/[MITgcm]/MITgcm/model/src/calc_gw.F
ViewVC logotype

Diff of /MITgcm/model/src/calc_gw.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.12 by jmc, Mon Apr 5 21:46:18 2004 UTC revision 1.15 by mlosch, Tue May 25 07:48:22 2004 UTC
# Line 27  C     !USES: Line 27  C     !USES:
27  C     == Global variables ==  C     == Global variables ==
28  #include "SIZE.h"  #include "SIZE.h"
29  #include "DYNVARS.h"  #include "DYNVARS.h"
 #include "FFIELDS.h"  
30  #include "EEPARAMS.h"  #include "EEPARAMS.h"
31  #include "PARAMS.h"  #include "PARAMS.h"
32  #include "GRID.h"  #include "GRID.h"
# Line 58  C     flx_Dn       :: Temp. used for fVo Line 57  C     flx_Dn       :: Temp. used for fVo
57  C     I,J,K - Loop counters  C     I,J,K - Loop counters
58        INTEGER i,j,k, kP1, kUp        INTEGER i,j,k, kP1, kUp
59        _RL  wOverride        _RL  wOverride
60        _RS  hFacROpen        _RS  hFacWtmp
61        _RS  hFacRClosed        _RS  hFacStmp
62        _RL ab15,ab05        _RL ab15,ab05
63        _RL slipSideFac        _RL slipSideFac
64        _RL tmp_VbarZ, tmp_UbarZ, tmp_WbarZ        _RL tmp_VbarZ, tmp_UbarZ, tmp_WbarZ
65    
66        _RL  Half        _RL  Half
67        PARAMETER(Half=0.5D0)        PARAMETER(Half=0.5D0)
   
 #define I0 1  
 #define In sNx  
 #define J0 1  
 #define Jn sNy  
68  CEOP  CEOP
69    
70  ceh3 needs an IF ( useNONHYDROSTATIC ) THEN  ceh3 needs an IF ( useNONHYDROSTATIC ) THEN
71    
72          iMin = 1
73          iMax = sNx
74          jMin = 1
75          jMax = sNy
76    
77  C     Adams-Bashforth timestepping weights  C     Adams-Bashforth timestepping weights
78        ab15 =  1.5 _d 0 + abeps        ab15 =  1.5 _d 0 + abeps
79        ab05 = -0.5 _d 0 - abeps        ab05 = -0.5 _d 0 - abeps
80    
81  C     Lateral friction (no-slip, free slip, or half slip):  C     Lateral friction (no-slip, free slip, or half slip):
82        IF ( no_slip_sides ) THEN        IF ( no_slip_sides ) THEN
83          slipSideFac = -Half          slipSideFac = -1. _d 0
84        ELSE        ELSE
85          slipSideFac =  Half          slipSideFac =  1. _d 0
86        ENDIF        ENDIF
87  C-    half slip was used before ; keep it for now.  CML   half slip was used before ; keep it for now, but half slip is
88          slipSideFac = 0. _d 0  CML   not used anywhere in the code as far as I can see
89    C        slipSideFac = 0. _d 0
90    
91        DO bj=myByLo(myThid),myByHi(myThid)        DO bj=myByLo(myThid),myByHi(myThid)
92         DO bi=myBxLo(myThid),myBxHi(myThid)         DO bi=myBxLo(myThid),myBxHi(myThid)
# Line 109  C For each tile Line 109  C For each tile
109         DO bi=myBxLo(myThid),myBxHi(myThid)         DO bi=myBxLo(myThid),myBxHi(myThid)
110    
111  C Boundaries condition at top  C Boundaries condition at top
112          DO J=J0,Jn          DO J=jMin,jMax
113           DO I=I0,In           DO I=iMin,iMax
114            Flx_Dn(I,J,bi,bj)=0.            Flx_Dn(I,J,bi,bj)=0.
115           ENDDO           ENDDO
116          ENDDO          ENDDO
# Line 124  C Sweep down column Line 124  C Sweep down column
124            wOverRide=0.            wOverRide=0.
125           endif           endif
126  C Flux on Southern face  C Flux on Southern face
127           DO J=J0,Jn+1           DO J=jMin,jMax+1
128            DO I=I0,In            DO I=iMin,iMax
129    C     First compute the fraction of open water for the w-control volume
130    C     at the southern face
131               hFacStmp=max(hFacS(I,J,K-1,bi,bj)-Half,0)
132         &         +    min(hFacS(I,J,K  ,bi,bj),Half)
133             tmp_VbarZ=Half*(             tmp_VbarZ=Half*(
134       &          _hFacS(I,J,K-1,bi,bj)*vVel( I ,J,K-1,bi,bj)       &          _hFacS(I,J,K-1,bi,bj)*vVel( I ,J,K-1,bi,bj)
135       &         +_hFacS(I,J, K ,bi,bj)*vVel( I ,J, K ,bi,bj))       &         +_hFacS(I,J, K ,bi,bj)*vVel( I ,J, K ,bi,bj))
136             Flx_NS(I,J,bi,bj)=             Flx_NS(I,J,bi,bj)=
137       &     tmp_VbarZ*Half*(wVel(I,J,K,bi,bj)+wVel(I,J-1,K,bi,bj))       &     tmp_VbarZ*Half*(wVel(I,J,K,bi,bj)+wVel(I,J-1,K,bi,bj))
138       &    -viscAh*_recip_dyC(I,J,bi,bj)         &    -viscAh*_recip_dyC(I,J,bi,bj)  
139       &      *(1. _d 0 + slipSideFac*       &       *(hFacStmp*(wVel(I,J,K,bi,bj)-wVel(I,J-1,K,bi,bj))
140       &         (maskS(I,J,K-1,bi,bj)+maskS(I,J,K,bi,bj)-2. _d 0))       &        +(1. _d 0 - hFacStmp)*(1. _d 0 - slipSideFac)
141       &                   *(wVel(I,J,K,bi,bj)-wVel(I,J-1,K,bi,bj))       &         *wVel(I,J,K,bi,bj))
142    C     The last term is the weighted average of the viscous stress at the open
143    C     fraction of the w control volume and at the closed fraction of the
144    C     the control volume. A more compact but less intelligible version
145    C     of the last three lines is:
146    CML     &       *( (1 _d 0 - slipSideFac*(1 _d 0 - hFacStmp))
147    CML     &       *wVel(I,J,K,bi,bi) + hFacStmp*wVel(I,J-1,K,bi,bj) )
148            ENDDO            ENDDO
149           ENDDO           ENDDO
150  C Flux on Western face  C Flux on Western face
151           DO J=J0,Jn           DO J=jMin,jMax
152            DO I=I0,In+1            DO I=iMin,iMax+1
153             tmp_UbarZ=Half*(  C     First compute the fraction of open water for the w-control volume
154    C     at the western face
155               hFacWtmp=max(hFacW(I,J,K-1,bi,bj)-Half,0)
156         &         +    min(hFacW(I,J,K  ,bi,bj),Half)
157                     tmp_UbarZ=Half*(
158       &         _hFacW(I,J,K-1,bi,bj)*uVel( I ,J,K-1,bi,bj)       &         _hFacW(I,J,K-1,bi,bj)*uVel( I ,J,K-1,bi,bj)
159       &        +_hFacW(I,J, K ,bi,bj)*uVel( I ,J, K ,bi,bj))       &        +_hFacW(I,J, K ,bi,bj)*uVel( I ,J, K ,bi,bj))
160             Flx_EW(I,J,bi,bj)=             Flx_EW(I,J,bi,bj)=
161       &     tmp_UbarZ*Half*(wVel(I,J,K,bi,bj)+wVel(I-1,J,K,bi,bj))       &     tmp_UbarZ*Half*(wVel(I,J,K,bi,bj)+wVel(I-1,J,K,bi,bj))
162       &    -viscAh*_recip_dxC(I,J,bi,bj)       &    -viscAh*_recip_dxC(I,J,bi,bj)
163       &      *(1. _d 0 + slipSideFac*       &      *(hFacWtmp*(wVel(I,J,K,bi,bj)-wVel(I-1,J,K,bi,bj))
164       &         (maskW(I,J,K-1,bi,bj)+maskW(I,J,K,bi,bj)-2. _d 0))       &       +(1 _d 0 - hFacWtmp)*(1 _d 0 - slipSideFac)
165       &                   *(wVel(I,J,K,bi,bj)-wVel(I-1,J,K,bi,bj))       &        *wVel(I,J,K,bi,bj) )
166    C     The last term is the weighted average of the viscous stress at the open
167    C     fraction of the w control volume and at the closed fraction of the
168    C     the control volume. A more compact but less intelligible version
169    C     of the last three lines is:
170    CML     &       *( (1 _d 0 - slipSideFac*(1 _d 0 - hFacWtmp))
171    CML     &       *wVel(I,J,K,bi,bi) + hFacWtmp*wVel(I-1,J,K,bi,bj) )
172            ENDDO            ENDDO
173           ENDDO           ENDDO
174  C Flux on Lower face  C Flux on Lower face
175           DO J=J0,Jn           DO J=jMin,jMax
176            DO I=I0,In            DO I=iMin,iMax
177             Flx_Up(I,J,bi,bj)=Flx_Dn(I,J,bi,bj)             Flx_Up(I,J,bi,bj)=Flx_Dn(I,J,bi,bj)
178             tmp_WbarZ=Half*(wVel(I,J,K,bi,bj)+wVel(I,J,Kp1,bi,bj))             tmp_WbarZ=Half*(wVel(I,J,K,bi,bj)
179         &         +wOverRide*wVel(I,J,Kp1,bi,bj))
180             Flx_Dn(I,J,bi,bj)=             Flx_Dn(I,J,bi,bj)=
181       &     tmp_WbarZ*tmp_WbarZ       &     tmp_WbarZ*tmp_WbarZ
182       &    -viscAr*recip_drF(K)       &    -viscAr*recip_drF(K)
# Line 163  C Flux on Lower face Line 184  C Flux on Lower face
184            ENDDO            ENDDO
185           ENDDO           ENDDO
186  C        Divergence of fluxes  C        Divergence of fluxes
187           DO J=J0,Jn           DO J=jMin,jMax
188            DO I=I0,In            DO I=iMin,iMax
189             gW(I,J,K,bi,bj) = 0.             gW(I,J,K,bi,bj) = 0.
190       &      -(       &      -(
191       &        +_recip_dxF(I,J,bi,bj)*(       &        +_recip_dxF(I,J,bi,bj)*(
# Line 188  caja           and an hFacUS (above V po Line 209  caja           and an hFacUS (above V po
209        DO bj=myByLo(myThid),myByHi(myThid)        DO bj=myByLo(myThid),myByHi(myThid)
210         DO bi=myBxLo(myThid),myBxHi(myThid)         DO bi=myBxLo(myThid),myBxHi(myThid)
211          DO K=2,Nr          DO K=2,Nr
212           DO j=J0,Jn           DO j=jMin,jMax
213            DO i=I0,In            DO i=iMin,iMax
214             wVel(i,j,k,bi,bj) = wVel(i,j,k,bi,bj)             wVel(i,j,k,bi,bj) = wVel(i,j,k,bi,bj)
215       &     +deltatMom*( ab15*gW(i,j,k,bi,bj)       &     +deltatMom*( ab15*gW(i,j,k,bi,bj)
216       &                 +ab05*gWNM1(i,j,k,bi,bj) )       &                 +ab05*gWNM1(i,j,k,bi,bj) )

Legend:
Removed from v.1.12  
changed lines
  Added in v.1.15

  ViewVC Help
Powered by ViewVC 1.1.22