/[MITgcm]/MITgcm/model/src/calc_phi_hyd.F
ViewVC logotype

Annotation of /MITgcm/model/src/calc_phi_hyd.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.11 - (hide annotations) (download)
Thu Mar 8 20:21:34 2001 UTC (23 years, 2 months ago) by jmc
Branch: MAIN
CVS Tags: pre38tag1, pre38-close, checkpoint37
Branch point for: pre38
Changes since 1.10: +14 -15 lines
change units of PhiHyd (ocean) to have unified units for all potential Phi

1 jmc 1.11 C $Header: /u/gcmpack/models/MITgcmUV/model/src/calc_phi_hyd.F,v 1.10 2001/02/04 14:38:46 cnh Exp $
2     C $Name: $
3 cnh 1.1
4 cnh 1.6 #include "CPP_OPTIONS.h"
5 cnh 1.1
6 adcroft 1.9 SUBROUTINE CALC_PHI_HYD(
7     I bi, bj, iMin, iMax, jMin, jMax, K,
8     I theta, salt,
9     U phiHyd,
10     I myThid)
11 cnh 1.1 C /==========================================================\
12     C | SUBROUTINE CALC_PHI_HYD |
13 jmc 1.11 C | o Integrate the hydrostatic relation to find the Hydros. |
14     C | Potential (ocean: Pressure/rho ; atmos = geopotential)|
15 adcroft 1.9 C | On entry: |
16     C | theta,salt are the current thermodynamics quantities|
17     C | (unchanged on exit) |
18 jmc 1.11 C | phiHyd(i,j,1:k-1) is the hydrostatic Potential |
19 adcroft 1.9 C | at cell centers (tracer points) |
20     C | - 1:k-1 layers are valid |
21     C | - k:Nr layers are invalid |
22 jmc 1.11 C | phiHyd(i,j,k) is the hydrostatic Potential |
23 adcroft 1.9 C | at cell the interface k (w point above) |
24     C | On exit: |
25 jmc 1.11 C | phiHyd(i,j,1:k) is the hydrostatic Potential |
26 adcroft 1.9 C | at cell centers (tracer points) |
27     C | - 1:k layers are valid |
28     C | - k+1:Nr layers are invalid |
29 jmc 1.11 C | phiHyd(i,j,k+1) is the hydrostatic Potential (P/rho) |
30 adcroft 1.9 C | at cell the interface k+1 (w point below)|
31     C | |
32 cnh 1.1 C \==========================================================/
33     IMPLICIT NONE
34     C == Global variables ==
35     #include "SIZE.h"
36     #include "GRID.h"
37     #include "EEPARAMS.h"
38     #include "PARAMS.h"
39     C == Routine arguments ==
40     INTEGER bi,bj,iMin,iMax,jMin,jMax,K
41 adcroft 1.9 _RL theta(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
42     _RL salt(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
43 cnh 1.2 _RL phiHyd(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
44 adcroft 1.9 INTEGER myThid
45    
46     #ifdef INCLUDE_PHIHYD_CALCULATION_CODE
47    
48 cnh 1.1 C == Local variables ==
49 adcroft 1.9 INTEGER i,j
50     _RL alphaRho(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
51     _RL dRloc,dRlocKp1
52     _RL ddRm1, ddRp1, ddRm, ddRp
53     _RL atm_cp, atm_kappa, atm_po
54    
55     IF ( buoyancyRelation .eq. 'OCEANIC' ) THEN
56     C This is the hydrostatic pressure calculation for the Ocean
57     C which uses the FIND_RHO() routine to calculate density
58     C before integrating g*rho over the current layer/interface
59    
60     dRloc=drC(k)
61     IF (k.EQ.1) dRloc=drF(1)
62     IF (k.EQ.Nr) THEN
63     dRlocKp1=0.
64     ELSE
65     dRlocKp1=drC(k+1)
66     ENDIF
67    
68     C-- If this is the top layer we impose the boundary condition
69     C P(z=eta) = P(atmospheric_loading)
70     IF (k.EQ.1) THEN
71     DO j=jMin,jMax
72     DO i=iMin,iMax
73     C *NOTE* The loading should go here but has not been implemented yet
74     phiHyd(i,j,k)=0.
75     ENDDO
76     ENDDO
77     ENDIF
78    
79     C Calculate density
80     CALL FIND_RHO( bi, bj, iMin, iMax, jMin, jMax, k, k, eosType,
81     & theta, salt,
82     & alphaRho, myThid)
83    
84     C Hydrostatic pressure at cell centers
85     DO j=jMin,jMax
86     DO i=iMin,iMax
87     #ifdef ALLOW_AUTODIFF_TAMC
88     Is this directive correct or even necessary in this new code?
89     CADJ GENERAL
90     #endif /* ALLOW_AUTODIFF_TAMC */
91    
92     C---------- This discretization is the "finite volume" form
93     C which has not been used to date since it does not
94     C conserve KE+PE exactly even though it is more natural
95     C
96     c IF (k.LT.Nr) phiHyd(i,j,k+1)=phiHyd(i,j,k)+
97 jmc 1.11 c & drF(K)*gravity*alphaRho(i,j)*recip_rhoConst
98 adcroft 1.9 c phiHyd(i,j,k)=phiHyd(i,j,k)+
99 jmc 1.11 c & 0.5*drF(K)*gravity*alphaRho(i,j)*recip_rhoConst
100 adcroft 1.9 C-----------------------------------------------------------------------
101    
102     C---------- This discretization is the "energy conserving" form
103     C which has been used since at least Adcroft et al., MWR 1997
104     C
105     phiHyd(i,j,k)=phiHyd(i,j,k)+
106 jmc 1.11 & 0.5*dRloc*gravity*alphaRho(i,j)*recip_rhoConst
107 adcroft 1.9 IF (k.LT.Nr) phiHyd(i,j,k+1)=phiHyd(i,j,k)+
108 jmc 1.11 & 0.5*dRlocKp1*gravity*alphaRho(i,j)*recip_rhoConst
109 adcroft 1.9 C-----------------------------------------------------------------------
110     ENDDO
111     ENDDO
112    
113    
114    
115     ELSEIF ( buoyancyRelation .eq. 'ATMOSPHERIC' ) THEN
116     C This is the hydrostatic geopotential calculation for the Atmosphere
117     C The ideal gas law is used implicitly here rather than calculating
118     C the specific volume, analogous to the oceanic case.
119    
120     C Integrate d Phi / d pi
121    
122     C *NOTE* These constants should be in the data file and PARAMS.h
123     atm_cp=1004. _d 0
124     atm_kappa=2. _d 0/7. _d 0
125     atm_po=1. _d 5
126     IF (K.EQ.1) THEN
127     ddRp1=atm_cp*( ((rC(K)/atm_po)**atm_kappa)
128     & -((rF(K)/atm_po)**atm_kappa) )
129     DO j=jMin,jMax
130     DO i=iMin,iMax
131     ddRp=ddRp1
132     IF (hFacC(I,J, K ,bi,bj).EQ.0.) ddRp=0.
133     C------------ The integration for the first level phi(k=1) is the
134     C same for both the "finite volume" and energy conserving
135     C methods.
136     C *NOTE* The geopotential boundary condition should go
137     C here but has not been implemented yet
138     phiHyd(i,j,K)=0.
139     & -ddRp*(theta(I,J,K,bi,bj)-tRef(K))
140     C-----------------------------------------------------------------------
141     ENDDO
142     ENDDO
143     ELSE
144    
145     C-------- This discretization is the "finite volume" form which
146     C integrates the hydrostatic equation of each half/sub-layer.
147     C This seems most natural and could easily allow for lopped cells
148     C by replacing rF(K) with the height of the surface (not implemented).
149     C in the lower layers (e.g. at k=1).
150     C
151     c ddRm1=atm_cp*( ((rF( K )/atm_po)**atm_kappa)
152     c & -((rC(K-1)/atm_po)**atm_kappa) )
153     c ddRp1=atm_cp*( ((rC( K )/atm_po)**atm_kappa)
154     c & -((rF( K )/atm_po)**atm_kappa) )
155     C-----------------------------------------------------------------------
156    
157    
158     C-------- This discretization is the energy conserving form
159     ddRp1=atm_cp*( ((rC( K )/atm_po)**atm_kappa)
160     & -((rC(K-1)/atm_po)**atm_kappa) )*0.5
161     ddRm1=ddRp1
162     C-----------------------------------------------------------------------
163    
164     DO j=jMin,jMax
165     DO i=iMin,iMax
166     ddRp=ddRp1
167     ddRm=ddRm1
168     IF (hFacC(I,J, K ,bi,bj).EQ.0.) ddRp=0.
169     IF (hFacC(I,J,K-1,bi,bj).EQ.0.) ddRm=0.
170     phiHyd(i,j,K)=phiHyd(i,j,K-1)
171     & -( ddRm*(theta(I,J,K-1,bi,bj)-tRef(K-1))
172     & +ddRp*(theta(I,J, K ,bi,bj)-tRef( K )) )
173     C Old code (atmos-exact) looked like this
174     Cold phiHyd(i,j,K)=phiHyd(i,j,K-1) - ddRm1*
175     Cold & (theta(I,J,K-1,bi,bj)+theta(I,J,K,bi,bj)-2.*tRef(K))
176     ENDDO
177     ENDDO
178     ENDIF
179 cnh 1.1
180 cnh 1.6
181 adcroft 1.9 ELSE
182     STOP 'CALC_PHI_HYD: We should never reach this point!'
183 cnh 1.5 ENDIF
184 cnh 1.1
185 cnh 1.6 #endif
186    
187 jmc 1.11 RETURN
188     END

  ViewVC Help
Powered by ViewVC 1.1.22