/[MITgcm]/MITgcm/model/src/calc_gtr1.F
ViewVC logotype

Contents of /MITgcm/model/src/calc_gtr1.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.1 - (show annotations) (download)
Fri Jul 13 14:26:57 2001 UTC (22 years, 10 months ago) by heimbach
Branch: MAIN
CVS Tags: checkpoint40pre2, checkpoint40pre5, checkpoint40pre6, checkpoint40pre4, checkpoint40pre3, checkpoint40pre7
o Added grdchk package handling
o Added passive tracer handling

1 C $Header: /u/gcmpack/models/MITgcmUV/model/src/calc_gt.F,v 1.32 2001/05/29 14:01:36 adcroft Exp $
2 C $Name: checkpoint40pre1 $
3
4 #include "CPP_OPTIONS.h"
5
6 #define COSINEMETH_III
7 #undef ISOTROPIC_COS_SCALING
8
9 CStartOfInterFace
10 SUBROUTINE CALC_GTR1(
11 I bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,
12 I xA,yA,uTrans,vTrans,rTrans,maskUp,
13 I KappaRT,
14 U fVerT,
15 I myCurrentTime, myThid )
16 C /==========================================================\
17 C | SUBROUTINE CALC_GTR1 |
18 C | o Calculate the passive tracer tendency terms. |
19 C |==========================================================|
20 C | A procedure called EXTERNAL_FORCING_TR1 is called from |
21 C | here. These procedures can be used to add per problem |
22 C | heat flux source terms. |
23 C | Note: Although it is slightly counter-intuitive the |
24 C | EXTERNAL_FORCING routine is not the place to put |
25 C | file I/O. Instead files that are required to |
26 C | calculate the external source terms are generally |
27 C | read during the model main loop. This makes the |
28 C | logisitics of multi-processing simpler and also |
29 C | makes the adjoint generation simpler. It also |
30 C | allows for I/O to overlap computation where that |
31 C | is supported by hardware. |
32 C | Aside from the problem specific term the code here |
33 C | forms the tendency terms due to advection and mixing |
34 C | The baseline implementation here uses a centered |
35 C | difference form for the advection term and a tensorial |
36 C | divergence of a flux form for the diffusive term. The |
37 C | diffusive term is formulated so that isopycnal mixing and|
38 C | GM-style subgrid-scale terms can be incorporated b simply|
39 C | setting the diffusion tensor terms appropriately. |
40 C \==========================================================/
41 IMPLICIT NONE
42
43 C == GLobal variables ==
44 #include "SIZE.h"
45 #include "DYNVARS.h"
46 #include "EEPARAMS.h"
47 #include "PARAMS.h"
48 #include "GRID.h"
49 #include "FFIELDS.h"
50 #include "TR1.h"
51 c #include "GM_ARRAYS.h"
52
53
54 C == Routine arguments ==
55 C fVerT - Flux of passive tracer (TR1) in the vertical
56 C direction at the upper(U) and lower(D) faces of a cell.
57 C maskUp - Land mask used to denote base of the domain.
58 C xA - Tracer cell face area normal to X
59 C yA - Tracer cell face area normal to X
60 C uTrans - Zonal volume transport through cell face
61 C vTrans - Meridional volume transport through cell face
62 C rTrans - Vertical volume transport through cell face
63 C bi, bj, iMin, iMax, jMin, jMax - Range of points for which calculation
64 C results will be set.
65 C myThid - Instance number for this innvocation of CALC_GTR1
66 _RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
67 _RS xA (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
68 _RS yA (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
69 _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
70 _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
71 _RL rTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
72 _RS maskUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
73 _RL KappaRT(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
74 INTEGER k,kUp,kDown,kM1
75 INTEGER bi,bj,iMin,iMax,jMin,jMax
76 INTEGER myThid
77 _RL myCurrentTime
78 CEndOfInterface
79
80 C == Local variables ==
81 C I, J, K - Loop counters
82 INTEGER i,j
83 LOGICAL TOP_LAYER
84 _RL afFacT, dfFacT
85 _RL df4 (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
86 _RL fZon (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
87 _RL fMer (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
88 _RL af (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
89 _RL df (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
90
91 #ifdef ALLOW_AUTODIFF_TAMC
92 C-- only the kUp part of fverT is set in this subroutine
93 C-- the kDown is still required
94 fVerT(1,1,kDown) = fVerT(1,1,kDown)
95 #endif
96 DO j=1-OLy,sNy+OLy
97 DO i=1-OLx,sNx+OLx
98 fZon(i,j) = 0.0
99 fMer(i,j) = 0.0
100 fVerT(i,j,kUp) = 0.0
101 ENDDO
102 ENDDO
103
104 afFacT = 1. _d 0
105 dfFacT = 1. _d 0
106 TOP_LAYER = K .EQ. 1
107
108 C--- Calculate advective and diffusive fluxes between cells.
109
110 #ifdef INCLUDE_TR1_DIFFUSION_CODE
111 C o Zonal tracer gradient
112 DO j=1-Oly,sNy+Oly
113 DO i=1-Olx+1,sNx+Olx
114 fZon(i,j) = _recip_dxC(i,j,bi,bj)*xA(i,j)
115 & *(tr1(i,j,k,bi,bj)-tr1(i-1,j,k,bi,bj))
116 #ifdef COSINEMETH_III
117 & *sqCosFacU(j,bi,bj)
118 #endif
119 ENDDO
120 ENDDO
121 C o Meridional tracer gradient
122 DO j=1-Oly+1,sNy+Oly
123 DO i=1-Olx,sNx+Olx
124 fMer(i,j) = _recip_dyC(i,j,bi,bj)*yA(i,j)
125 & *(tr1(i,j,k,bi,bj)-tr1(i,j-1,k,bi,bj))
126 #ifdef ISOTROPIC_COS_SCALING
127 #ifdef COSINEMETH_III
128 & *sqCosFacV(j,bi,bj)
129 #endif
130 #endif
131 ENDDO
132 ENDDO
133 C-- del^2 of T, needed for bi-harmonic (del^4) term
134 IF (diffK4T .NE. 0.) THEN
135 DO j=1-Oly+1,sNy+Oly-1
136 DO i=1-Olx+1,sNx+Olx-1
137 df4(i,j)= _recip_hFacC(i,j,k,bi,bj)
138 & *recip_drF(k)/_rA(i,j,bi,bj)
139 & *(
140 & +( fZon(i+1,j)-fZon(i,j) )
141 & +( fMer(i,j+1)-fMer(i,j) )
142 & )
143 ENDDO
144 ENDDO
145 ENDIF
146 #endif
147
148 C-- Zonal flux (fZon is at west face of "tr1" cell)
149 #ifdef INCLUDE_TR1_ADVECTION_CODE
150 C o Advective component of zonal flux
151 DO j=jMin,jMax
152 DO i=iMin,iMax
153 af(i,j) =
154 & uTrans(i,j)*(tr1(i,j,k,bi,bj)+tr1(i-1,j,k,bi,bj))*0.5 _d 0
155 ENDDO
156 ENDDO
157 #endif /* INCLUDE_TR1_ADVECTION_CODE */
158 #ifdef INCLUDE_TR1_DIFFUSION_CODE
159 C o Diffusive component of zonal flux
160 DO j=jMin,jMax
161 DO i=iMin,iMax
162 df(i,j) = -diffKhT*xA(i,j)*_recip_dxC(i,j,bi,bj)*
163 & (tr1(i,j,k,bi,bj)-tr1(i-1,j,k,bi,bj))
164 & *CosFacU(j,bi,bj)
165 ENDDO
166 ENDDO
167 #ifdef ALLOW_GMREDI
168 IF (useGMRedi) CALL GMREDI_XTRANSPORT(
169 I iMin,iMax,jMin,jMax,bi,bj,K,
170 I xA,tr1,
171 U df,
172 I myThid)
173 #endif
174 C o Add the bi-harmonic contribution
175 IF (diffK4T .NE. 0.) THEN
176 DO j=jMin,jMax
177 DO i=iMin,iMax
178 df(i,j) = df(i,j) + xA(i,j)*
179 & diffK4T*(df4(i,j)-df4(i-1,j))*_recip_dxC(i,j,bi,bj)
180 #ifdef COSINEMETH_III
181 & *sqCosFacU(j,bi,bj)
182 #else
183 & *CosFacU(j,bi,bj)
184 #endif
185 ENDDO
186 ENDDO
187 ENDIF
188 #endif /* INCLUDE_TR1_DIFFUSION_CODE */
189 C o Net zonal flux
190 DO j=jMin,jMax
191 DO i=iMin,iMax
192 fZon(i,j) = 0.
193 & _ADT( + afFacT*af(i,j) )
194 & _LPT( + dfFacT*df(i,j) )
195 ENDDO
196 ENDDO
197
198 C-- Meridional flux (fMer is at south face of "tr1" cell)
199 #ifdef INCLUDE_TR1_ADVECTION_CODE
200 C o Advective component of meridional flux
201 DO j=jMin,jMax
202 DO i=iMin,iMax
203 af(i,j) =
204 & vTrans(i,j)*(tr1(i,j,k,bi,bj)+tr1(i,j-1,k,bi,bj))*0.5 _d 0
205 ENDDO
206 ENDDO
207 #endif /* INCLUDE_TR1_ADVECTION_CODE */
208 #ifdef INCLUDE_TR1_DIFFUSION_CODE
209 C o Diffusive component of meridional flux
210 DO j=jMin,jMax
211 DO i=iMin,iMax
212 df(i,j) = -diffKhT*yA(i,j)*_recip_dyC(i,j,bi,bj)*
213 & (tr1(i,j,k,bi,bj)-tr1(i,j-1,k,bi,bj))
214 #ifdef ISOTROPIC_COS_SCALING
215 & *CosFacV(j,bi,bj)
216 #endif
217 ENDDO
218 ENDDO
219 #ifdef ALLOW_GMREDI
220 IF (useGMRedi) CALL GMREDI_YTRANSPORT(
221 I iMin,iMax,jMin,jMax,bi,bj,K,
222 I yA,tr1,
223 U df,
224 I myThid)
225 #endif
226 C o Add the bi-harmonic contribution
227 IF (diffK4T .NE. 0.) THEN
228 DO j=jMin,jMax
229 DO i=iMin,iMax
230 df(i,j) = df(i,j) + yA(i,j)*
231 & diffK4T*(df4(i,j)-df4(i,j-1))*_recip_dyC(i,j,bi,bj)
232 #ifdef ISOTROPIC_COS_SCALING
233 #ifdef COSINEMETH_III
234 & *sqCosFacV(j,bi,bj)
235 #else
236 & *CosFacV(j,bi,bj)
237 #endif
238 #endif
239 ENDDO
240 ENDDO
241 ENDIF
242 #endif /* INCLUDE_TR1_DIFFUSION_CODE */
243 C o Net meridional flux
244 DO j=jMin,jMax
245 DO i=iMin,iMax
246 fMer(i,j) = 0.
247 & _ADT( + afFacT*af(i,j) )
248 & _LPT( + dfFacT*df(i,j) )
249 ENDDO
250 ENDDO
251
252 C-- Vertical flux ( fVerT(,,kUp) is at upper face of "Tracer" cell )
253 #ifdef INCLUDE_TR1_ADVECTION_CODE
254 C o Advective component of vertical flux : assume W_bottom=0 (mask)
255 C Note: For K=1 then KM1=1 this gives a barZ(T) = T
256 C (this plays the role of the free-surface correction)
257 IF ( rigidLid .AND. TOP_LAYER) THEN
258 DO j=jMin,jMax
259 DO i=iMin,iMax
260 af(i,j) = 0.
261 ENDDO
262 ENDDO
263 ELSEIF ( rigidLid ) THEN
264 DO j=jMin,jMax
265 DO i=iMin,iMax
266 af(i,j) = rTrans(i,j)*
267 & (tr1(i,j,k,bi,bj)+tr1(i,j,kM1,bi,bj))*0.5 _d 0
268 ENDDO
269 ENDDO
270 ELSE
271 C- include "free-surface correction" :
272 DO j=jMin,jMax
273 DO i=iMin,iMax
274 af(i,j) = rTrans(i,j)*(
275 & maskC(i,j,kM1,bi,bj)*
276 & (tr1(i,j,k,bi,bj)+tr1(i,j,kM1,bi,bj))*0.5 _d 0
277 & +(maskC(i,j,k,bi,bj)-maskC(i,j,kM1,bi,bj))*
278 & tr1(i,j,k,bi,bj) )
279 ENDDO
280 ENDDO
281 ENDIF
282 #endif /* INCLUDE_TR1_ADVECTION_CODE */
283 #ifdef INCLUDE_TR1_DIFFUSION_CODE
284 C o Diffusive component of vertical flux
285 C Note: For K=1 then KM1=1 and this gives a dT/dr = 0 upper
286 C boundary condition.
287 IF (implicitDiffusion) THEN
288 DO j=jMin,jMax
289 DO i=iMin,iMax
290 df(i,j) = 0.
291 ENDDO
292 ENDDO
293 ELSE
294 DO j=jMin,jMax
295 DO i=iMin,iMax
296 df(i,j) = - _rA(i,j,bi,bj)*(
297 & KappaRT(i,j,k)*recip_drC(k)
298 & *(tr1(i,j,kM1,bi,bj)-tr1(i,j,k,bi,bj))*rkFac
299 & )
300 ENDDO
301 ENDDO
302 ENDIF
303 #endif /* INCLUDE_TR1_DIFFUSION_CODE */
304
305 #ifdef ALLOW_GMREDI
306 IF (useGMRedi) CALL GMREDI_RTRANSPORT(
307 I iMin,iMax,jMin,jMax,bi,bj,K,
308 I maskUp,tr1,
309 U df,
310 I myThid)
311 #endif
312
313 #ifdef ALLOW_KPP
314 C-- Add non local KPP transport term (ghat) to diffusive T flux.
315 IF (useKPP) CALL KPP_TRANSPORT_T(
316 I iMin,iMax,jMin,jMax,bi,bj,k,km1,
317 I KappaRT,
318 U df )
319 #endif
320
321 C o Net vertical flux
322 DO j=jMin,jMax
323 DO i=iMin,iMax
324 c fVerT(i,j,kUp) = afFacT*af(i,j) + dfFacT*df(i,j)*maskUp(i,j)
325 fVerT(i,j,kUp) = 0.
326 & _ADT( +afFacT*af(i,j) )
327 & _LPT( +dfFacT*df(i,j)*maskUp(i,j) )
328 ENDDO
329 ENDDO
330
331 C-- Tendency is minus divergence of the fluxes.
332 C Note. Tendency terms will only be correct for range
333 C i=iMin+1:iMax-1, j=jMin+1:jMax-1. Edge points
334 C will contain valid floating point numbers but
335 C they are not algorithmically correct. These points
336 C are not used.
337 DO j=jMin,jMax
338 DO i=iMin,iMax
339 gtr1(i,j,k,bi,bj)=
340 & -_recip_hFacC(i,j,k,bi,bj)*recip_drF(k)
341 & *recip_rA(i,j,bi,bj)
342 & *(
343 & +( fZon(i+1,j)-fZon(i,j) )
344 & +( fMer(i,j+1)-fMer(i,j) )
345 & +( fVerT(i,j,kUp)-fVerT(i,j,kDown) )*rkFac
346 & )
347 ENDDO
348 ENDDO
349
350 #ifdef INCLUDE_TR1_FORCING_CODE
351 C-- External thermal forcing term(s)
352 CALL EXTERNAL_FORCING_TR1(
353 I iMin,iMax,jMin,jMax,bi,bj,k,
354 I myCurrentTime,myThid)
355 #endif /* INCLUDE_TR1_FORCING_CODE */
356
357 RETURN
358 END

  ViewVC Help
Powered by ViewVC 1.1.22