/[MITgcm]/MITgcm/model/src/calc_gt.F
ViewVC logotype

Contents of /MITgcm/model/src/calc_gt.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.3 - (show annotations) (download)
Wed May 20 21:29:31 1998 UTC (26 years, 1 month ago) by adcroft
Branch: MAIN
CVS Tags: redigm, checkpoint2
Changes since 1.2: +69 -17 lines
GM/Redi parameterization. calc_isoslopes() calculates components
of Redi tensor. calc_gt() then uses these components in a modified
vertical tracer flux. AJA

1 C $Header: /u/gcmpack/models/MITgcmUV/model/src/calc_gt.F,v 1.2 1998/04/24 02:05:40 cnh Exp $
2
3 #include "CPP_EEOPTIONS.h"
4
5 CStartOfInterFace
6 SUBROUTINE CALC_GT(
7 I bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,
8 I xA,yA,uTrans,vTrans,wTrans,maskup,
9 I K13,K23,K33,KapGM,
10 U af,df,fZon,fMer,fVerT,
11 I myThid )
12 C /==========================================================\
13 C | SUBROUTINE CALC_GT |
14 C | o Calculate the temperature tendency terms. |
15 C |==========================================================|
16 C | A procedure called EXTERNAL_FORCING_T is called from |
17 C | here. These procedures can be used to add per problem |
18 C | heat flux source terms. |
19 C | Note: Although it is slightly counter-intuitive the |
20 C | EXTERNAL_FORCING routine is not the place to put |
21 C | file I/O. Instead files that are required to |
22 C | calculate the external source terms are generally |
23 C | read during the model main loop. This makes the |
24 C | logisitics of multi-processing simpler and also |
25 C | makes the adjoint generation simpler. It also |
26 C | allows for I/O to overlap computation where that |
27 C | is supported by hardware. |
28 C | Aside from the problem specific term the code here |
29 C | forms the tendency terms due to advection and mixing |
30 C | The baseline implementation here uses a centered |
31 C | difference form for the advection term and a tensorial |
32 C | divergence of a flux form for the diffusive term. The |
33 C | diffusive term is formulated so that isopycnal mixing and|
34 C | GM-style subgrid-scale terms can be incorporated b simply|
35 C | setting the diffusion tensor terms appropriately. |
36 C \==========================================================/
37 IMPLICIT NONE
38
39 C == GLobal variables ==
40 #include "SIZE.h"
41 #include "DYNVARS.h"
42 #include "EEPARAMS.h"
43 #include "PARAMS.h"
44 #include "GRID.h"
45
46 C == Routine arguments ==
47 C fZon - Work array for flux of temperature in the east-west
48 C direction at the west face of a cell.
49 C fMer - Work array for flux of temperature in the north-south
50 C direction at the south face of a cell.
51 C fVerT - Flux of temperature (T) in the vertical
52 C direction at the upper(U) and lower(D) faces of a cell.
53 C maskUp - Land mask used to denote base of the domain.
54 C xA - Tracer cell face area normal to X
55 C yA - Tracer cell face area normal to X
56 C uTrans - Zonal volume transport through cell face
57 C vTrans - Meridional volume transport through cell face
58 C wTrans - Vertical volume transport through cell face
59 C af - Advective flux component work array
60 C df - Diffusive flux component work array
61 C bi, bj, iMin, iMax, jMin, jMax - Range of points for which calculation
62 C results will be set.
63 C myThid - Instance number for this innvocation of CALC_GT
64 _RL fZon (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
65 _RL fMer (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
66 _RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
67 _RS xA (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
68 _RS yA (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
69 _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
70 _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
71 _RL wTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
72 _RS maskUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
73 _RL K13 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)
74 _RL K23 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)
75 _RL K33 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)
76 _RL KapGM (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
77 _RL af (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
78 _RL df (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
79 INTEGER k,kUp,kDown,kM1
80 INTEGER bi,bj,iMin,iMax,jMin,jMax
81 INTEGER myThid
82 CEndOfInterface
83
84 C == Local variables ==
85 C I, J, K - Loop counters
86 INTEGER i,j
87 _RL afFacT, dfFacT
88 _RL dutdxFac
89 _RL dTdx(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
90 _RL dTdy(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
91
92 afFacT = 1. _d 0
93 dfFacT = 1. _d 0
94 dutdxFac = afFacT
95
96 C---
97 C--- Calculate advective and diffusive fluxes between cells.
98 C---
99
100 C-- Zonal flux (fZon is at west face of "theta" cell)
101 C Advective component of zonal flux
102 DO j=jMin,jMax
103 DO i=iMin,iMax
104 af(i,j) =
105 & uTrans(i,j)*(theta(i,j,k,bi,bj)+theta(i-1,j,k,bi,bj))*0.5 _d 0
106 ENDDO
107 ENDDO
108 C Zonal tracer gradient
109 DO j=jMin,jMax
110 DO i=iMin,iMax
111 dTdx(i,j) = rdxC(i,j,bi,bj)*
112 & (theta(i,j,k,bi,bj)-theta(i-1,j,k,bi,bj))
113 ENDDO
114 ENDDO
115 C Diffusive component of zonal flux
116 DO j=jMin,jMax
117 DO i=iMin,iMax
118 df(i,j) = -(diffKhT+0.5*(KapGM(i,j)+KapGM(i-1,j)))*
119 & xA(i,j)*dTdx(i,j)
120 ENDDO
121 ENDDO
122 C Net zonal flux
123 DO j=jMin,jMax
124 DO i=iMin,iMax
125 fZon(i,j) = afFacT*af(i,j) + dfFacT*df(i,j)
126 ENDDO
127 ENDDO
128
129 C-- Meridional flux (fMer is at south face of "theta" cell)
130 C Advective component of meridional flux
131 DO j=jMin,jMax
132 DO i=iMin,iMax
133 C Advective component of meridional flux
134 af(i,j) =
135 & vTrans(i,j)*(theta(i,j,k,bi,bj)+theta(i,j-1,k,bi,bj))*0.5 _d 0
136 ENDDO
137 ENDDO
138 C Zonal tracer gradient
139 DO j=jMin,jMax
140 DO i=iMin,iMax
141 dTdy(i,j) = rdyC(i,j,bi,bj)*
142 & (theta(i,j,k,bi,bj)-theta(i,j-1,k,bi,bj))
143 ENDDO
144 ENDDO
145 C Diffusive component of meridional flux
146 DO j=jMin,jMax
147 DO i=iMin,iMax
148 df(i,j) = -(diffKhT+0.5*(KapGM(i,j)+KapGM(i,j-1)))*
149 & yA(i,j)*dTdy(i,j)
150 ENDDO
151 ENDDO
152 C Net meridional flux
153 DO j=jMin,jMax
154 DO i=iMin,iMax
155 fMer(i,j) = afFacT*af(i,j) + dfFacT*df(i,j)
156 ENDDO
157 ENDDO
158
159 C-- Interpolate terms for Redi/GM scheme
160 DO j=jMin,jMax
161 DO i=iMin,iMax
162 dTdx(i,j) = 0.5*(
163 & +0.5*(maskW(i+1,j,k,bi,bj)*rdxC(i+1,j,bi,bj)*
164 & (theta(i+1,j,k,bi,bj)-theta(i,j,k,bi,bj))
165 & +maskW(i,j,k,bi,bj)*rdxC(i,j,bi,bj)*
166 & (theta(i,j,k,bi,bj)-theta(i-1,j,k,bi,bj)))
167 & +0.5*(maskW(i+1,j,km1,bi,bj)*rdxC(i+1,j,bi,bj)*
168 & (theta(i+1,j,km1,bi,bj)-theta(i,j,km1,bi,bj))
169 & +maskW(i,j,km1,bi,bj)*rdxC(i,j,bi,bj)*
170 & (theta(i,j,km1,bi,bj)-theta(i-1,j,km1,bi,bj)))
171 & )
172 ENDDO
173 ENDDO
174 DO j=jMin,jMax
175 DO i=iMin,iMax
176 dTdy(i,j) = 0.5*(
177 & +0.5*(maskS(i,j,k,bi,bj)*rdyC(i,j,bi,bj)*
178 & (theta(i,j,k,bi,bj)-theta(i,j-1,k,bi,bj))
179 & +maskS(i,j+1,k,bi,bj)*rdyC(i,j+1,bi,bj)*
180 & (theta(i,j+1,k,bi,bj)-theta(i,j,k,bi,bj)))
181 & +0.5*(maskS(i,j,km1,bi,bj)*rdyC(i,j,bi,bj)*
182 & (theta(i,j,km1,bi,bj)-theta(i,j-1,km1,bi,bj))
183 & +maskS(i,j+1,km1,bi,bj)*rdyC(i,j+1,bi,bj)*
184 & (theta(i,j+1,km1,bi,bj)-theta(i,j,km1,bi,bj)))
185 & )
186 ENDDO
187 ENDDO
188
189 C-- Vertical flux (fVerT) above
190 C Advective component of vertical flux
191 C Note: For K=1 then KM1=1 this gives a barZ(T) = T
192 C (this plays the role of the free-surface correction)
193 DO j=jMin,jMax
194 DO i=iMin,iMax
195 af(i,j) =
196 & wTrans(i,j)*(theta(i,j,k,bi,bj)+theta(i,j,kM1,bi,bj))*0.5 _d 0
197 ENDDO
198 ENDDO
199 C Diffusive component of vertical flux
200 C Note: For K=1 then KM1=1 this gives a dT/dz = 0 upper
201 C boundary condition.
202 DO j=jMin,jMax
203 DO i=iMin,iMax
204 df(i,j) = zA(i,j,bi,bj)*(
205 & -(diffKzT+KapGM(i,j)*K33(i,j,k))*rdzC(k)
206 & *(theta(i,j,kM1,bi,bj)-theta(i,j,k,bi,bj))
207 & -KapGM(i,j)*K13(i,j,k)*dTdx(i,j)
208 & -KapGM(i,j)*K23(i,j,k)*dTdy(i,j)
209 & )
210 ENDDO
211 ENDDO
212 C Net vertical flux
213 DO j=jMin,jMax
214 DO i=iMin,iMax
215 fVerT(i,j,kUp) = (afFacT*af(i,j) + dfFacT*df(i,j))*maskUp(i,j)
216 ENDDO
217 ENDDO
218
219 C-- Tendency is minus divergence of the fluxes.
220 C Note. Tendency terms will only be correct for range
221 C i=iMin+1:iMax-1, j=jMin+1:jMax-1. Edge points
222 C will contain valid floating point numbers but
223 C they are not algorithmically correct. These points
224 C are not used.
225 DO j=jMin,jMax
226 DO i=iMin,iMax
227 gT(i,j,k,bi,bj)=
228 & -rHFacC(i,j,k,bi,bj)*rdzF(k)*rDxF(i,j,bi,bj)*rDyF(i,j,bi,bj)
229 & *(
230 & +( fZon(i+1,j)-fZon(i,j) )
231 & +( fMer(i,j+1)-fMer(i,j) )
232 & +( fVerT(i,j,kUp)-fVerT(i,j,kDown) )
233 & )
234 ENDDO
235 ENDDO
236
237 C-- External thermal forcing term(s)
238
239 RETURN
240 END

  ViewVC Help
Powered by ViewVC 1.1.22