/[MITgcm]/MITgcm/model/src/calc_gt.F
ViewVC logotype

Annotation of /MITgcm/model/src/calc_gt.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.5 - (hide annotations) (download)
Wed May 27 21:01:47 1998 UTC (26 years ago) by cnh
Branch: MAIN
Changes since 1.4: +6 -6 lines
Further memory saving macros for particular grids

1 cnh 1.5 C $Header: /u/gcmpack/models/MITgcmUV/model/src/calc_gt.F,v 1.4 1998/05/25 20:05:55 cnh Exp $
2 cnh 1.1
3     #include "CPP_EEOPTIONS.h"
4    
5     CStartOfInterFace
6     SUBROUTINE CALC_GT(
7     I bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,
8     I xA,yA,uTrans,vTrans,wTrans,maskup,
9 adcroft 1.3 I K13,K23,K33,KapGM,
10 cnh 1.1 U af,df,fZon,fMer,fVerT,
11     I myThid )
12     C /==========================================================\
13     C | SUBROUTINE CALC_GT |
14     C | o Calculate the temperature tendency terms. |
15     C |==========================================================|
16     C | A procedure called EXTERNAL_FORCING_T is called from |
17     C | here. These procedures can be used to add per problem |
18     C | heat flux source terms. |
19     C | Note: Although it is slightly counter-intuitive the |
20     C | EXTERNAL_FORCING routine is not the place to put |
21     C | file I/O. Instead files that are required to |
22     C | calculate the external source terms are generally |
23     C | read during the model main loop. This makes the |
24     C | logisitics of multi-processing simpler and also |
25     C | makes the adjoint generation simpler. It also |
26     C | allows for I/O to overlap computation where that |
27     C | is supported by hardware. |
28     C | Aside from the problem specific term the code here |
29     C | forms the tendency terms due to advection and mixing |
30     C | The baseline implementation here uses a centered |
31     C | difference form for the advection term and a tensorial |
32     C | divergence of a flux form for the diffusive term. The |
33     C | diffusive term is formulated so that isopycnal mixing and|
34     C | GM-style subgrid-scale terms can be incorporated b simply|
35     C | setting the diffusion tensor terms appropriately. |
36     C \==========================================================/
37     IMPLICIT NONE
38    
39     C == GLobal variables ==
40     #include "SIZE.h"
41     #include "DYNVARS.h"
42     #include "EEPARAMS.h"
43     #include "PARAMS.h"
44     #include "GRID.h"
45    
46     C == Routine arguments ==
47     C fZon - Work array for flux of temperature in the east-west
48     C direction at the west face of a cell.
49     C fMer - Work array for flux of temperature in the north-south
50     C direction at the south face of a cell.
51     C fVerT - Flux of temperature (T) in the vertical
52     C direction at the upper(U) and lower(D) faces of a cell.
53     C maskUp - Land mask used to denote base of the domain.
54     C xA - Tracer cell face area normal to X
55     C yA - Tracer cell face area normal to X
56     C uTrans - Zonal volume transport through cell face
57     C vTrans - Meridional volume transport through cell face
58     C wTrans - Vertical volume transport through cell face
59     C af - Advective flux component work array
60     C df - Diffusive flux component work array
61     C bi, bj, iMin, iMax, jMin, jMax - Range of points for which calculation
62     C results will be set.
63     C myThid - Instance number for this innvocation of CALC_GT
64     _RL fZon (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
65     _RL fMer (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
66     _RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
67     _RS xA (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
68     _RS yA (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
69     _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
70     _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
71     _RL wTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
72     _RS maskUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
73 adcroft 1.3 _RL K13 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)
74     _RL K23 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)
75     _RL K33 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)
76     _RL KapGM (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
77 cnh 1.1 _RL af (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
78     _RL df (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
79 adcroft 1.3 INTEGER k,kUp,kDown,kM1
80 cnh 1.1 INTEGER bi,bj,iMin,iMax,jMin,jMax
81     INTEGER myThid
82     CEndOfInterface
83    
84     C == Local variables ==
85     C I, J, K - Loop counters
86 adcroft 1.3 INTEGER i,j
87     _RL afFacT, dfFacT
88     _RL dTdx(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
89     _RL dTdy(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
90 cnh 1.1
91     afFacT = 1. _d 0
92     dfFacT = 1. _d 0
93    
94     C--- Calculate advective and diffusive fluxes between cells.
95    
96     C-- Zonal flux (fZon is at west face of "theta" cell)
97     C Advective component of zonal flux
98     DO j=jMin,jMax
99     DO i=iMin,iMax
100     af(i,j) =
101     & uTrans(i,j)*(theta(i,j,k,bi,bj)+theta(i-1,j,k,bi,bj))*0.5 _d 0
102     ENDDO
103     ENDDO
104 adcroft 1.3 C Zonal tracer gradient
105     DO j=jMin,jMax
106     DO i=iMin,iMax
107 cnh 1.5 dTdx(i,j) = _rdxC(i,j,bi,bj)*
108 adcroft 1.3 & (theta(i,j,k,bi,bj)-theta(i-1,j,k,bi,bj))
109     ENDDO
110     ENDDO
111 cnh 1.1 C Diffusive component of zonal flux
112     DO j=jMin,jMax
113     DO i=iMin,iMax
114 adcroft 1.3 df(i,j) = -(diffKhT+0.5*(KapGM(i,j)+KapGM(i-1,j)))*
115     & xA(i,j)*dTdx(i,j)
116 cnh 1.1 ENDDO
117     ENDDO
118     C Net zonal flux
119     DO j=jMin,jMax
120     DO i=iMin,iMax
121     fZon(i,j) = afFacT*af(i,j) + dfFacT*df(i,j)
122     ENDDO
123     ENDDO
124    
125     C-- Meridional flux (fMer is at south face of "theta" cell)
126     C Advective component of meridional flux
127     DO j=jMin,jMax
128     DO i=iMin,iMax
129     C Advective component of meridional flux
130     af(i,j) =
131     & vTrans(i,j)*(theta(i,j,k,bi,bj)+theta(i,j-1,k,bi,bj))*0.5 _d 0
132     ENDDO
133     ENDDO
134 adcroft 1.3 C Zonal tracer gradient
135     DO j=jMin,jMax
136     DO i=iMin,iMax
137     dTdy(i,j) = rdyC(i,j,bi,bj)*
138     & (theta(i,j,k,bi,bj)-theta(i,j-1,k,bi,bj))
139     ENDDO
140     ENDDO
141 cnh 1.1 C Diffusive component of meridional flux
142     DO j=jMin,jMax
143     DO i=iMin,iMax
144 adcroft 1.3 df(i,j) = -(diffKhT+0.5*(KapGM(i,j)+KapGM(i,j-1)))*
145     & yA(i,j)*dTdy(i,j)
146 cnh 1.1 ENDDO
147     ENDDO
148     C Net meridional flux
149     DO j=jMin,jMax
150     DO i=iMin,iMax
151     fMer(i,j) = afFacT*af(i,j) + dfFacT*df(i,j)
152     ENDDO
153     ENDDO
154    
155 adcroft 1.3 C-- Interpolate terms for Redi/GM scheme
156     DO j=jMin,jMax
157     DO i=iMin,iMax
158     dTdx(i,j) = 0.5*(
159 cnh 1.5 & +0.5*(maskW(i+1,j,k,bi,bj)*_rdxC(i+1,j,bi,bj)*
160 adcroft 1.3 & (theta(i+1,j,k,bi,bj)-theta(i,j,k,bi,bj))
161 cnh 1.5 & +maskW(i,j,k,bi,bj)*_rdxC(i,j,bi,bj)*
162 adcroft 1.3 & (theta(i,j,k,bi,bj)-theta(i-1,j,k,bi,bj)))
163 cnh 1.5 & +0.5*(maskW(i+1,j,km1,bi,bj)*_rdxC(i+1,j,bi,bj)*
164 adcroft 1.3 & (theta(i+1,j,km1,bi,bj)-theta(i,j,km1,bi,bj))
165 cnh 1.5 & +maskW(i,j,km1,bi,bj)*_rdxC(i,j,bi,bj)*
166 adcroft 1.3 & (theta(i,j,km1,bi,bj)-theta(i-1,j,km1,bi,bj)))
167     & )
168     ENDDO
169     ENDDO
170     DO j=jMin,jMax
171     DO i=iMin,iMax
172     dTdy(i,j) = 0.5*(
173     & +0.5*(maskS(i,j,k,bi,bj)*rdyC(i,j,bi,bj)*
174     & (theta(i,j,k,bi,bj)-theta(i,j-1,k,bi,bj))
175     & +maskS(i,j+1,k,bi,bj)*rdyC(i,j+1,bi,bj)*
176     & (theta(i,j+1,k,bi,bj)-theta(i,j,k,bi,bj)))
177     & +0.5*(maskS(i,j,km1,bi,bj)*rdyC(i,j,bi,bj)*
178     & (theta(i,j,km1,bi,bj)-theta(i,j-1,km1,bi,bj))
179     & +maskS(i,j+1,km1,bi,bj)*rdyC(i,j+1,bi,bj)*
180     & (theta(i,j+1,km1,bi,bj)-theta(i,j,km1,bi,bj)))
181     & )
182     ENDDO
183     ENDDO
184    
185 cnh 1.1 C-- Vertical flux (fVerT) above
186     C Advective component of vertical flux
187 adcroft 1.3 C Note: For K=1 then KM1=1 this gives a barZ(T) = T
188     C (this plays the role of the free-surface correction)
189 cnh 1.1 DO j=jMin,jMax
190     DO i=iMin,iMax
191     af(i,j) =
192     & wTrans(i,j)*(theta(i,j,k,bi,bj)+theta(i,j,kM1,bi,bj))*0.5 _d 0
193     ENDDO
194     ENDDO
195     C Diffusive component of vertical flux
196 adcroft 1.3 C Note: For K=1 then KM1=1 this gives a dT/dz = 0 upper
197     C boundary condition.
198 cnh 1.1 DO j=jMin,jMax
199     DO i=iMin,iMax
200 adcroft 1.3 df(i,j) = zA(i,j,bi,bj)*(
201     & -(diffKzT+KapGM(i,j)*K33(i,j,k))*rdzC(k)
202 cnh 1.1 & *(theta(i,j,kM1,bi,bj)-theta(i,j,k,bi,bj))
203 adcroft 1.3 & -KapGM(i,j)*K13(i,j,k)*dTdx(i,j)
204     & -KapGM(i,j)*K23(i,j,k)*dTdy(i,j)
205     & )
206 cnh 1.1 ENDDO
207     ENDDO
208     C Net vertical flux
209     DO j=jMin,jMax
210     DO i=iMin,iMax
211     fVerT(i,j,kUp) = (afFacT*af(i,j) + dfFacT*df(i,j))*maskUp(i,j)
212     ENDDO
213     ENDDO
214    
215     C-- Tendency is minus divergence of the fluxes.
216     C Note. Tendency terms will only be correct for range
217     C i=iMin+1:iMax-1, j=jMin+1:jMax-1. Edge points
218     C will contain valid floating point numbers but
219     C they are not algorithmically correct. These points
220     C are not used.
221     DO j=jMin,jMax
222     DO i=iMin,iMax
223     gT(i,j,k,bi,bj)=
224     & -rHFacC(i,j,k,bi,bj)*rdzF(k)*rDxF(i,j,bi,bj)*rDyF(i,j,bi,bj)
225     & *(
226     & +( fZon(i+1,j)-fZon(i,j) )
227     & +( fMer(i,j+1)-fMer(i,j) )
228     & +( fVerT(i,j,kUp)-fVerT(i,j,kDown) )
229     & )
230     ENDDO
231     ENDDO
232    
233     C-- External thermal forcing term(s)
234    
235     RETURN
236     END

  ViewVC Help
Powered by ViewVC 1.1.22