/[MITgcm]/MITgcm/model/src/calc_gt.F
ViewVC logotype

Contents of /MITgcm/model/src/calc_gt.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.19 - (show annotations) (download)
Fri Nov 6 22:44:44 1998 UTC (25 years, 8 months ago) by cnh
Branch: MAIN
CVS Tags: checkpoint19, checkpoint18, checkpoint20, checkpoint21
Changes since 1.18: +55 -31 lines
Changes to allow for atmospheric integration builds of the code

1 C $Header: /u/gcmpack/models/MITgcmUV/model/src/calc_gt.F,v 1.18 1998/11/03 15:28:04 cnh Exp $
2
3 #include "CPP_OPTIONS.h"
4
5 CStartOfInterFace
6 SUBROUTINE CALC_GT(
7 I bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,
8 I xA,yA,uTrans,vTrans,rTrans,maskup,maskC,
9 I K13,K23,KappaRT,KapGM,
10 U af,df,fZon,fMer,fVerT,
11 I myCurrentTime, myThid )
12 C /==========================================================\
13 C | SUBROUTINE CALC_GT |
14 C | o Calculate the temperature tendency terms. |
15 C |==========================================================|
16 C | A procedure called EXTERNAL_FORCING_T is called from |
17 C | here. These procedures can be used to add per problem |
18 C | heat flux source terms. |
19 C | Note: Although it is slightly counter-intuitive the |
20 C | EXTERNAL_FORCING routine is not the place to put |
21 C | file I/O. Instead files that are required to |
22 C | calculate the external source terms are generally |
23 C | read during the model main loop. This makes the |
24 C | logisitics of multi-processing simpler and also |
25 C | makes the adjoint generation simpler. It also |
26 C | allows for I/O to overlap computation where that |
27 C | is supported by hardware. |
28 C | Aside from the problem specific term the code here |
29 C | forms the tendency terms due to advection and mixing |
30 C | The baseline implementation here uses a centered |
31 C | difference form for the advection term and a tensorial |
32 C | divergence of a flux form for the diffusive term. The |
33 C | diffusive term is formulated so that isopycnal mixing and|
34 C | GM-style subgrid-scale terms can be incorporated b simply|
35 C | setting the diffusion tensor terms appropriately. |
36 C \==========================================================/
37 IMPLICIT NONE
38
39 C == GLobal variables ==
40 #include "SIZE.h"
41 #include "DYNVARS.h"
42 #include "EEPARAMS.h"
43 #include "PARAMS.h"
44 #include "GRID.h"
45 #include "FFIELDS.h"
46
47 C == Routine arguments ==
48 C fZon - Work array for flux of temperature in the east-west
49 C direction at the west face of a cell.
50 C fMer - Work array for flux of temperature in the north-south
51 C direction at the south face of a cell.
52 C fVerT - Flux of temperature (T) in the vertical
53 C direction at the upper(U) and lower(D) faces of a cell.
54 C maskUp - Land mask used to denote base of the domain.
55 C maskC - Land mask for theta cells (used in TOP_LAYER only)
56 C xA - Tracer cell face area normal to X
57 C yA - Tracer cell face area normal to X
58 C uTrans - Zonal volume transport through cell face
59 C vTrans - Meridional volume transport through cell face
60 C rTrans - Vertical volume transport through cell face
61 C af - Advective flux component work array
62 C df - Diffusive flux component work array
63 C bi, bj, iMin, iMax, jMin, jMax - Range of points for which calculation
64 C results will be set.
65 C myThid - Instance number for this innvocation of CALC_GT
66 _RL fZon (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
67 _RL fMer (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
68 _RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
69 _RS xA (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
70 _RS yA (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
71 _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
72 _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
73 _RL rTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
74 _RS maskUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
75 _RS maskC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
76 _RL K13 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
77 _RL K23 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
78 _RL KappaRT(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
79 _RL KapGM (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
80 _RL af (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
81 _RL df (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
82 INTEGER k,kUp,kDown,kM1
83 INTEGER bi,bj,iMin,iMax,jMin,jMax
84 INTEGER myThid
85 _RL myCurrentTime
86 CEndOfInterface
87
88 C == Local variables ==
89 C I, J, K - Loop counters
90 INTEGER i,j
91 LOGICAL TOP_LAYER
92 _RL afFacT, dfFacT
93 _RL dTdx(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
94 _RL dTdy(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
95
96 afFacT = 1. _d 0
97 dfFacT = 1. _d 0
98 TOP_LAYER = K .EQ. 1
99
100 C--- Calculate advective and diffusive fluxes between cells.
101
102 C-- Zonal flux (fZon is at west face of "theta" cell)
103 #ifdef INCLUDE_T_ADVECTION_CODE
104 C o Advective component of zonal flux
105 DO j=jMin,jMax
106 DO i=iMin,iMax
107 af(i,j) =
108 & uTrans(i,j)*(theta(i,j,k,bi,bj)+theta(i-1,j,k,bi,bj))*0.5 _d 0
109 ENDDO
110 ENDDO
111 #endif /* INCLUDE_T_ADVECTION_CODE */
112 #ifdef INCLUDE_T_DIFFUSION_CODE
113 C o Zonal tracer gradient
114 DO j=jMin,jMax
115 DO i=iMin,iMax
116 dTdx(i,j) = _recip_dxC(i,j,bi,bj)*
117 & (theta(i,j,k,bi,bj)-theta(i-1,j,k,bi,bj))
118 ENDDO
119 ENDDO
120 C o Diffusive component of zonal flux
121 DO j=jMin,jMax
122 DO i=iMin,iMax
123 df(i,j) = -(diffKhT+0.5*(KapGM(i,j)+KapGM(i-1,j)))*
124 & xA(i,j)*dTdx(i,j)
125 ENDDO
126 ENDDO
127 #endif /* INCLUDE_T_DIFFUSION_CODE */
128 C o Net zonal flux
129 DO j=jMin,jMax
130 DO i=iMin,iMax
131 fZon(i,j) = 0.
132 _ADT(& + afFacT*af(i,j) )
133 _LPT(& + dfFacT*df(i,j) )
134 ENDDO
135 ENDDO
136
137 C-- Meridional flux (fMer is at south face of "theta" cell)
138 #ifdef INCLUDE_T_ADVECTION_CODE
139 C o Advective component of meridional flux
140 DO j=jMin,jMax
141 DO i=iMin,iMax
142 af(i,j) =
143 & vTrans(i,j)*(theta(i,j,k,bi,bj)+theta(i,j-1,k,bi,bj))*0.5 _d 0
144 ENDDO
145 ENDDO
146 #endif /* INCLUDE_T_ADVECTION_CODE */
147 #ifdef INCLUDE_T_DIFFUSION_CODE
148 C o Meridional tracer gradient
149 DO j=jMin,jMax
150 DO i=iMin,iMax
151 dTdy(i,j) = _recip_dyC(i,j,bi,bj)*
152 & (theta(i,j,k,bi,bj)-theta(i,j-1,k,bi,bj))
153 ENDDO
154 ENDDO
155 C o Diffusive component of meridional flux
156 DO j=jMin,jMax
157 DO i=iMin,iMax
158 df(i,j) = -(diffKhT+0.5*(KapGM(i,j)+KapGM(i,j-1)))*
159 & yA(i,j)*dTdy(i,j)
160 ENDDO
161 ENDDO
162 #endif /* INCLUDE_T_DIFFUSION_CODE */
163 C o Net meridional flux
164 DO j=jMin,jMax
165 DO i=iMin,iMax
166 fMer(i,j) = 0.
167 _ADT(& + afFacT*af(i,j) )
168 _LPT(& + dfFacT*df(i,j) )
169 ENDDO
170 ENDDO
171
172 #ifdef INCLUDE_T_DIFFUSION_CODE
173 C-- Terms that diffusion tensor projects onto z
174 DO j=jMin,jMax
175 DO i=iMin,iMax
176 dTdx(i,j) = 0.5*(
177 & +0.5*(_maskW(i+1,j,k,bi,bj)
178 & *_recip_dxC(i+1,j,bi,bj)*
179 & (theta(i+1,j,k,bi,bj)-theta(i,j,k,bi,bj))
180 & +_maskW(i,j,k,bi,bj)
181 & *_recip_dxC(i,j,bi,bj)*
182 & (theta(i,j,k,bi,bj)-theta(i-1,j,k,bi,bj)))
183 & +0.5*(_maskW(i+1,j,km1,bi,bj)
184 & *_recip_dxC(i+1,j,bi,bj)*
185 & (theta(i+1,j,km1,bi,bj)-theta(i,j,km1,bi,bj))
186 & +_maskW(i,j,km1,bi,bj)
187 & *_recip_dxC(i,j,bi,bj)*
188 & (theta(i,j,km1,bi,bj)-theta(i-1,j,km1,bi,bj)))
189 & )
190 ENDDO
191 ENDDO
192 DO j=jMin,jMax
193 DO i=iMin,iMax
194 dTdy(i,j) = 0.5*(
195 & +0.5*(_maskS(i,j,k,bi,bj)
196 & *_recip_dyC(i,j,bi,bj)*
197 & (theta(i,j,k,bi,bj)-theta(i,j-1,k,bi,bj))
198 & +_maskS(i,j+1,k,bi,bj)
199 & *_recip_dyC(i,j+1,bi,bj)*
200 & (theta(i,j+1,k,bi,bj)-theta(i,j,k,bi,bj)))
201 & +0.5*(_maskS(i,j,km1,bi,bj)
202 & *_recip_dyC(i,j,bi,bj)*
203 & (theta(i,j,km1,bi,bj)-theta(i,j-1,km1,bi,bj))
204 & +_maskS(i,j+1,km1,bi,bj)
205 & *_recip_dyC(i,j+1,bi,bj)*
206 & (theta(i,j+1,km1,bi,bj)-theta(i,j,km1,bi,bj)))
207 & )
208 ENDDO
209 ENDDO
210 #endif /* INCLUDE_T_DIFFUSION_CODE */
211
212 C-- Vertical flux ( fVerT(,,kUp) is at upper face of "theta" cell )
213 #ifdef INCLUDE_T_ADVECTION_CODE
214 C o Advective component of vertical flux
215 C Note: For K=1 then KM1=1 this gives a barZ(T) = T
216 C (this plays the role of the free-surface correction)
217 DO j=jMin,jMax
218 DO i=iMin,iMax
219 af(i,j) =
220 & rTrans(i,j)*(theta(i,j,k,bi,bj)+theta(i,j,kM1,bi,bj))*0.5 _d 0
221 ENDDO
222 ENDDO
223 #endif /* INCLUDE_T_ADVECTION_CODE */
224 #ifdef INCLUDE_T_DIFFUSION_CODE
225 C o Diffusive component of vertical flux
226 C Note: For K=1 then KM1=1 and this gives a dT/dr = 0 upper
227 C boundary condition.
228 DO j=jMin,jMax
229 DO i=iMin,iMax
230 df(i,j) = _rA(i,j,bi,bj)*(
231 & -KapGM(i,j)*K13(i,j,k)*dTdx(i,j)
232 & -KapGM(i,j)*K23(i,j,k)*dTdy(i,j)
233 & )
234 ENDDO
235 ENDDO
236 IF (.NOT.implicitDiffusion) THEN
237 DO j=jMin,jMax
238 DO i=iMin,iMax
239 df(i,j) = df(i,j) + _rA(i,j,bi,bj)*(
240 & -KappaRT(i,j,k)*recip_drC(k)
241 & *(theta(i,j,kM1,bi,bj)-theta(i,j,k,bi,bj))*rkFac
242 & )
243 ENDDO
244 ENDDO
245 ENDIF
246 #endif /* INCLUDE_T_DIFFUSION_CODE */
247 C o Net vertical flux
248 DO j=jMin,jMax
249 DO i=iMin,iMax
250 fVerT(i,j,kUp) = 0.
251 _ADT(& +afFacT*af(i,j)*maskUp(i,j) )
252 _LPT(& +dfFacT*df(i,j)*maskUp(i,j) )
253 ENDDO
254 ENDDO
255 #ifdef INCLUDE_T_ADVECTION_CODE
256 IF ( TOP_LAYER ) THEN
257 DO j=jMin,jMax
258 DO i=iMin,iMax
259 fVerT(i,j,kUp) = afFacT*af(i,j)*freeSurfFac
260 ENDDO
261 ENDDO
262 ENDIF
263 #endif /* INCLUDE_T_ADVECTION_CODE */
264
265 C-- Tendency is minus divergence of the fluxes.
266 C Note. Tendency terms will only be correct for range
267 C i=iMin+1:iMax-1, j=jMin+1:jMax-1. Edge points
268 C will contain valid floating point numbers but
269 C they are not algorithmically correct. These points
270 C are not used.
271 DO j=jMin,jMax
272 DO i=iMin,iMax
273 #define _recip_VolT1(i,j,k,bi,bj) _recip_hFacC(i,j,k,bi,bj)*recip_drF(k)
274 #define _recip_VolT2(i,j,k,bi,bj) /_rA(i,j,bi,bj)
275 gT(i,j,k,bi,bj)=
276 & -_recip_VolT1(i,j,k,bi,bj)
277 & _recip_VolT2(i,j,k,bi,bj)
278 & *(
279 & +( fZon(i+1,j)-fZon(i,j) )
280 & +( fMer(i,j+1)-fMer(i,j) )
281 & +( fVerT(i,j,kUp)-fVerT(i,j,kDown) )*rkFac
282 & )
283 ENDDO
284 ENDDO
285
286 #ifdef INCLUDE_T_FORCING_CODE
287 C-- External thermal forcing term(s)
288 CALL EXTERNAL_FORCING_T(
289 I iMin,iMax,jMin,jMax,bi,bj,k,
290 I maskC,
291 I myCurrentTime,myThid)
292 #endif /* INCLUDE_T_FORCING_CODE */
293
294 #ifdef INCLUDE_LAT_CIRC_FFT_FILTER_CODE
295 C-- Zonal FFT filter of tendency
296 CALL FILTER_LATCIRCS_FFT_APPLY(
297 U gT,
298 I 1, sNy, k, k, bi, bj, 1, myThid)
299 #endif /* INCLUDE_LAT_CIRC_FFT_FILTER_CODE */
300
301
302 RETURN
303 END

  ViewVC Help
Powered by ViewVC 1.1.22