/[MITgcm]/MITgcm/model/src/calc_gt.F
ViewVC logotype

Contents of /MITgcm/model/src/calc_gt.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.5 - (show annotations) (download)
Wed May 27 21:01:47 1998 UTC (26 years ago) by cnh
Branch: MAIN
Changes since 1.4: +6 -6 lines
Further memory saving macros for particular grids

1 C $Header: /u/gcmpack/models/MITgcmUV/model/src/calc_gt.F,v 1.4 1998/05/25 20:05:55 cnh Exp $
2
3 #include "CPP_EEOPTIONS.h"
4
5 CStartOfInterFace
6 SUBROUTINE CALC_GT(
7 I bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,
8 I xA,yA,uTrans,vTrans,wTrans,maskup,
9 I K13,K23,K33,KapGM,
10 U af,df,fZon,fMer,fVerT,
11 I myThid )
12 C /==========================================================\
13 C | SUBROUTINE CALC_GT |
14 C | o Calculate the temperature tendency terms. |
15 C |==========================================================|
16 C | A procedure called EXTERNAL_FORCING_T is called from |
17 C | here. These procedures can be used to add per problem |
18 C | heat flux source terms. |
19 C | Note: Although it is slightly counter-intuitive the |
20 C | EXTERNAL_FORCING routine is not the place to put |
21 C | file I/O. Instead files that are required to |
22 C | calculate the external source terms are generally |
23 C | read during the model main loop. This makes the |
24 C | logisitics of multi-processing simpler and also |
25 C | makes the adjoint generation simpler. It also |
26 C | allows for I/O to overlap computation where that |
27 C | is supported by hardware. |
28 C | Aside from the problem specific term the code here |
29 C | forms the tendency terms due to advection and mixing |
30 C | The baseline implementation here uses a centered |
31 C | difference form for the advection term and a tensorial |
32 C | divergence of a flux form for the diffusive term. The |
33 C | diffusive term is formulated so that isopycnal mixing and|
34 C | GM-style subgrid-scale terms can be incorporated b simply|
35 C | setting the diffusion tensor terms appropriately. |
36 C \==========================================================/
37 IMPLICIT NONE
38
39 C == GLobal variables ==
40 #include "SIZE.h"
41 #include "DYNVARS.h"
42 #include "EEPARAMS.h"
43 #include "PARAMS.h"
44 #include "GRID.h"
45
46 C == Routine arguments ==
47 C fZon - Work array for flux of temperature in the east-west
48 C direction at the west face of a cell.
49 C fMer - Work array for flux of temperature in the north-south
50 C direction at the south face of a cell.
51 C fVerT - Flux of temperature (T) in the vertical
52 C direction at the upper(U) and lower(D) faces of a cell.
53 C maskUp - Land mask used to denote base of the domain.
54 C xA - Tracer cell face area normal to X
55 C yA - Tracer cell face area normal to X
56 C uTrans - Zonal volume transport through cell face
57 C vTrans - Meridional volume transport through cell face
58 C wTrans - Vertical volume transport through cell face
59 C af - Advective flux component work array
60 C df - Diffusive flux component work array
61 C bi, bj, iMin, iMax, jMin, jMax - Range of points for which calculation
62 C results will be set.
63 C myThid - Instance number for this innvocation of CALC_GT
64 _RL fZon (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
65 _RL fMer (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
66 _RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
67 _RS xA (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
68 _RS yA (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
69 _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
70 _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
71 _RL wTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
72 _RS maskUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
73 _RL K13 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)
74 _RL K23 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)
75 _RL K33 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)
76 _RL KapGM (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
77 _RL af (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
78 _RL df (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
79 INTEGER k,kUp,kDown,kM1
80 INTEGER bi,bj,iMin,iMax,jMin,jMax
81 INTEGER myThid
82 CEndOfInterface
83
84 C == Local variables ==
85 C I, J, K - Loop counters
86 INTEGER i,j
87 _RL afFacT, dfFacT
88 _RL dTdx(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
89 _RL dTdy(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
90
91 afFacT = 1. _d 0
92 dfFacT = 1. _d 0
93
94 C--- Calculate advective and diffusive fluxes between cells.
95
96 C-- Zonal flux (fZon is at west face of "theta" cell)
97 C Advective component of zonal flux
98 DO j=jMin,jMax
99 DO i=iMin,iMax
100 af(i,j) =
101 & uTrans(i,j)*(theta(i,j,k,bi,bj)+theta(i-1,j,k,bi,bj))*0.5 _d 0
102 ENDDO
103 ENDDO
104 C Zonal tracer gradient
105 DO j=jMin,jMax
106 DO i=iMin,iMax
107 dTdx(i,j) = _rdxC(i,j,bi,bj)*
108 & (theta(i,j,k,bi,bj)-theta(i-1,j,k,bi,bj))
109 ENDDO
110 ENDDO
111 C Diffusive component of zonal flux
112 DO j=jMin,jMax
113 DO i=iMin,iMax
114 df(i,j) = -(diffKhT+0.5*(KapGM(i,j)+KapGM(i-1,j)))*
115 & xA(i,j)*dTdx(i,j)
116 ENDDO
117 ENDDO
118 C Net zonal flux
119 DO j=jMin,jMax
120 DO i=iMin,iMax
121 fZon(i,j) = afFacT*af(i,j) + dfFacT*df(i,j)
122 ENDDO
123 ENDDO
124
125 C-- Meridional flux (fMer is at south face of "theta" cell)
126 C Advective component of meridional flux
127 DO j=jMin,jMax
128 DO i=iMin,iMax
129 C Advective component of meridional flux
130 af(i,j) =
131 & vTrans(i,j)*(theta(i,j,k,bi,bj)+theta(i,j-1,k,bi,bj))*0.5 _d 0
132 ENDDO
133 ENDDO
134 C Zonal tracer gradient
135 DO j=jMin,jMax
136 DO i=iMin,iMax
137 dTdy(i,j) = rdyC(i,j,bi,bj)*
138 & (theta(i,j,k,bi,bj)-theta(i,j-1,k,bi,bj))
139 ENDDO
140 ENDDO
141 C Diffusive component of meridional flux
142 DO j=jMin,jMax
143 DO i=iMin,iMax
144 df(i,j) = -(diffKhT+0.5*(KapGM(i,j)+KapGM(i,j-1)))*
145 & yA(i,j)*dTdy(i,j)
146 ENDDO
147 ENDDO
148 C Net meridional flux
149 DO j=jMin,jMax
150 DO i=iMin,iMax
151 fMer(i,j) = afFacT*af(i,j) + dfFacT*df(i,j)
152 ENDDO
153 ENDDO
154
155 C-- Interpolate terms for Redi/GM scheme
156 DO j=jMin,jMax
157 DO i=iMin,iMax
158 dTdx(i,j) = 0.5*(
159 & +0.5*(maskW(i+1,j,k,bi,bj)*_rdxC(i+1,j,bi,bj)*
160 & (theta(i+1,j,k,bi,bj)-theta(i,j,k,bi,bj))
161 & +maskW(i,j,k,bi,bj)*_rdxC(i,j,bi,bj)*
162 & (theta(i,j,k,bi,bj)-theta(i-1,j,k,bi,bj)))
163 & +0.5*(maskW(i+1,j,km1,bi,bj)*_rdxC(i+1,j,bi,bj)*
164 & (theta(i+1,j,km1,bi,bj)-theta(i,j,km1,bi,bj))
165 & +maskW(i,j,km1,bi,bj)*_rdxC(i,j,bi,bj)*
166 & (theta(i,j,km1,bi,bj)-theta(i-1,j,km1,bi,bj)))
167 & )
168 ENDDO
169 ENDDO
170 DO j=jMin,jMax
171 DO i=iMin,iMax
172 dTdy(i,j) = 0.5*(
173 & +0.5*(maskS(i,j,k,bi,bj)*rdyC(i,j,bi,bj)*
174 & (theta(i,j,k,bi,bj)-theta(i,j-1,k,bi,bj))
175 & +maskS(i,j+1,k,bi,bj)*rdyC(i,j+1,bi,bj)*
176 & (theta(i,j+1,k,bi,bj)-theta(i,j,k,bi,bj)))
177 & +0.5*(maskS(i,j,km1,bi,bj)*rdyC(i,j,bi,bj)*
178 & (theta(i,j,km1,bi,bj)-theta(i,j-1,km1,bi,bj))
179 & +maskS(i,j+1,km1,bi,bj)*rdyC(i,j+1,bi,bj)*
180 & (theta(i,j+1,km1,bi,bj)-theta(i,j,km1,bi,bj)))
181 & )
182 ENDDO
183 ENDDO
184
185 C-- Vertical flux (fVerT) above
186 C Advective component of vertical flux
187 C Note: For K=1 then KM1=1 this gives a barZ(T) = T
188 C (this plays the role of the free-surface correction)
189 DO j=jMin,jMax
190 DO i=iMin,iMax
191 af(i,j) =
192 & wTrans(i,j)*(theta(i,j,k,bi,bj)+theta(i,j,kM1,bi,bj))*0.5 _d 0
193 ENDDO
194 ENDDO
195 C Diffusive component of vertical flux
196 C Note: For K=1 then KM1=1 this gives a dT/dz = 0 upper
197 C boundary condition.
198 DO j=jMin,jMax
199 DO i=iMin,iMax
200 df(i,j) = zA(i,j,bi,bj)*(
201 & -(diffKzT+KapGM(i,j)*K33(i,j,k))*rdzC(k)
202 & *(theta(i,j,kM1,bi,bj)-theta(i,j,k,bi,bj))
203 & -KapGM(i,j)*K13(i,j,k)*dTdx(i,j)
204 & -KapGM(i,j)*K23(i,j,k)*dTdy(i,j)
205 & )
206 ENDDO
207 ENDDO
208 C Net vertical flux
209 DO j=jMin,jMax
210 DO i=iMin,iMax
211 fVerT(i,j,kUp) = (afFacT*af(i,j) + dfFacT*df(i,j))*maskUp(i,j)
212 ENDDO
213 ENDDO
214
215 C-- Tendency is minus divergence of the fluxes.
216 C Note. Tendency terms will only be correct for range
217 C i=iMin+1:iMax-1, j=jMin+1:jMax-1. Edge points
218 C will contain valid floating point numbers but
219 C they are not algorithmically correct. These points
220 C are not used.
221 DO j=jMin,jMax
222 DO i=iMin,iMax
223 gT(i,j,k,bi,bj)=
224 & -rHFacC(i,j,k,bi,bj)*rdzF(k)*rDxF(i,j,bi,bj)*rDyF(i,j,bi,bj)
225 & *(
226 & +( fZon(i+1,j)-fZon(i,j) )
227 & +( fMer(i,j+1)-fMer(i,j) )
228 & +( fVerT(i,j,kUp)-fVerT(i,j,kDown) )
229 & )
230 ENDDO
231 ENDDO
232
233 C-- External thermal forcing term(s)
234
235 RETURN
236 END

  ViewVC Help
Powered by ViewVC 1.1.22