/[MITgcm]/MITgcm/model/src/calc_phi_hyd.F
ViewVC logotype

Annotation of /MITgcm/model/src/calc_phi_hyd.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.20 - (hide annotations) (download)
Wed Sep 18 16:38:01 2002 UTC (21 years, 8 months ago) by mlosch
Branch: MAIN
CVS Tags: checkpoint46h_pre, checkpoint46g_post
Changes since 1.19: +53 -26 lines
o Include a new diagnostic variable phiHydLow for the ocean model
  - in z-coordinates, it is the bottom pressure anomaly
  - in p-coordinates, it is the sea surface elevation
  - in both cases, these variable have global drift, reflecting the mass
    drift in z-coordinates and the volume drift in p-coordinates
  - included time averaging for phiHydLow, be aware of the drift!
o depth-dependent computation of Bo_surf for pressure coordinates
  in the ocean (buoyancyRelation='OCEANICP')
  - requires a new routine (FIND_RHO_SCALAR) to compute density with only
    Theta, Salinity, and Pressure in the parameter list. This routine is
    presently contained in find_rho.F. This routine does not give the
    correct density for 'POLY3', which would be a z-dependent reference
    density.
o cleaned up find_rho
  - removed obsolete 'eqn' from the parameter list.
o added two new verification experiments: gop and goz
  (4x4 degree global ocean, 15 layers in pressure and height coordinates)

1 mlosch 1.20 C $Header: /u/gcmpack/MITgcm/model/src/calc_phi_hyd.F,v 1.19 2002/08/15 17:25:31 adcroft Exp $
2 cnh 1.16 C $Name: $
3 cnh 1.1
4 cnh 1.6 #include "CPP_OPTIONS.h"
5 cnh 1.1
6 cnh 1.16 CBOP
7     C !ROUTINE: CALC_PHI_HYD
8     C !INTERFACE:
9 adcroft 1.9 SUBROUTINE CALC_PHI_HYD(
10     I bi, bj, iMin, iMax, jMin, jMax, K,
11 mlosch 1.20 I tFld, sFld,
12 adcroft 1.9 U phiHyd,
13     I myThid)
14 cnh 1.16 C !DESCRIPTION: \bv
15     C *==========================================================*
16 cnh 1.1 C | SUBROUTINE CALC_PHI_HYD |
17 jmc 1.11 C | o Integrate the hydrostatic relation to find the Hydros. |
18 cnh 1.16 C *==========================================================*
19 jmc 1.11 C | Potential (ocean: Pressure/rho ; atmos = geopotential)|
20 adcroft 1.9 C | On entry: |
21 mlosch 1.20 C | tFld,sFld are the current thermodynamics quantities|
22 adcroft 1.9 C | (unchanged on exit) |
23 jmc 1.11 C | phiHyd(i,j,1:k-1) is the hydrostatic Potential |
24 adcroft 1.9 C | at cell centers (tracer points) |
25     C | - 1:k-1 layers are valid |
26     C | - k:Nr layers are invalid |
27 jmc 1.11 C | phiHyd(i,j,k) is the hydrostatic Potential |
28 jmc 1.14 C | (ocean only_^) at cell the interface k (w point above) |
29 adcroft 1.9 C | On exit: |
30 jmc 1.11 C | phiHyd(i,j,1:k) is the hydrostatic Potential |
31 adcroft 1.9 C | at cell centers (tracer points) |
32     C | - 1:k layers are valid |
33     C | - k+1:Nr layers are invalid |
34 jmc 1.11 C | phiHyd(i,j,k+1) is the hydrostatic Potential (P/rho) |
35 jmc 1.14 C | (ocean only-^) at cell the interface k+1 (w point below)|
36     C | Atmosphere: |
37     C | Integr_GeoPot allows to select one integration method |
38     C | (see the list below) |
39 cnh 1.16 C *==========================================================*
40     C \ev
41     C !USES:
42 cnh 1.1 IMPLICIT NONE
43     C == Global variables ==
44     #include "SIZE.h"
45     #include "GRID.h"
46     #include "EEPARAMS.h"
47     #include "PARAMS.h"
48 mlosch 1.18 #include "FFIELDS.h"
49 heimbach 1.13 #ifdef ALLOW_AUTODIFF_TAMC
50     #include "tamc.h"
51     #include "tamc_keys.h"
52     #endif /* ALLOW_AUTODIFF_TAMC */
53 adcroft 1.19 #include "SURFACE.h"
54 mlosch 1.20 #include "DYNVARS.h"
55 heimbach 1.13
56 cnh 1.16 C !INPUT/OUTPUT PARAMETERS:
57 cnh 1.1 C == Routine arguments ==
58     INTEGER bi,bj,iMin,iMax,jMin,jMax,K
59 mlosch 1.20 _RL tFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
60     _RL sFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
61 cnh 1.2 _RL phiHyd(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
62 adcroft 1.9 INTEGER myThid
63 jmc 1.14
64 adcroft 1.9 #ifdef INCLUDE_PHIHYD_CALCULATION_CODE
65    
66 cnh 1.16 C !LOCAL VARIABLES:
67 cnh 1.1 C == Local variables ==
68 jmc 1.14 INTEGER i,j, Kp1
69     _RL zero, one, half
70 adcroft 1.9 _RL alphaRho(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
71 adcroft 1.19 _RL dRloc,dRlocKp1,locAlpha
72 jmc 1.14 _RL ddPI, ddPIm, ddPIp, ratioRp, ratioRm
73 cnh 1.16 CEOP
74 jmc 1.14
75     zero = 0. _d 0
76     one = 1. _d 0
77     half = .5 _d 0
78    
79     C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
80     C Atmosphere:
81     C Integr_GeoPot => select one option for the integration of the Geopotential:
82     C = 0 : Energy Conserving Form, No hFac ;
83     C = 1 : Finite Volume Form, with hFac, linear in P by Half level;
84     C =2,3: Finite Difference Form, with hFac, linear in P between 2 Tracer levels
85     C 2 : case Tracer level at the middle of InterFace_W;
86     C 3 : case InterFace_W at the middle of Tracer levels;
87     C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
88 adcroft 1.9
89 heimbach 1.13 #ifdef ALLOW_AUTODIFF_TAMC
90     act1 = bi - myBxLo(myThid)
91     max1 = myBxHi(myThid) - myBxLo(myThid) + 1
92    
93     act2 = bj - myByLo(myThid)
94     max2 = myByHi(myThid) - myByLo(myThid) + 1
95    
96     act3 = myThid - 1
97     max3 = nTx*nTy
98    
99     act4 = ikey_dynamics - 1
100    
101     ikey = (act1 + 1) + act2*max1
102     & + act3*max1*max2
103     & + act4*max1*max2*max3
104     #endif /* ALLOW_AUTODIFF_TAMC */
105    
106 adcroft 1.9 IF ( buoyancyRelation .eq. 'OCEANIC' ) THEN
107     C This is the hydrostatic pressure calculation for the Ocean
108     C which uses the FIND_RHO() routine to calculate density
109     C before integrating g*rho over the current layer/interface
110    
111     dRloc=drC(k)
112     IF (k.EQ.1) dRloc=drF(1)
113     IF (k.EQ.Nr) THEN
114     dRlocKp1=0.
115     ELSE
116     dRlocKp1=drC(k+1)
117     ENDIF
118    
119     C-- If this is the top layer we impose the boundary condition
120     C P(z=eta) = P(atmospheric_loading)
121     IF (k.EQ.1) THEN
122     DO j=jMin,jMax
123     DO i=iMin,iMax
124 mlosch 1.18 #ifdef ATMOSPHERIC_LOADING
125     phiHyd(i,j,k)=pload(i,j,bi,bj)*recip_rhoConst
126     #else
127     phiHyd(i,j,k)=0. _d 0
128     #endif
129 adcroft 1.9 ENDDO
130     ENDDO
131     ENDIF
132    
133     C Calculate density
134 heimbach 1.13 #ifdef ALLOW_AUTODIFF_TAMC
135     kkey = (ikey-1)*Nr + k
136 mlosch 1.20 CADJ STORE tFld(:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
137     CADJ STORE sFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
138 heimbach 1.13 #endif /* ALLOW_AUTODIFF_TAMC */
139 mlosch 1.20 CALL FIND_RHO( bi, bj, iMin, iMax, jMin, jMax, k, k,
140     & tFld, sFld,
141 adcroft 1.9 & alphaRho, myThid)
142    
143     C Hydrostatic pressure at cell centers
144     DO j=jMin,jMax
145     DO i=iMin,iMax
146     #ifdef ALLOW_AUTODIFF_TAMC
147 jmc 1.14 c Patrick, is this directive correct or even necessary in
148 heimbach 1.13 c this new code?
149     c Yes, because of phiHyd(i,j,k+1)=phiHyd(i,j,k)+...
150     c within the k-loop.
151 adcroft 1.9 CADJ GENERAL
152     #endif /* ALLOW_AUTODIFF_TAMC */
153    
154     C---------- This discretization is the "finite volume" form
155     C which has not been used to date since it does not
156     C conserve KE+PE exactly even though it is more natural
157     C
158     c IF (k.LT.Nr) phiHyd(i,j,k+1)=phiHyd(i,j,k)+
159 jmc 1.11 c & drF(K)*gravity*alphaRho(i,j)*recip_rhoConst
160 adcroft 1.9 c phiHyd(i,j,k)=phiHyd(i,j,k)+
161 jmc 1.11 c & 0.5*drF(K)*gravity*alphaRho(i,j)*recip_rhoConst
162 adcroft 1.9 C-----------------------------------------------------------------------
163    
164     C---------- This discretization is the "energy conserving" form
165     C which has been used since at least Adcroft et al., MWR 1997
166     C
167 mlosch 1.20
168 adcroft 1.9 phiHyd(i,j,k)=phiHyd(i,j,k)+
169 jmc 1.11 & 0.5*dRloc*gravity*alphaRho(i,j)*recip_rhoConst
170 adcroft 1.9 IF (k.LT.Nr) phiHyd(i,j,k+1)=phiHyd(i,j,k)+
171 jmc 1.11 & 0.5*dRlocKp1*gravity*alphaRho(i,j)*recip_rhoConst
172 adcroft 1.9 C-----------------------------------------------------------------------
173 mlosch 1.20
174     C---------- Compute bottom pressure deviation from gravity*rho0*H
175     C This has to be done starting from phiHyd at the current
176     C tracer point and .5 of the cell's thickness has to be
177     C substracted from hFacC
178     IF ( K .EQ. kLowC(i,j,bi,bj) ) THEN
179     phiHydLow(i,j,bi,bj) = phiHyd(i,j,k)
180     & + (hFacC(i,j,k,bi,bj)-0.5)*drF(K)
181     & *gravity*alphaRho(i,j)*recip_rhoConst
182     & + gravity*etaN(i,j,bi,bj)
183     ENDIF
184     C-----------------------------------------------------------------------
185    
186 adcroft 1.9 ENDDO
187     ENDDO
188    
189 adcroft 1.19 ELSEIF ( buoyancyRelation .eq. 'OCEANICP' ) THEN
190     C This is the hydrostatic pressure calculation for the Ocean
191     C which uses the FIND_RHO() routine to calculate density
192     C before integrating g*rho over the current layer/interface
193    
194     dRloc=drC(k)
195     IF (k.EQ.1) dRloc=drF(1)
196     IF (k.EQ.Nr) THEN
197     dRlocKp1=0.
198     ELSE
199     dRlocKp1=drC(k+1)
200     ENDIF
201    
202     IF (k.EQ.1) THEN
203     DO j=jMin,jMax
204     DO i=iMin,iMax
205     phiHyd(i,j,k)=0.
206     phiHyd(i,j,k)=pload(i,j,bi,bj)
207     c & -Ro_surf(i,j,bi,bj)*recip_rhoNil
208     c & -(Ro_surf(i,j,bi,bj)-.5*drF( kSurfC(i,j,bi,bj) ))/1000.
209     c & -(Ro_surf(i,j,bi,bj)-.5*drF( kSurfC(i,j,bi,bj) ))*recip_rhoNil
210     ENDDO
211     ENDDO
212     ENDIF
213    
214     C Calculate density
215     #ifdef ALLOW_AUTODIFF_TAMC
216     kkey = (ikey-1)*Nr + k
217 mlosch 1.20 CADJ STORE tFld(:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
218     CADJ STORE sFld (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
219 adcroft 1.19 #endif /* ALLOW_AUTODIFF_TAMC */
220 mlosch 1.20 CALL FIND_RHO( bi, bj, iMin, iMax, jMin, jMax, k, k,
221     & tFld, sFld,
222 adcroft 1.19 & alphaRho, myThid)
223    
224     C Hydrostatic pressure at cell centers
225     DO j=jMin,jMax
226     DO i=iMin,iMax
227     locAlpha=alphaRho(i,j)+rhoNil
228     IF (locAlpha.NE.0.) locAlpha=maskC(i,j,k,bi,bj)/locAlpha
229    
230     C---------- This discretization is the "finite volume" form
231     C which has not been used to date since it does not
232     C conserve KE+PE exactly even though it is more natural
233     C
234     c IF (k.LT.Nr) phiHyd(i,j,k+1)=phiHyd(i,j,k)+
235     c & drF(K)*locAlpha
236     c phiHyd(i,j,k)=phiHyd(i,j,k)+
237     c & 0.5*drF(K)*locAlpha
238     C-----------------------------------------------------------------------
239 adcroft 1.9
240 adcroft 1.19 C---------- This discretization is the "energy conserving" form
241     C which has been used since at least Adcroft et al., MWR 1997
242     C
243     phiHyd(i,j,k)=phiHyd(i,j,k)+
244     & 0.5*dRloc*locAlpha
245     IF (k.LT.Nr) phiHyd(i,j,k+1)=phiHyd(i,j,k)+
246     & 0.5*dRlocKp1*locAlpha
247     C-----------------------------------------------------------------------
248 mlosch 1.20
249     C---------- Compute gravity*(sea surface elevation)
250     C This has to be done starting from phiHyd at the current
251     C tracer point and .5 of the cell's thickness has to be
252     C substracted from hFacC
253     IF ( K .EQ. kLowC(i,j,bi,bj) ) THEN
254     phiHydLow(i,j,bi,bj) = phiHyd(i,j,k)
255     & + (hFacC(i,j,k,bi,bj)-0.5)*drF(k)*locAlpha
256     & + Bo_surf(i,j,bi,bj)*etaN(i,j,bi,bj)
257     ENDIF
258     C-----------------------------------------------------------------------
259    
260 adcroft 1.19 ENDDO
261     ENDDO
262 adcroft 1.9
263     ELSEIF ( buoyancyRelation .eq. 'ATMOSPHERIC' ) THEN
264 jmc 1.14 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
265 adcroft 1.9 C This is the hydrostatic geopotential calculation for the Atmosphere
266     C The ideal gas law is used implicitly here rather than calculating
267     C the specific volume, analogous to the oceanic case.
268    
269     C Integrate d Phi / d pi
270    
271 jmc 1.14 IF (Integr_GeoPot.EQ.0) THEN
272     C -- Energy Conserving Form, No hFac --
273     C------------ The integration for the first level phi(k=1) is the same
274     C for both the "finite volume" and energy conserving methods.
275 adcroft 1.17 Ci *NOTE* o Working with geopotential Anomaly, the geopotential boundary
276     C condition is simply Phi-prime(Ro_surf)=0.
277 jmc 1.14 C o convention ddPI > 0 (same as drF & drC)
278     C-----------------------------------------------------------------------
279 adcroft 1.9 IF (K.EQ.1) THEN
280 jmc 1.14 ddPIp=atm_cp*( ((rF(K)/atm_po)**atm_kappa)
281     & -((rC(K)/atm_po)**atm_kappa) )
282 adcroft 1.9 DO j=jMin,jMax
283 jmc 1.14 DO i=iMin,iMax
284     phiHyd(i,j,K)=
285     & ddPIp*maskC(i,j,K,bi,bj)
286 mlosch 1.20 & *(tFld(I,J,K,bi,bj)-tRef(K))
287 jmc 1.14 ENDDO
288     ENDDO
289     ELSE
290     C-------- This discretization is the energy conserving form
291     ddPI=atm_cp*( ((rC(K-1)/atm_po)**atm_kappa)
292     & -((rC( K )/atm_po)**atm_kappa) )*0.5
293     DO j=jMin,jMax
294     DO i=iMin,iMax
295     phiHyd(i,j,K)=phiHyd(i,j,K-1)
296     & +ddPI*maskC(i,j,K-1,bi,bj)
297 mlosch 1.20 & *(tFld(I,J,K-1,bi,bj)-tRef(K-1))
298 jmc 1.14 & +ddPI*maskC(i,j, K ,bi,bj)
299 mlosch 1.20 & *(tFld(I,J, K ,bi,bj)-tRef( K ))
300 jmc 1.14 C Old code (atmos-exact) looked like this
301     Cold phiHyd(i,j,K)=phiHyd(i,j,K-1) - ddPI*
302 mlosch 1.20 Cold & (tFld(I,J,K-1,bi,bj)+tFld(I,J,K,bi,bj)-2.*tRef(K))
303 jmc 1.14 ENDDO
304     ENDDO
305     ENDIF
306     C end: Energy Conserving Form, No hFac --
307 adcroft 1.9 C-----------------------------------------------------------------------
308 jmc 1.14
309     ELSEIF (Integr_GeoPot.EQ.1) THEN
310     C -- Finite Volume Form, with hFac, linear in P by Half level --
311     C---------
312     C Finite Volume formulation consistent with Partial Cell, linear in p by piece
313     C Note: a true Finite Volume form should be linear between 2 Interf_W :
314     C phi_C = (phi_W_k+ phi_W_k+1)/2 ; but not accurate in Stratosphere (low p)
315     C also: if Interface_W at the middle between tracer levels, this form
316     C is close to the Energy Cons. form in the Interior, except for the
317     C non-linearity in PI(p)
318     C---------
319     IF (K.EQ.1) THEN
320     ddPIp=atm_cp*( ((rF(K)/atm_po)**atm_kappa)
321     & -((rC(K)/atm_po)**atm_kappa) )
322     DO j=jMin,jMax
323     DO i=iMin,iMax
324     phiHyd(i,j,K) =
325 mlosch 1.18 & ddPIp*_hFacC(I,J, K ,bi,bj)
326 mlosch 1.20 & *(tFld(I,J, K ,bi,bj)-tRef( K ))
327 adcroft 1.9 ENDDO
328     ENDDO
329     ELSE
330 jmc 1.14 ddPIm=atm_cp*( ((rC(K-1)/atm_po)**atm_kappa)
331     & -((rF( K )/atm_po)**atm_kappa) )
332     ddPIp=atm_cp*( ((rF( K )/atm_po)**atm_kappa)
333     & -((rC( K )/atm_po)**atm_kappa) )
334     DO j=jMin,jMax
335     DO i=iMin,iMax
336     phiHyd(i,j,K) = phiHyd(i,j,K-1)
337 mlosch 1.18 & +ddPIm*_hFacC(I,J,K-1,bi,bj)
338 mlosch 1.20 & *(tFld(I,J,K-1,bi,bj)-tRef(K-1))
339 mlosch 1.18 & +ddPIp*_hFacC(I,J, K ,bi,bj)
340 mlosch 1.20 & *(tFld(I,J, K ,bi,bj)-tRef( K ))
341 jmc 1.14 ENDDO
342     ENDDO
343     ENDIF
344     C end: Finite Volume Form, with hFac, linear in P by Half level --
345 adcroft 1.9 C-----------------------------------------------------------------------
346    
347 jmc 1.14 ELSEIF (Integr_GeoPot.EQ.2) THEN
348     C -- Finite Difference Form, with hFac, Tracer Lev. = middle --
349     C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
350     C Finite Difference formulation consistent with Partial Cell,
351     C case Tracer level at the middle of InterFace_W
352     C linear between 2 Tracer levels ; conserve energy in the Interior
353     C---------
354     Kp1 = min(Nr,K+1)
355     IF (K.EQ.1) THEN
356     ddPIm=atm_cp*( ((rF( K )/atm_po)**atm_kappa)
357     & -((rC( K )/atm_po)**atm_kappa) ) * 2. _d 0
358     ddPIp=atm_cp*( ((rC( K )/atm_po)**atm_kappa)
359     & -((rC(Kp1)/atm_po)**atm_kappa) )
360     DO j=jMin,jMax
361     DO i=iMin,iMax
362     phiHyd(i,j,K) =
363 mlosch 1.18 & ( ddPIm*max(zero, _hFacC(i,j,K,bi,bj)-half)
364     & +ddPIp*min(zero, _hFacC(i,j,K,bi,bj)-half) )
365 mlosch 1.20 & *(tFld(i,j, K ,bi,bj)-tRef( K ))
366 jmc 1.14 & * maskC(i,j, K ,bi,bj)
367     ENDDO
368     ENDDO
369     ELSE
370     ddPIm=atm_cp*( ((rC(K-1)/atm_po)**atm_kappa)
371     & -((rC( K )/atm_po)**atm_kappa) )
372     ddPIp=atm_cp*( ((rC( K )/atm_po)**atm_kappa)
373     & -((rC(Kp1)/atm_po)**atm_kappa) )
374     DO j=jMin,jMax
375     DO i=iMin,iMax
376     phiHyd(i,j,K) = phiHyd(i,j,K-1)
377     & + ddPIm*0.5
378 mlosch 1.20 & *(tFld(i,j,K-1,bi,bj)-tRef(K-1))
379 jmc 1.14 & * maskC(i,j,K-1,bi,bj)
380 mlosch 1.18 & +(ddPIm*max(zero, _hFacC(i,j,K,bi,bj)-half)
381     & +ddPIp*min(zero, _hFacC(i,j,K,bi,bj)-half) )
382 mlosch 1.20 & *(tFld(i,j, K ,bi,bj)-tRef( K ))
383 jmc 1.14 & * maskC(i,j, K ,bi,bj)
384     ENDDO
385     ENDDO
386     ENDIF
387     C end: Finite Difference Form, with hFac, Tracer Lev. = middle --
388 adcroft 1.9 C-----------------------------------------------------------------------
389    
390 jmc 1.14 ELSEIF (Integr_GeoPot.EQ.3) THEN
391     C -- Finite Difference Form, with hFac, Interface_W = middle --
392     C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
393     C Finite Difference formulation consistent with Partial Cell,
394     C Valid & accurate if Interface_W at middle between tracer levels
395     C linear in p between 2 Tracer levels ; conserve energy in the Interior
396     C---------
397     Kp1 = min(Nr,K+1)
398     IF (K.EQ.1) THEN
399     ratioRm=0.5*drF(K)/(rF(k)-rC(K))
400     ratioRp=drF(K)*recip_drC(Kp1)
401     ddPIm=atm_cp*( ((rF( K )/atm_po)**atm_kappa)
402     & -((rC( K )/atm_po)**atm_kappa) ) * 2. _d 0
403     ddPIp=atm_cp*( ((rC( K )/atm_po)**atm_kappa)
404     & -((rC(Kp1)/atm_po)**atm_kappa) )
405     DO j=jMin,jMax
406     DO i=iMin,iMax
407     phiHyd(i,j,K) =
408 mlosch 1.18 & ( ddPIm*max(zero,(_hFacC(i,j,K,bi,bj)-one)*ratioRm+half)
409     & +ddPIp*min(zero, _hFacC(i,j,K,bi,bj)*ratioRp -half) )
410 mlosch 1.20 & *(tFld(i,j, K ,bi,bj)-tRef( K ))
411 jmc 1.14 & * maskC(i,j, K ,bi,bj)
412     ENDDO
413     ENDDO
414     ELSE
415     ratioRm=drF(K)*recip_drC(K)
416     ratioRp=drF(K)*recip_drC(Kp1)
417     ddPIm=atm_cp*( ((rC(K-1)/atm_po)**atm_kappa)
418     & -((rC( K )/atm_po)**atm_kappa) )
419     ddPIp=atm_cp*( ((rC( K )/atm_po)**atm_kappa)
420     & -((rC(Kp1)/atm_po)**atm_kappa) )
421 adcroft 1.9 DO j=jMin,jMax
422 jmc 1.14 DO i=iMin,iMax
423     phiHyd(i,j,K) = phiHyd(i,j,K-1)
424     & + ddPIm*0.5
425 mlosch 1.20 & *(tFld(i,j,K-1,bi,bj)-tRef(K-1))
426 jmc 1.14 & * maskC(i,j,K-1,bi,bj)
427 mlosch 1.18 & +(ddPIm*max(zero,(_hFacC(i,j,K,bi,bj)-one)*ratioRm+half)
428     & +ddPIp*min(zero, _hFacC(i,j,K,bi,bj)*ratioRp -half) )
429 mlosch 1.20 & *(tFld(i,j, K ,bi,bj)-tRef( K ))
430 jmc 1.14 & * maskC(i,j, K ,bi,bj)
431     ENDDO
432 adcroft 1.9 ENDDO
433     ENDIF
434 jmc 1.14 C end: Finite Difference Form, with hFac, Interface_W = middle --
435     C-----------------------------------------------------------------------
436 cnh 1.1
437 jmc 1.14 ELSE
438     STOP 'CALC_PHI_HYD: Bad Integr_GeoPot option !'
439     ENDIF
440 cnh 1.6
441 jmc 1.14 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
442 adcroft 1.9 ELSE
443     STOP 'CALC_PHI_HYD: We should never reach this point!'
444 cnh 1.5 ENDIF
445 cnh 1.1
446 jmc 1.14 #endif /* INCLUDE_PHIHYD_CALCULATION_CODE */
447 cnh 1.6
448 jmc 1.11 RETURN
449     END

  ViewVC Help
Powered by ViewVC 1.1.22