/[MITgcm]/MITgcm/model/src/calc_gt.F
ViewVC logotype

Annotation of /MITgcm/model/src/calc_gt.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.24 - (hide annotations) (download)
Fri Jun 9 02:45:04 2000 UTC (24 years ago) by heimbach
Branch: MAIN
CVS Tags: checkpoint28
Changes since 1.23: +15 -1 lines
Modifications to include TAMC directives, tape key computations
and initialisations to make code TAMC compatible.
Routines the_model_main.F and initialise_fixed.F
are left unchanged for the moment. (P.H.)

1 heimbach 1.24 C $Header: /u/gcmpack/models/MITgcmUV/model/src/calc_gt.F,v 1.23 2000/03/24 16:03:03 adcroft Exp $
2 cnh 1.1
3 cnh 1.19 #include "CPP_OPTIONS.h"
4 cnh 1.1
5     CStartOfInterFace
6     SUBROUTINE CALC_GT(
7     I bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,
8 cnh 1.14 I xA,yA,uTrans,vTrans,rTrans,maskup,maskC,
9     I K13,K23,KappaRT,KapGM,
10 cnh 1.1 U af,df,fZon,fMer,fVerT,
11 cnh 1.18 I myCurrentTime, myThid )
12 cnh 1.1 C /==========================================================\
13     C | SUBROUTINE CALC_GT |
14     C | o Calculate the temperature tendency terms. |
15     C |==========================================================|
16     C | A procedure called EXTERNAL_FORCING_T is called from |
17     C | here. These procedures can be used to add per problem |
18     C | heat flux source terms. |
19     C | Note: Although it is slightly counter-intuitive the |
20     C | EXTERNAL_FORCING routine is not the place to put |
21     C | file I/O. Instead files that are required to |
22     C | calculate the external source terms are generally |
23     C | read during the model main loop. This makes the |
24     C | logisitics of multi-processing simpler and also |
25     C | makes the adjoint generation simpler. It also |
26     C | allows for I/O to overlap computation where that |
27     C | is supported by hardware. |
28     C | Aside from the problem specific term the code here |
29     C | forms the tendency terms due to advection and mixing |
30     C | The baseline implementation here uses a centered |
31     C | difference form for the advection term and a tensorial |
32     C | divergence of a flux form for the diffusive term. The |
33     C | diffusive term is formulated so that isopycnal mixing and|
34     C | GM-style subgrid-scale terms can be incorporated b simply|
35     C | setting the diffusion tensor terms appropriately. |
36     C \==========================================================/
37     IMPLICIT NONE
38    
39     C == GLobal variables ==
40     #include "SIZE.h"
41     #include "DYNVARS.h"
42     #include "EEPARAMS.h"
43     #include "PARAMS.h"
44     #include "GRID.h"
45 cnh 1.11 #include "FFIELDS.h"
46 adcroft 1.20 #ifdef ALLOW_KPP
47     #include "KPPMIX.h"
48     #endif
49    
50 cnh 1.1
51     C == Routine arguments ==
52     C fZon - Work array for flux of temperature in the east-west
53     C direction at the west face of a cell.
54     C fMer - Work array for flux of temperature in the north-south
55     C direction at the south face of a cell.
56     C fVerT - Flux of temperature (T) in the vertical
57     C direction at the upper(U) and lower(D) faces of a cell.
58     C maskUp - Land mask used to denote base of the domain.
59 adcroft 1.13 C maskC - Land mask for theta cells (used in TOP_LAYER only)
60 cnh 1.1 C xA - Tracer cell face area normal to X
61     C yA - Tracer cell face area normal to X
62     C uTrans - Zonal volume transport through cell face
63     C vTrans - Meridional volume transport through cell face
64 cnh 1.14 C rTrans - Vertical volume transport through cell face
65 cnh 1.1 C af - Advective flux component work array
66     C df - Diffusive flux component work array
67     C bi, bj, iMin, iMax, jMin, jMax - Range of points for which calculation
68     C results will be set.
69     C myThid - Instance number for this innvocation of CALC_GT
70     _RL fZon (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
71     _RL fMer (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
72     _RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
73     _RS xA (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
74     _RS yA (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
75     _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
76     _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
77 cnh 1.14 _RL rTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
78 cnh 1.1 _RS maskUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
79 adcroft 1.13 _RS maskC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
80 cnh 1.16 _RL K13 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
81     _RL K23 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
82     _RL KappaRT(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
83 adcroft 1.3 _RL KapGM (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
84 cnh 1.1 _RL af (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
85     _RL df (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
86 adcroft 1.3 INTEGER k,kUp,kDown,kM1
87 cnh 1.1 INTEGER bi,bj,iMin,iMax,jMin,jMax
88     INTEGER myThid
89 cnh 1.18 _RL myCurrentTime
90 cnh 1.1 CEndOfInterface
91    
92     C == Local variables ==
93     C I, J, K - Loop counters
94 adcroft 1.3 INTEGER i,j
95 cnh 1.10 LOGICAL TOP_LAYER
96 adcroft 1.3 _RL afFacT, dfFacT
97     _RL dTdx(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
98     _RL dTdy(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
99 adcroft 1.22 _RL df4 (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
100 adcroft 1.20 #ifdef ALLOW_KPP
101 adcroft 1.21 _RS hbl (1-OLx:sNx+OLx,1-OLy:sNy+OLy) ! used by KPP mixing scheme
102     _RS frac (1-OLx:sNx+OLx,1-OLy:sNy+OLy) ! used by KPP mixing scheme
103     _RS negone ! used as argument to SWFRAC
104 adcroft 1.20 integer jwtype ! index for Jerlov water type
105 heimbach 1.24 #endif
106    
107     #ifdef ALLOW_AUTODIFF_TAMC
108     C-- only the kUp part of fverT is set in this subroutine
109     C-- the kDown is still required
110    
111     fVerT(1,1,kDown) = fVerT(1,1,kDown)
112     DO j=1-OLy,sNy+OLy
113     DO i=1-OLx,sNx+OLx
114     fZon(i,j) = 0.0
115     fMer(i,j) = 0.0
116     fVerT(i,j,kUp) = 0.0
117     ENDDO
118     ENDDO
119 adcroft 1.20 #endif
120 cnh 1.1
121     afFacT = 1. _d 0
122     dfFacT = 1. _d 0
123 cnh 1.10 TOP_LAYER = K .EQ. 1
124 cnh 1.1
125     C--- Calculate advective and diffusive fluxes between cells.
126    
127 adcroft 1.22 #ifdef INCLUDE_T_DIFFUSION_CODE
128     C o Zonal tracer gradient
129     DO j=1-Oly,sNy+Oly
130     DO i=1-Olx+1,sNx+Olx
131     dTdx(i,j) = _recip_dxC(i,j,bi,bj)*
132     & (theta(i,j,k,bi,bj)-theta(i-1,j,k,bi,bj))
133     ENDDO
134     ENDDO
135     C o Meridional tracer gradient
136     DO j=1-Oly+1,sNy+Oly
137     DO i=1-Olx,sNx+Olx
138     dTdy(i,j) = _recip_dyC(i,j,bi,bj)*
139     & (theta(i,j,k,bi,bj)-theta(i,j-1,k,bi,bj))
140     ENDDO
141     ENDDO
142    
143     C-- del^2 of T, needed for bi-harmonic (del^4) term
144     IF (diffK4T .NE. 0.) THEN
145     DO j=1-Oly+1,sNy+Oly-1
146     DO i=1-Olx+1,sNx+Olx-1
147     df4(i,j)= _recip_hFacC(i,j,k,bi,bj)
148     & *recip_drF(k)/_rA(i,j,bi,bj)
149     & *(
150     & +( xA(i+1,j)*dTdx(i+1,j)-xA(i,j)*dTdx(i,j) )
151     & +( yA(i,j+1)*dTdy(i,j+1)-yA(i,j)*dTdy(i,j) )
152     & )
153     ENDDO
154     ENDDO
155     ENDIF
156     #endif
157    
158 cnh 1.1 C-- Zonal flux (fZon is at west face of "theta" cell)
159 cnh 1.19 #ifdef INCLUDE_T_ADVECTION_CODE
160     C o Advective component of zonal flux
161 cnh 1.1 DO j=jMin,jMax
162     DO i=iMin,iMax
163     af(i,j) =
164     & uTrans(i,j)*(theta(i,j,k,bi,bj)+theta(i-1,j,k,bi,bj))*0.5 _d 0
165     ENDDO
166     ENDDO
167 cnh 1.19 #endif /* INCLUDE_T_ADVECTION_CODE */
168     #ifdef INCLUDE_T_DIFFUSION_CODE
169     C o Diffusive component of zonal flux
170 cnh 1.1 DO j=jMin,jMax
171     DO i=iMin,iMax
172 adcroft 1.3 df(i,j) = -(diffKhT+0.5*(KapGM(i,j)+KapGM(i-1,j)))*
173     & xA(i,j)*dTdx(i,j)
174 cnh 1.1 ENDDO
175     ENDDO
176 adcroft 1.22 C o Add the bi-harmonic contribution
177     IF (diffK4T .NE. 0.) THEN
178     DO j=jMin,jMax
179     DO i=iMin,iMax
180     df(i,j) = df(i,j) + xA(i,j)*
181     & diffK4T*(df4(i,j)-df4(i-1,j))*_recip_dxC(i,j,bi,bj)
182     ENDDO
183     ENDDO
184     ENDIF
185 cnh 1.19 #endif /* INCLUDE_T_DIFFUSION_CODE */
186     C o Net zonal flux
187 cnh 1.1 DO j=jMin,jMax
188     DO i=iMin,iMax
189 cnh 1.19 fZon(i,j) = 0.
190 adcroft 1.23 & _ADT( + afFacT*af(i,j) )
191     & _LPT( + dfFacT*df(i,j) )
192 cnh 1.1 ENDDO
193     ENDDO
194    
195     C-- Meridional flux (fMer is at south face of "theta" cell)
196 cnh 1.19 #ifdef INCLUDE_T_ADVECTION_CODE
197     C o Advective component of meridional flux
198 cnh 1.1 DO j=jMin,jMax
199     DO i=iMin,iMax
200     af(i,j) =
201     & vTrans(i,j)*(theta(i,j,k,bi,bj)+theta(i,j-1,k,bi,bj))*0.5 _d 0
202     ENDDO
203     ENDDO
204 cnh 1.19 #endif /* INCLUDE_T_ADVECTION_CODE */
205     #ifdef INCLUDE_T_DIFFUSION_CODE
206     C o Diffusive component of meridional flux
207 cnh 1.1 DO j=jMin,jMax
208     DO i=iMin,iMax
209 adcroft 1.3 df(i,j) = -(diffKhT+0.5*(KapGM(i,j)+KapGM(i,j-1)))*
210     & yA(i,j)*dTdy(i,j)
211 cnh 1.1 ENDDO
212     ENDDO
213 adcroft 1.22 C o Add the bi-harmonic contribution
214     IF (diffK4T .NE. 0.) THEN
215     DO j=jMin,jMax
216     DO i=iMin,iMax
217     df(i,j) = df(i,j) + yA(i,j)*
218     & diffK4T*(df4(i,j)-df4(i,j-1))*_recip_dyC(i,j,bi,bj)
219     ENDDO
220     ENDDO
221     ENDIF
222 cnh 1.19 #endif /* INCLUDE_T_DIFFUSION_CODE */
223     C o Net meridional flux
224 cnh 1.1 DO j=jMin,jMax
225     DO i=iMin,iMax
226 cnh 1.19 fMer(i,j) = 0.
227 adcroft 1.23 & _ADT( + afFacT*af(i,j) )
228     & _LPT( + dfFacT*df(i,j) )
229 cnh 1.1 ENDDO
230     ENDDO
231    
232 cnh 1.19 #ifdef INCLUDE_T_DIFFUSION_CODE
233     C-- Terms that diffusion tensor projects onto z
234 adcroft 1.3 DO j=jMin,jMax
235     DO i=iMin,iMax
236     dTdx(i,j) = 0.5*(
237 cnh 1.17 & +0.5*(_maskW(i+1,j,k,bi,bj)
238     & *_recip_dxC(i+1,j,bi,bj)*
239 adcroft 1.3 & (theta(i+1,j,k,bi,bj)-theta(i,j,k,bi,bj))
240 cnh 1.17 & +_maskW(i,j,k,bi,bj)
241     & *_recip_dxC(i,j,bi,bj)*
242 adcroft 1.3 & (theta(i,j,k,bi,bj)-theta(i-1,j,k,bi,bj)))
243 cnh 1.17 & +0.5*(_maskW(i+1,j,km1,bi,bj)
244     & *_recip_dxC(i+1,j,bi,bj)*
245 adcroft 1.3 & (theta(i+1,j,km1,bi,bj)-theta(i,j,km1,bi,bj))
246 cnh 1.17 & +_maskW(i,j,km1,bi,bj)
247     & *_recip_dxC(i,j,bi,bj)*
248 adcroft 1.3 & (theta(i,j,km1,bi,bj)-theta(i-1,j,km1,bi,bj)))
249     & )
250     ENDDO
251     ENDDO
252     DO j=jMin,jMax
253     DO i=iMin,iMax
254     dTdy(i,j) = 0.5*(
255 cnh 1.17 & +0.5*(_maskS(i,j,k,bi,bj)
256     & *_recip_dyC(i,j,bi,bj)*
257 adcroft 1.3 & (theta(i,j,k,bi,bj)-theta(i,j-1,k,bi,bj))
258 cnh 1.17 & +_maskS(i,j+1,k,bi,bj)
259     & *_recip_dyC(i,j+1,bi,bj)*
260 adcroft 1.3 & (theta(i,j+1,k,bi,bj)-theta(i,j,k,bi,bj)))
261 cnh 1.17 & +0.5*(_maskS(i,j,km1,bi,bj)
262     & *_recip_dyC(i,j,bi,bj)*
263 adcroft 1.3 & (theta(i,j,km1,bi,bj)-theta(i,j-1,km1,bi,bj))
264 cnh 1.17 & +_maskS(i,j+1,km1,bi,bj)
265     & *_recip_dyC(i,j+1,bi,bj)*
266 adcroft 1.3 & (theta(i,j+1,km1,bi,bj)-theta(i,j,km1,bi,bj)))
267     & )
268     ENDDO
269     ENDDO
270 cnh 1.19 #endif /* INCLUDE_T_DIFFUSION_CODE */
271 adcroft 1.3
272 cnh 1.19 C-- Vertical flux ( fVerT(,,kUp) is at upper face of "theta" cell )
273     #ifdef INCLUDE_T_ADVECTION_CODE
274     C o Advective component of vertical flux
275 adcroft 1.3 C Note: For K=1 then KM1=1 this gives a barZ(T) = T
276     C (this plays the role of the free-surface correction)
277 cnh 1.1 DO j=jMin,jMax
278     DO i=iMin,iMax
279     af(i,j) =
280 cnh 1.14 & rTrans(i,j)*(theta(i,j,k,bi,bj)+theta(i,j,kM1,bi,bj))*0.5 _d 0
281 cnh 1.1 ENDDO
282     ENDDO
283 cnh 1.19 #endif /* INCLUDE_T_ADVECTION_CODE */
284     #ifdef INCLUDE_T_DIFFUSION_CODE
285     C o Diffusive component of vertical flux
286     C Note: For K=1 then KM1=1 and this gives a dT/dr = 0 upper
287 adcroft 1.3 C boundary condition.
288 cnh 1.1 DO j=jMin,jMax
289     DO i=iMin,iMax
290 cnh 1.14 df(i,j) = _rA(i,j,bi,bj)*(
291 adcroft 1.3 & -KapGM(i,j)*K13(i,j,k)*dTdx(i,j)
292     & -KapGM(i,j)*K23(i,j,k)*dTdy(i,j)
293     & )
294 cnh 1.1 ENDDO
295     ENDDO
296 adcroft 1.9 IF (.NOT.implicitDiffusion) THEN
297     DO j=jMin,jMax
298     DO i=iMin,iMax
299 cnh 1.14 df(i,j) = df(i,j) + _rA(i,j,bi,bj)*(
300 cnh 1.16 & -KappaRT(i,j,k)*recip_drC(k)
301 cnh 1.15 & *(theta(i,j,kM1,bi,bj)-theta(i,j,k,bi,bj))*rkFac
302 adcroft 1.9 & )
303     ENDDO
304     ENDDO
305     ENDIF
306 cnh 1.19 #endif /* INCLUDE_T_DIFFUSION_CODE */
307 adcroft 1.20
308     #ifdef ALLOW_KPP
309     IF (usingKPPmixing) THEN
310     C-- Compute fraction of solar short-wave flux penetrating to
311     C the bottom of the mixing layer
312     DO j=jMin,jMax
313     DO i=iMin,iMax
314     hbl(i,j) = KPPhbl(i,j,bi,bj)
315     ENDDO
316     ENDDO
317     j=(sNx+2*OLx)*(sNy+2*OLy)
318     jwtype = 3
319 adcroft 1.21 negone = -1.
320 adcroft 1.20 CALL SWFRAC(
321 adcroft 1.21 I j, negone, hbl, jwtype,
322 adcroft 1.20 O frac )
323    
324     C Add non local transport coefficient (ghat term) to right-hand-side
325     C The nonlocal transport term is noNrero only for scalars in unstable
326     C (convective) forcing conditions.
327     C Note: -[Qnet * delZ(1) + Qsw * (1-frac) / KPPhbl] * 4000 * rho
328     C is the total heat flux
329     C penetrating the mixed layer from the surface in (deg C / s)
330     IF ( TOP_LAYER ) THEN
331     DO j=jMin,jMax
332     DO i=iMin,iMax
333     df(i,j) = df(i,j) + _rA(i,j,bi,bj) *
334     & ( Qnet(i,j,bi,bj) * delZ(1) +
335     & Qsw(i,j,bi,bj) * (1.-frac(i,j))
336     & / KPPhbl(i,j,bi,bj) ) *
337     & ( KappaRT(i,j,k) * KPPghat(i,j,k, bi,bj) )
338     ENDDO
339     ENDDO
340     ELSE
341     DO j=jMin,jMax
342     DO i=iMin,iMax
343     df(i,j) = df(i,j) + _rA(i,j,bi,bj) *
344     & ( Qnet(i,j,bi,bj) * delZ(1) +
345     & Qsw(i,j,bi,bj) * (1.-frac(i,j))
346     & / KPPhbl(i,j,bi,bj) ) *
347     & ( KappaRT(i,j,k) * KPPghat(i,j,k, bi,bj)
348     & - KappaRT(i,j,k-1) * KPPghat(i,j,k-1,bi,bj) )
349     ENDDO
350     ENDDO
351     ENDIF
352     ENDIF
353     #endif /* ALLOW_KPP */
354    
355 cnh 1.19 C o Net vertical flux
356 cnh 1.1 DO j=jMin,jMax
357     DO i=iMin,iMax
358 cnh 1.19 fVerT(i,j,kUp) = 0.
359 adcroft 1.23 & _ADT( +afFacT*af(i,j)*maskUp(i,j) )
360     & _LPT( +dfFacT*df(i,j)*maskUp(i,j) )
361 cnh 1.1 ENDDO
362     ENDDO
363 cnh 1.19 #ifdef INCLUDE_T_ADVECTION_CODE
364 cnh 1.10 IF ( TOP_LAYER ) THEN
365     DO j=jMin,jMax
366     DO i=iMin,iMax
367     fVerT(i,j,kUp) = afFacT*af(i,j)*freeSurfFac
368     ENDDO
369     ENDDO
370     ENDIF
371 cnh 1.19 #endif /* INCLUDE_T_ADVECTION_CODE */
372 cnh 1.1
373     C-- Tendency is minus divergence of the fluxes.
374     C Note. Tendency terms will only be correct for range
375     C i=iMin+1:iMax-1, j=jMin+1:jMax-1. Edge points
376     C will contain valid floating point numbers but
377     C they are not algorithmically correct. These points
378     C are not used.
379     DO j=jMin,jMax
380     DO i=iMin,iMax
381 cnh 1.17 #define _recip_VolT1(i,j,k,bi,bj) _recip_hFacC(i,j,k,bi,bj)*recip_drF(k)
382     #define _recip_VolT2(i,j,k,bi,bj) /_rA(i,j,bi,bj)
383 cnh 1.1 gT(i,j,k,bi,bj)=
384 cnh 1.17 & -_recip_VolT1(i,j,k,bi,bj)
385     & _recip_VolT2(i,j,k,bi,bj)
386 cnh 1.1 & *(
387     & +( fZon(i+1,j)-fZon(i,j) )
388     & +( fMer(i,j+1)-fMer(i,j) )
389 cnh 1.14 & +( fVerT(i,j,kUp)-fVerT(i,j,kDown) )*rkFac
390 cnh 1.1 & )
391     ENDDO
392     ENDDO
393    
394 cnh 1.19 #ifdef INCLUDE_T_FORCING_CODE
395 cnh 1.1 C-- External thermal forcing term(s)
396 cnh 1.19 CALL EXTERNAL_FORCING_T(
397     I iMin,iMax,jMin,jMax,bi,bj,k,
398     I maskC,
399     I myCurrentTime,myThid)
400     #endif /* INCLUDE_T_FORCING_CODE */
401    
402     #ifdef INCLUDE_LAT_CIRC_FFT_FILTER_CODE
403     C-- Zonal FFT filter of tendency
404     CALL FILTER_LATCIRCS_FFT_APPLY(
405     U gT,
406     I 1, sNy, k, k, bi, bj, 1, myThid)
407     #endif /* INCLUDE_LAT_CIRC_FFT_FILTER_CODE */
408    
409 cnh 1.1
410     RETURN
411     END

  ViewVC Help
Powered by ViewVC 1.1.22