C o convention ddPI > 0 (same as drF & drC)
291     C-----------------------------------------------------------------------
292 adcroft 1.9 IF (K.EQ.1) THEN
293 jmc 1.14 ddPIp=atm_cp*( ((rF(K)/atm_po)**atm_kappa)
294     & -((rC(K)/atm_po)**atm_kappa) )
295 adcroft 1.9 DO j=jMin,jMax
296 jmc 1.14 DO i=iMin,iMax
297     phiHyd(i,j,K)=
298     & ddPIp*maskC(i,j,K,bi,bj)
299 mlosch 1.20 & *(tFld(I,J,K,bi,bj)-tRef(K))
300 jmc 1.14 ENDDO
301     ENDDO
302     ELSE
303     C-------- This discretization is the energy conserving form
304     ddPI=atm_cp*( ((rC(K-1)/atm_po)**atm_kappa)
305     & -((rC( K )/atm_po)**atm_kappa) )*0.5
306     DO j=jMin,jMax
307     DO i=iMin,iMax
308     phiHyd(i,j,K)=phiHyd(i,j,K-1)
309     & +ddPI*maskC(i,j,K-1,bi,bj)
310 mlosch 1.20 & *(tFld(I,J,K-1,bi,bj)-tRef(K-1))
311 jmc 1.14 & +ddPI*maskC(i,j, K ,bi,bj)
312 mlosch 1.20 & *(tFld(I,J, K ,bi,bj)-tRef( K ))
313 jmc 1.14 C Old code (atmos-exact) looked like this
314     Cold phiHyd(i,j,K)=phiHyd(i,j,K-1) - ddPI*
315 mlosch 1.20 Cold & (tFld(I,J,K-1,bi,bj)+tFld(I,J,K,bi,bj)-2.*tRef(K))
316 jmc 1.14 ENDDO
317     ENDDO
318     ENDIF
319     C end: Energy Conserving Form, No hFac --
320 adcroft 1.9 C-----------------------------------------------------------------------
321 jmc 1.14
322     ELSEIF (Integr_GeoPot.EQ.1) THEN
323     C -- Finite Volume Form, with hFac, linear in P by Half level --
324     C---------
325     C Finite Volume formulation consistent with Partial Cell, linear in p by piece
326     C Note: a true Finite Volume form should be linear between 2 Interf_W :
327     C phi_C = (phi_W_k+ phi_W_k+1)/2 ; but not accurate in Stratosphere (low p)
328     C also: if Interface_W at the middle between tracer levels, this form
329     C is close to the Energy Cons. form in the Interior, except for the
330     C non-linearity in PI(p)
331     C---------
332     IF (K.EQ.1) THEN
333     ddPIp=atm_cp*( ((rF(K)/atm_po)**atm_kappa)
334     & -((rC(K)/atm_po)**atm_kappa) )
335     DO j=jMin,jMax
336     DO i=iMin,iMax
337     phiHyd(i,j,K) =
338 mlosch 1.18 & ddPIp*_hFacC(I,J, K ,bi,bj)
339 mlosch 1.20 & *(tFld(I,J, K ,bi,bj)-tRef( K ))
340 adcroft 1.9 ENDDO
341     ENDDO
342     ELSE
343 jmc 1.14 ddPIm=atm_cp*( ((rC(K-1)/atm_po)**atm_kappa)
344     & -((rF( K )/atm_po)**atm_kappa) )
345     ddPIp=atm_cp*( ((rF( K )/atm_po)**atm_kappa)
346     & -((rC( K )/atm_po)**atm_kappa) )
347     DO j=jMin,jMax
348     DO i=iMin,iMax
349     phiHyd(i,j,K) = phiHyd(i,j,K-1)
350 mlosch 1.18 & +ddPIm*_hFacC(I,J,K-1,bi,bj)
351 mlosch 1.20 & *(tFld(I,J,K-1,bi,bj)-tRef(K-1))
352 mlosch 1.18 & +ddPIp*_hFacC(I,J, K ,bi,bj)
353 mlosch 1.20 & *(tFld(I,J, K ,bi,bj)-tRef( K ))
354 jmc 1.14 ENDDO
355     ENDDO
356     ENDIF
357     C end: Finite Volume Form, with hFac, linear in P by Half level --
358 adcroft 1.9 C-----------------------------------------------------------------------
359    
360 jmc 1.14 ELSEIF (Integr_GeoPot.EQ.2) THEN
361     C -- Finite Difference Form, with hFac, Tracer Lev. = middle --
362     C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
363     C Finite Difference formulation consistent with Partial Cell,
364     C case Tracer level at the middle of InterFace_W
365     C linear between 2 Tracer levels ; conserve energy in the Interior
366     C---------
367     Kp1 = min(Nr,K+1)
368     IF (K.EQ.1) THEN
369     ddPIm=atm_cp*( ((rF( K )/atm_po)**atm_kappa)
370     & -((rC( K )/atm_po)**atm_kappa) ) * 2. _d 0
371     ddPIp=atm_cp*( ((rC( K )/atm_po)**atm_kappa)
372     & -((rC(Kp1)/atm_po)**atm_kappa) )
373     DO j=jMin,jMax
374     DO i=iMin,iMax
375     phiHyd(i,j,K) =
376 mlosch 1.18 & ( ddPIm*max(zero, _hFacC(i,j,K,bi,bj)-half)
377     & +ddPIp*min(zero, _hFacC(i,j,K,bi,bj)-half) )
378 mlosch 1.20 & *(tFld(i,j, K ,bi,bj)-tRef( K ))
379 jmc 1.14 & * maskC(i,j, K ,bi,bj)
380     ENDDO
381     ENDDO
382     ELSE
383     ddPIm=atm_cp*( ((rC(K-1)/atm_po)**atm_kappa)
384     & -((rC( K )/atm_po)**atm_kappa) )
385     ddPIp=atm_cp*( ((rC( K )/atm_po)**atm_kappa)
386     & -((rC(Kp1)/atm_po)**atm_kappa) )
387     DO j=jMin,jMax
388     DO i=iMin,iMax
389     phiHyd(i,j,K) = phiHyd(i,j,K-1)
390     & + ddPIm*0.5
391 mlosch 1.20 & *(tFld(i,j,K-1,bi,bj)-tRef(K-1))
392 jmc 1.14 & * maskC(i,j,K-1,bi,bj)
393 mlosch 1.18 & +(ddPIm*max(zero, _hFacC(i,j,K,bi,bj)-half)
394     & +ddPIp*min(zero, _hFacC(i,j,K,bi,bj)-half) )
395 mlosch 1.20 & *(tFld(i,j, K ,bi,bj)-tRef( K ))
396 jmc 1.14 & * maskC(i,j, K ,bi,bj)
397     ENDDO
398     ENDDO
399     ENDIF
400     C end: Finite Difference Form, with hFac, Tracer Lev. = middle --
401 adcroft 1.9 C-----------------------------------------------------------------------
402    
403 jmc 1.14 ELSEIF (Integr_GeoPot.EQ.3) THEN
404     C -- Finite Difference Form, with hFac, Interface_W = middle --
405     C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
406     C Finite Difference formulation consistent with Partial Cell,
407     C Valid & accurate if Interface_W at middle between tracer levels
408     C linear in p between 2 Tracer levels ; conserve energy in the Interior
409     C---------
410     Kp1 = min(Nr,K+1)
411     IF (K.EQ.1) THEN
412     ratioRm=0.5*drF(K)/(rF(k)-rC(K))
413     ratioRp=drF(K)*recip_drC(Kp1)
414     ddPIm=atm_cp*( ((rF( K )/atm_po)**atm_kappa)
415     & -((rC( K )/atm_po)**atm_kappa) ) * 2. _d 0
416     ddPIp=atm_cp*( ((rC( K )/atm_po)**atm_kappa)
417     & -((rC(Kp1)/atm_po)**atm_kappa) )
418     DO j=jMin,jMax
419     DO i=iMin,iMax
420     phiHyd(i,j,K) =
421 mlosch 1.18 & ( ddPIm*max(zero,(_hFacC(i,j,K,bi,bj)-one)*ratioRm+half)
422     & +ddPIp*min(zero, _hFacC(i,j,K,bi,bj)*ratioRp -half) )
423 mlosch 1.20 & *(tFld(i,j, K ,bi,bj)-tRef( K ))
424 jmc 1.14 & * maskC(i,j, K ,bi,bj)
425     ENDDO
426     ENDDO
427     ELSE
428     ratioRm=drF(K)*recip_drC(K)
429     ratioRp=drF(K)*recip_drC(Kp1)
430     ddPIm=atm_cp*( ((rC(K-1)/atm_po)**atm_kappa)
431     & -((rC( K )/atm_po)**atm_kappa) )
432     ddPIp=atm_cp*( ((rC( K )/atm_po)**atm_kappa)
433     & -((rC(Kp1)/atm_po)**atm_kappa) )
434 adcroft 1.9 DO j=jMin,jMax
435 jmc 1.14 DO i=iMin,iMax
436     phiHyd(i,j,K) = phiHyd(i,j,K-1)
437     & + ddPIm*0.5
438 mlosch 1.20 & *(tFld(i,j,K-1,bi,bj)-tRef(K-1))
439 jmc 1.14 & * maskC(i,j,K-1,bi,bj)
440 mlosch 1.18 & +(ddPIm*max(zero,(_hFacC(i,j,K,bi,bj)-one)*ratioRm+half)
441     & +ddPIp*min(zero, _hFacC(i,j,K,bi,bj)*ratioRp -half) )
442 mlosch 1.20 & *(tFld(i,j, K ,bi,bj)-tRef( K ))
443 jmc 1.14 & * maskC(i,j, K ,bi,bj)
444     ENDDO
445 adcroft 1.9 ENDDO
446     ENDIF
447 jmc 1.14 C end: Finite Difference Form, with hFac, Interface_W = middle --
448     C-----------------------------------------------------------------------
449 cnh 1.1
450 jmc 1.14 ELSE
451     STOP 'CALC_PHI_HYD: Bad Integr_GeoPot option !'
452     ENDIF
453 cnh 1.6
454 jmc 1.14 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
455 adcroft 1.9 ELSE
456     STOP 'CALC_PHI_HYD: We should never reach this point!'
457 cnh 1.5 ENDIF
458 cnh 1.1
459 jmc 1.14 #endif /* INCLUDE_PHIHYD_CALCULATION_CODE */
460 cnh 1.6
461 jmc 1.11 RETURN
462     END

  ViewVC Help
Powered by ViewVC 1.1.22