/[MITgcm]/MITgcm/model/src/calc_phi_hyd.F
ViewVC logotype

Annotation of /MITgcm/model/src/calc_phi_hyd.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.13 - (hide annotations) (download)
Mon May 14 21:51:24 2001 UTC (23 years ago) by heimbach
Branch: MAIN
CVS Tags: checkpoint40pre1, checkpoint39
Changes since 1.12: +33 -3 lines
Modifications/fixes to support TAMC differentiability
(mostly missing or wrong directives).

1 heimbach 1.13 C $Header: /u/gcmpack/models/MITgcmUV/model/src/calc_phi_hyd.F,v 1.12 2001/03/25 22:33:52 heimbach Exp $
2     C $Name: checkpoint38 $
3 cnh 1.1
4 cnh 1.6 #include "CPP_OPTIONS.h"
5 cnh 1.1
6 adcroft 1.9 SUBROUTINE CALC_PHI_HYD(
7     I bi, bj, iMin, iMax, jMin, jMax, K,
8     I theta, salt,
9     U phiHyd,
10     I myThid)
11 cnh 1.1 C /==========================================================\
12     C | SUBROUTINE CALC_PHI_HYD |
13 jmc 1.11 C | o Integrate the hydrostatic relation to find the Hydros. |
14     C | Potential (ocean: Pressure/rho ; atmos = geopotential)|
15 adcroft 1.9 C | On entry: |
16     C | theta,salt are the current thermodynamics quantities|
17     C | (unchanged on exit) |
18 jmc 1.11 C | phiHyd(i,j,1:k-1) is the hydrostatic Potential |
19 adcroft 1.9 C | at cell centers (tracer points) |
20     C | - 1:k-1 layers are valid |
21     C | - k:Nr layers are invalid |
22 jmc 1.11 C | phiHyd(i,j,k) is the hydrostatic Potential |
23 adcroft 1.9 C | at cell the interface k (w point above) |
24     C | On exit: |
25 jmc 1.11 C | phiHyd(i,j,1:k) is the hydrostatic Potential |
26 adcroft 1.9 C | at cell centers (tracer points) |
27     C | - 1:k layers are valid |
28     C | - k+1:Nr layers are invalid |
29 jmc 1.11 C | phiHyd(i,j,k+1) is the hydrostatic Potential (P/rho) |
30 adcroft 1.9 C | at cell the interface k+1 (w point below)|
31     C | |
32 cnh 1.1 C \==========================================================/
33     IMPLICIT NONE
34     C == Global variables ==
35     #include "SIZE.h"
36     #include "GRID.h"
37     #include "EEPARAMS.h"
38     #include "PARAMS.h"
39 heimbach 1.13 #ifdef ALLOW_AUTODIFF_TAMC
40     #include "tamc.h"
41     #include "tamc_keys.h"
42     #endif /* ALLOW_AUTODIFF_TAMC */
43    
44 cnh 1.1 C == Routine arguments ==
45     INTEGER bi,bj,iMin,iMax,jMin,jMax,K
46 adcroft 1.9 _RL theta(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
47     _RL salt(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
48 cnh 1.2 _RL phiHyd(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
49 adcroft 1.9 INTEGER myThid
50    
51     #ifdef INCLUDE_PHIHYD_CALCULATION_CODE
52    
53 cnh 1.1 C == Local variables ==
54 adcroft 1.9 INTEGER i,j
55     _RL alphaRho(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
56     _RL dRloc,dRlocKp1
57     _RL ddRm1, ddRp1, ddRm, ddRp
58     _RL atm_cp, atm_kappa, atm_po
59    
60 heimbach 1.13 #ifdef ALLOW_AUTODIFF_TAMC
61     act1 = bi - myBxLo(myThid)
62     max1 = myBxHi(myThid) - myBxLo(myThid) + 1
63    
64     act2 = bj - myByLo(myThid)
65     max2 = myByHi(myThid) - myByLo(myThid) + 1
66    
67     act3 = myThid - 1
68     max3 = nTx*nTy
69    
70     act4 = ikey_dynamics - 1
71    
72     ikey = (act1 + 1) + act2*max1
73     & + act3*max1*max2
74     & + act4*max1*max2*max3
75     #endif /* ALLOW_AUTODIFF_TAMC */
76    
77 adcroft 1.9 IF ( buoyancyRelation .eq. 'OCEANIC' ) THEN
78     C This is the hydrostatic pressure calculation for the Ocean
79     C which uses the FIND_RHO() routine to calculate density
80     C before integrating g*rho over the current layer/interface
81    
82     dRloc=drC(k)
83     IF (k.EQ.1) dRloc=drF(1)
84     IF (k.EQ.Nr) THEN
85     dRlocKp1=0.
86     ELSE
87     dRlocKp1=drC(k+1)
88     ENDIF
89    
90     C-- If this is the top layer we impose the boundary condition
91     C P(z=eta) = P(atmospheric_loading)
92     IF (k.EQ.1) THEN
93     DO j=jMin,jMax
94     DO i=iMin,iMax
95     C *NOTE* The loading should go here but has not been implemented yet
96     phiHyd(i,j,k)=0.
97     ENDDO
98     ENDDO
99     ENDIF
100    
101     C Calculate density
102 heimbach 1.13 #ifdef ALLOW_AUTODIFF_TAMC
103     kkey = (ikey-1)*Nr + k
104     CADJ STORE theta(:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
105     CADJ STORE salt (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
106     #endif /* ALLOW_AUTODIFF_TAMC */
107 adcroft 1.9 CALL FIND_RHO( bi, bj, iMin, iMax, jMin, jMax, k, k, eosType,
108     & theta, salt,
109     & alphaRho, myThid)
110    
111     C Hydrostatic pressure at cell centers
112     DO j=jMin,jMax
113     DO i=iMin,iMax
114     #ifdef ALLOW_AUTODIFF_TAMC
115 heimbach 1.13 c Patrick, is this directive correct or even necessary in
116     c this new code?
117     c Yes, because of phiHyd(i,j,k+1)=phiHyd(i,j,k)+...
118     c within the k-loop.
119 adcroft 1.9 CADJ GENERAL
120     #endif /* ALLOW_AUTODIFF_TAMC */
121    
122     C---------- This discretization is the "finite volume" form
123     C which has not been used to date since it does not
124     C conserve KE+PE exactly even though it is more natural
125     C
126     c IF (k.LT.Nr) phiHyd(i,j,k+1)=phiHyd(i,j,k)+
127 jmc 1.11 c & drF(K)*gravity*alphaRho(i,j)*recip_rhoConst
128 adcroft 1.9 c phiHyd(i,j,k)=phiHyd(i,j,k)+
129 jmc 1.11 c & 0.5*drF(K)*gravity*alphaRho(i,j)*recip_rhoConst
130 adcroft 1.9 C-----------------------------------------------------------------------
131    
132     C---------- This discretization is the "energy conserving" form
133     C which has been used since at least Adcroft et al., MWR 1997
134     C
135     phiHyd(i,j,k)=phiHyd(i,j,k)+
136 jmc 1.11 & 0.5*dRloc*gravity*alphaRho(i,j)*recip_rhoConst
137 adcroft 1.9 IF (k.LT.Nr) phiHyd(i,j,k+1)=phiHyd(i,j,k)+
138 jmc 1.11 & 0.5*dRlocKp1*gravity*alphaRho(i,j)*recip_rhoConst
139 adcroft 1.9 C-----------------------------------------------------------------------
140     ENDDO
141     ENDDO
142    
143    
144    
145     ELSEIF ( buoyancyRelation .eq. 'ATMOSPHERIC' ) THEN
146     C This is the hydrostatic geopotential calculation for the Atmosphere
147     C The ideal gas law is used implicitly here rather than calculating
148     C the specific volume, analogous to the oceanic case.
149    
150     C Integrate d Phi / d pi
151    
152     C *NOTE* These constants should be in the data file and PARAMS.h
153     atm_cp=1004. _d 0
154     atm_kappa=2. _d 0/7. _d 0
155     atm_po=1. _d 5
156     IF (K.EQ.1) THEN
157     ddRp1=atm_cp*( ((rC(K)/atm_po)**atm_kappa)
158     & -((rF(K)/atm_po)**atm_kappa) )
159     DO j=jMin,jMax
160     DO i=iMin,iMax
161     ddRp=ddRp1
162     IF (hFacC(I,J, K ,bi,bj).EQ.0.) ddRp=0.
163     C------------ The integration for the first level phi(k=1) is the
164     C same for both the "finite volume" and energy conserving
165     C methods.
166     C *NOTE* The geopotential boundary condition should go
167     C here but has not been implemented yet
168     phiHyd(i,j,K)=0.
169     & -ddRp*(theta(I,J,K,bi,bj)-tRef(K))
170     C-----------------------------------------------------------------------
171     ENDDO
172     ENDDO
173     ELSE
174    
175     C-------- This discretization is the "finite volume" form which
176     C integrates the hydrostatic equation of each half/sub-layer.
177     C This seems most natural and could easily allow for lopped cells
178     C by replacing rF(K) with the height of the surface (not implemented).
179     C in the lower layers (e.g. at k=1).
180     C
181     c ddRm1=atm_cp*( ((rF( K )/atm_po)**atm_kappa)
182     c & -((rC(K-1)/atm_po)**atm_kappa) )
183     c ddRp1=atm_cp*( ((rC( K )/atm_po)**atm_kappa)
184     c & -((rF( K )/atm_po)**atm_kappa) )
185     C-----------------------------------------------------------------------
186    
187    
188     C-------- This discretization is the energy conserving form
189     ddRp1=atm_cp*( ((rC( K )/atm_po)**atm_kappa)
190     & -((rC(K-1)/atm_po)**atm_kappa) )*0.5
191     ddRm1=ddRp1
192     C-----------------------------------------------------------------------
193    
194     DO j=jMin,jMax
195     DO i=iMin,iMax
196     ddRp=ddRp1
197     ddRm=ddRm1
198     IF (hFacC(I,J, K ,bi,bj).EQ.0.) ddRp=0.
199     IF (hFacC(I,J,K-1,bi,bj).EQ.0.) ddRm=0.
200     phiHyd(i,j,K)=phiHyd(i,j,K-1)
201     & -( ddRm*(theta(I,J,K-1,bi,bj)-tRef(K-1))
202     & +ddRp*(theta(I,J, K ,bi,bj)-tRef( K )) )
203     C Old code (atmos-exact) looked like this
204     Cold phiHyd(i,j,K)=phiHyd(i,j,K-1) - ddRm1*
205     Cold & (theta(I,J,K-1,bi,bj)+theta(I,J,K,bi,bj)-2.*tRef(K))
206     ENDDO
207     ENDDO
208     ENDIF
209 cnh 1.1
210 cnh 1.6
211 adcroft 1.9 ELSE
212     STOP 'CALC_PHI_HYD: We should never reach this point!'
213 cnh 1.5 ENDIF
214 cnh 1.1
215 cnh 1.6 #endif
216    
217 jmc 1.11 RETURN
218     END

  ViewVC Help
Powered by ViewVC 1.1.22